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The articlesl[4],[[2],[I6],[1], 171, [3], and[5] provide the notation and terminology for this paper.
In this papek is a natural number arid is a non empty set.
Let B, A be non empty sets and lebe an element d8. ThenA+— b is an element oB”.
Letl; be a set. We say thét is relation-like if and only if the conditions (Def. 1) are satisfied.

(Def. 1)()) For every sex such thak € |1 holdsx is a finite sequence, and
(i) for all finite sequences, b such that € |1 andb € I; holds lera = lenb.
Let us mention that there exists a set which is relation-like.
A relation is a relation-like set.

We follow the rulesX denotes a sep, r denote relations, aral b denote finite sequences.
The following two propositions are true:

(7f] 1f X C p, thenX is relation-like.
(8) {a} is relation-like.

The schemeel existdeals with a sefl and a unary predicatg, and states that:
There exists such that for everg holdsa c r iff a€ 4 and?[q]
provided the parameters meet the following condition:
e For alla, b such thatP[a] and2[b] holds lera = lenb.
Let us considep, r. Let us observe thgs =r if and only if:

(Def. 2) Forevenyaholdsac piff acr.

Let us note thaf is relation-like.
We now state the proposition

(9) For everyp such that for everg holdsa ¢ p holdsp = 0.

Let us considep. Let us assume that# 0. The functor Arity(p) yields a natural number and
is defined by:

1 The propositions (1)-(6) have been removed.
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(Def. 4E] For everya such thag € p holds Arity(p) = lena.
Let us considek. A relation is called &-ary relation if:
(Def. 5) For everya such that € it holds lema = k.
Let X be a set. A relation is called a relation Hrif:
(Def. 6) For everya such that € it holds rnga C X.

Next we state two propositions:

(20F] 0is arelation orX.

(21) 0is ak-ary relation.

Let us considek, k. A relation is called &-ary relation ofX if:
(Def. 7) Itis arelation orX and it is ak-ary relation.
Let us consideD. The functor ReID) yielding a set is defined by the condition (Def. 8).

(Def. 8) Let givenX. ThenX € Rel(D) if and only if the following conditions are satisfied:
(i) XCD* and
(i)  for all finite sequences, b of elements oD such that € X andb € X holds lera = lenb.

Let us consideb. Note that R€ID) is non empty.

Let D be a non empty set. A relation @his an element of RéD).

In the sequeh denotes a finite sequence of elementBaindp, r denote elements of R&).
Next we state three propositions:

(26@ If X Cr, thenX is an element of RéD).
(27) {a} is an element of RéD).

(28) For all elements, y of D holds{(x,y)} is an element of RéD).

Let us consideD, p, r. Let us observe thai = r if and only if:
(Def. 9) Forevenaholdsac piff acr.

The schemeel D existdeals with a non empty set and a unary predicatg, and states that:
There exists an elemendf Rel(2) such that for every finite sequenaef elements
of 4 holdsa e r iff P[]
provided the parameters satisfy the following condition:
e For all finite sequences, b of elements 0f4 such thatP[a] and?[b] holds lera =
lenb.
Let us consideb. The functorap yielding an element of RéD) is defined as follows:

(Def. 10) a¢ @p.
Next we state the proposition
(32f @p=0.

Let us consideD, p. Let us assume that+# @p. The functor Arity(p) yields a natural number
and is defined by:

(Def. 11) Ifa€ p, then Arity(p) = lena.

2 The definition (Def. 3) has been removed.

3 The propositions (10)-(19) have been removed.
4 The propositions (22)—(25) have been removed.
5 The propositions (29)—(31) have been removed.
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The schemeel D exist2deals with a non empty sgt, a natural numbeB, and a unary predicate
P, and states that:

There exists an elementf Rel(2) such that for every finite sequenaef elements

of 4 iflena= B, thenacr iff P[a
for all values of the parameters.

The setBooleanis defined as follows:

(Def. 12) Boolean= {0,1}.

One can verify thaBooleanis non empty.
The elemenfalseof Booleanis defined as follows:

(Def. 13) false=0.

The elementrue of Booleanis defined as follows:
(Def. 14) true=1.

Next we state three propositions:

(36f] false= 0 andtrue= 1.
(37) Boolean= {falsetrue}.
(38) false+ true.

Letx be a set. We say thatis boolean if and only if:
(Def. 15) x € Boolean

Let us mention that there exists a set which is boolean and every elentgmblefinis boolean
In the sequel, v, w are boolean sets.

Next we state the proposition

(39) v=falseorv=true.

Letv be a boolean set. The functev is defined by:
(Def. 16)(i)) —v=trueif v="false
(i) —v=falseif v=true

Letw be a boolean set. The functon w is defined by:

_fi) true, if v=trueandw = true,
(Def. 17) vAw= { falsg otherwise.

Let us observe that the functen wis commutative.

Letv be a boolean set. Note that is boolean. Letv be a boolean set. One can verify thatw
is boolean.

Let v be an element oBoolean Then-v is an element oBoolean Letw be an element of
Boolean ThenvAw is an element oBoolean

One can prove the following propositions:

(40) ——v=v.

(41) v=falseiff —-v =trueandv = trueiff -v = false
(43)] v+ trueiff v=false

(45F] vAw=trueiff v=trueandw = true andv A w = falseiff v = falseor w = false

6 The propositions (33)—(35) have been removed.
" The proposition (42) has been removed.
8 The proposition (44) has been removed.
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(46) vA-v=Tfalse
47) —(vA-=v) =true
(49f] falsenv=false
(50) trueAv=w.
(51) If vAv=false thenv = false
(52) VA(WAU) = (VAW)AU.
Let us consideK. The functorBoolearifalse¢ X) is defined by:

true, if false¢ X,

i
(Def. 18) Boolearffalse¢ X) = {)false otherwise.

Let us consideX. One can check th&oolear{false¢ X) is boolean.
Let us consideK. ThenBoolearffalse¢ X) is an element oBoolean
One can prove the following proposition

(53) false¢ X iff Boolear{false¢ X) = true andfalsee X iff Boolear{false¢ X) = false
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9 The proposition (48) has been removed.
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