The Limit of a Real Function at a Point

Jarosław Kotowicz Warsaw University Białystok

Summary. We define the proper and the improper limit of a real function at a point. The main properties of the operations on the limit of function are proved. The connection between the one-side limits and the limit of function at a point are exposed. Equivalent Cauchy and Heine characterizations of the limit of real function at a point are proved.

MML Identifier: LIMFUNC3.

WWW: http://mizar.org/JFM/Vol2/limfunc3.html

The articles [13], [15], [2], [14], [4], [1], [16], [3], [11], [6], [5], [12], [9], [10], [7], and [8] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: r, r_1 , r_2 , g, g_1 , g_2 , x_0 denote real numbers, n, k denote natural numbers, s_1 denotes a sequence of real numbers, and f, f_1 , f_2 denote partial functions from \mathbb{R} to \mathbb{R} .

One can prove the following propositions:

- (1) If $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap]-\infty, x_0[$ or $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap]x_0, +\infty[$, then $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$.
- (2) If for every n holds $0 < |x_0 s_1(n)|$ and $|x_0 s_1(n)| < \frac{1}{n+1}$ and $s_1(n) \in \text{dom } f$, then s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$.
- (3) Suppose s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$. Let given r. Suppose 0 < r. Then there exists n such that for every k such that $n \le k$ holds $0 < |x_0 s_1(k)|$ and $|x_0 s_1(k)| < r$ and $s_1(k) \in \operatorname{dom} f$.
- (4) If 0 < r, then $]x_0 r, x_0 + r[\setminus \{x_0\} =]x_0 r, x_0[\cup]x_0, x_0 + r[$.
- (5) Suppose $0 < r_2$ and $]x_0 r_2, x_0[\cup]x_0, x_0 + r_2[\subseteq \text{dom } f]$. Let given r_1, r_2 . Suppose $r_1 < x_0$ and $x_0 < r_2$. Then there exist g_1, g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$.
- (6) If for every n holds $x_0 \frac{1}{n+1} < s_1(n)$ and $s_1(n) < x_0$ and $s_1(n) \in \text{dom } f$, then s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \text{dom } f \setminus \{x_0\}$.
- (7) If s_1 is convergent and $\lim s_1 = x_0$ and 0 < g, then there exists k such that for every n such that $k \le n$ holds $x_0 g < s_1(n)$ and $s_1(n) < x_0 + g$.
- (8) The following statements are equivalent
- (i) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $g_2 \in \text{dom } f$,
- (ii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$ and for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$.

Let us consider f, x_0 . We say that f is convergent in x_0 if and only if the conditions (Def. 1) are satisfied.

- (Def. 1)(i) For all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $g_2 \in \text{dom } f$, and
 - (ii) there exists g such that for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$ holds $f \cdot s_1$ is convergent and $\lim (f \cdot s_1) = g$.

We say that f is divergent to $+\infty$ in x_0 if and only if the conditions (Def. 2) are satisfied.

- (Def. 2)(i) For all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $g_2 \in \text{dom } f$, and
 - (ii) for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$ holds $f \cdot s_1$ is divergent to $+\infty$.

We say that f is divergent to $-\infty$ in x_0 if and only if the conditions (Def. 3) are satisfied.

- (Def. 3)(i) For all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $g_2 \in \text{dom } f$, and
 - (ii) for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$ holds $f \cdot s_1$ is divergent to $-\infty$.

Next we state a number of propositions:

- $(12)^1$ f is convergent in x_0 if and only if the following conditions are satisfied:
 - (i) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $g_2 \in \text{dom } f$, and
- (ii) there exists g such that for every g_1 such that $0 < g_1$ there exists g_2 such that $0 < g_2$ and for every r_1 such that $0 < |x_0 r_1|$ and $|x_0 r_1| < g_2$ and $r_1 \in \text{dom } f$ holds $|f(r_1) g| < g_1$.
- (13) f is divergent to $+\infty$ in x_0 if and only if the following conditions are satisfied:
 - (i) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $g_2 \in \text{dom } f$, and
- (ii) for every g_1 there exists g_2 such that $0 < g_2$ and for every r_1 such that $0 < |x_0 r_1|$ and $|x_0 r_1| < g_2$ and $r_1 \in \text{dom } f$ holds $g_1 < f(r_1)$.
- (14) f is divergent to $-\infty$ in x_0 if and only if the following conditions are satisfied:
 - (i) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $g_2 \in \text{dom } f$, and
- (ii) for every g_1 there exists g_2 such that $0 < g_2$ and for every r_1 such that $0 < |x_0 r_1|$ and $|x_0 r_1| < g_2$ and $r_1 \in \text{dom } f \text{ holds } f(r_1) < g_1$.
- (15) f is divergent to $+\infty$ in x_0 if and only if f is left divergent to $+\infty$ in x_0 and right divergent to $+\infty$ in x_0 .
- (16) f is divergent to $-\infty$ in x_0 if and only if f is left divergent to $-\infty$ in x_0 and right divergent to $-\infty$ in x_0 .
- (17) Suppose that
 - (i) f_1 is divergent to $+\infty$ in x_0 ,
- (ii) f_2 is divergent to $+\infty$ in x_0 , and
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f_1 \cap \text{dom } f_2$ and $g_2 < r_2$ and $x_0 < g_2$ and $x_$

Then $f_1 + f_2$ is divergent to $+\infty$ in x_0 and f_1 f_2 is divergent to $+\infty$ in x_0 .

¹ The propositions (9)–(11) have been removed.

- (18) Suppose that
 - (i) f_1 is divergent to $-\infty$ in x_0 ,
- (ii) f_2 is divergent to $-\infty$ in x_0 , and
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f_1 \cap \text{dom } f_2$ and $g_2 < r_2$ and $x_0 < g_2$ and $x_$

Then $f_1 + f_2$ is divergent to $-\infty$ in x_0 and f_1 f_2 is divergent to $+\infty$ in x_0 .

- (19) Suppose that
 - (i) f_1 is divergent to $+\infty$ in x_0 ,
- (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_1 + f_2)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_1 + f_2)$, and
- (iii) there exists r such that 0 < r and f_2 is lower bounded on $]x_0 r, x_0[\cup]x_0, x_0 + r[$. Then $f_1 + f_2$ is divergent to $+\infty$ in x_0 .
- (20) Suppose that
 - (i) f_1 is divergent to $+\infty$ in x_0 ,
- (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_1 f_2)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_1 f_2)$, and
- (iii) there exist r, r_1 such that 0 < r and $0 < r_1$ and for every g such that $g \in \text{dom } f_2 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ holds $r_1 \le f_2(g)$.

Then $f_1 f_2$ is divergent to $+\infty$ in x_0 .

- (21)(i) If f is divergent to $+\infty$ in x_0 and r > 0, then r f is divergent to $+\infty$ in x_0 ,
- (ii) if f is divergent to $+\infty$ in x_0 and r < 0, then r f is divergent to $-\infty$ in x_0 ,
- (iii) if f is divergent to $-\infty$ in x_0 and r > 0, then r f is divergent to $-\infty$ in x_0 , and
- (iv) if f is divergent to $-\infty$ in x_0 and r < 0, then r f is divergent to $+\infty$ in x_0 .
- (22) If f is divergent to $+\infty$ in x_0 and divergent to $-\infty$ in x_0 , then |f| is divergent to $+\infty$ in x_0 .
- (23) Suppose that
 - (i) there exists r such that 0 < r and f is non-decreasing on $]x_0 r, x_0[$ and non increasing on $]x_0, x_0 + r[$ and f is not upper bounded on $]x_0 r, x_0[$ and f is not upper bounded on $]x_0, x_0 + r[$, and
- (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $g_2 \in \text{dom } f$.

Then f is divergent to $+\infty$ in x_0 .

- (24) Suppose that
 - (i) there exists r such that 0 < r and f is increasing on $]x_0 r, x_0[$ and decreasing on $]x_0, x_0 + r[$ and f is not upper bounded on $]x_0, x_0 + r[$, and
- (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $g_2 \in \text{dom } f$.

Then *f* is divergent to $+\infty$ in x_0 .

- (25) Suppose that
 - (i) there exists r such that 0 < r and f is non increasing on $]x_0 r, x_0[$ and non-decreasing on $]x_0, x_0 + r[$ and f is not lower bounded on $]x_0 r, x_0[$ and f is not lower bounded on $]x_0, x_0 + r[$, and
- (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $g_2 \in \text{dom } f$.

Then f is divergent to $-\infty$ in x_0 .

- (26) Suppose that
 - (i) there exists r such that 0 < r and f is decreasing on $]x_0 r, x_0[$ and increasing on $]x_0, x_0 + r[$ and f is not lower bounded on $]x_0, x_0 + r[$, and
- (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$.

Then *f* is divergent to $-\infty$ in x_0 .

- (27) Suppose that
 - (i) f_1 is divergent to $+\infty$ in x_0 ,
- (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $g_2 \in \text{dom } f$, and
- (iii) there exists r such that 0 < r and $\operatorname{dom} f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[) \subseteq \operatorname{dom} f_1 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ and for every g such that $g \in \operatorname{dom} f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ holds $f_1(g) \le f(g)$. Then f is divergent to $+\infty$ in x_0 .
- (28) Suppose that
 - (i) f_1 is divergent to $-\infty$ in x_0 ,
- (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $g_2 \in \text{dom } f$, and
- (iii) there exists r such that 0 < r and $\operatorname{dom} f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[) \subseteq \operatorname{dom} f_1 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ and for every g such that $g \in \operatorname{dom} f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ holds $f(g) \leq f_1(g)$. Then f is divergent to $-\infty$ in x_0 .
- (29) Suppose that
 - (i) f_1 is divergent to $+\infty$ in x_0 , and
- (ii) there exists r such that 0 < r and $]x_0 r, x_0[\cup]x_0, x_0 + r[\subseteq \text{dom } f \cap \text{dom } f_1 \text{ and for every } g \text{ such that } g \in]x_0 r, x_0[\cup]x_0, x_0 + r[\text{ holds } f_1(g) \le f(g).$

Then *f* is divergent to $+\infty$ in x_0 .

- (30) Suppose that
 - (i) f_1 is divergent to $-\infty$ in x_0 , and
- (ii) there exists r such that 0 < r and $]x_0 r, x_0[\cup]x_0, x_0 + r[\subseteq \text{dom } f \cap \text{dom } f_1 \text{ and for every } g \text{ such that } g \in]x_0 r, x_0[\cup]x_0, x_0 + r[\text{ holds } f(g) \le f_1(g).$

Then f is divergent to $-\infty$ in x_0 .

Let us consider f, x_0 . Let us assume that f is convergent in x_0 . The functor $\lim_{x_0} f$ yielding a real number is defined as follows:

(Def. 4) For every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \setminus \{x_0\}$ holds $f \cdot s_1$ is convergent and $\lim (f \cdot s_1) = \lim_{x_0} f$.

Next we state a number of propositions:

- (32)² Suppose f is convergent in x_0 . Then $\lim_{x_0} f = g$ if and only if for every g_1 such that $0 < g_1$ there exists g_2 such that $0 < g_2$ and for every r_1 such that $0 < |x_0 r_1|$ and $|x_0 r_1| < g_2$ and $r_1 \in \text{dom } f \text{ holds } |f(r_1) g| < g_1$.
- (33) Suppose f is convergent in x_0 . Then f is left convergent in x_0 and right convergent in x_0 and $\lim_{x_0^-} f = \lim_{x_0^+} f$ and $\lim_{x_0^-} f = \lim_{x_0^+} f$.
- (34) Suppose f is left convergent in x_0 and right convergent in x_0 and $\lim_{x_0^-} f = \lim_{x_0^+} f$. Then f is convergent in x_0 and $\lim_{x_0^-} f = \lim_{x_0^+} f$ and $\lim_{x_0^-} f = \lim_{x_0^+} f$.

² The proposition (31) has been removed.

- (35) If f is convergent in x_0 , then r f is convergent in x_0 and $\lim_{x_0} (r f) = r \cdot \lim_{x_0} f$.
- (36) If f is convergent in x_0 , then -f is convergent in x_0 and $\lim_{x_0} (-f) = -\lim_{x_0} f$.
- (37) Suppose that
 - (i) f_1 is convergent in x_0 ,
- (ii) f_2 is convergent in x_0 , and
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_1 + f_2)$ and $g_2 < r_2$ and $g_2 \in \text{dom}(f_1 + f_2)$.

Then $f_1 + f_2$ is convergent in x_0 and $\lim_{x_0} (f_1 + f_2) = \lim_{x_0} f_1 + \lim_{x_0} f_2$.

- (38) Suppose that
 - (i) f_1 is convergent in x_0 ,
- (ii) f_2 is convergent in x_0 , and
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_1 f_2)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_1 f_2)$.

Then $f_1 - f_2$ is convergent in x_0 and $\lim_{x_0} (f_1 - f_2) = \lim_{x_0} f_1 - \lim_{x_0} f_2$.

- (39) If f is convergent in x_0 and $f^{-1}(\{0\}) = \emptyset$ and $\lim_{x_0} f \neq 0$, then $\frac{1}{f}$ is convergent in x_0 and $\lim_{x_0} (\frac{1}{f}) = (\lim_{x_0} f)^{-1}$.
- (40) If f is convergent in x_0 , then |f| is convergent in x_0 and $\lim_{x_0} |f| = |\lim_{x_0} f|$.
- (41) Suppose that
 - (i) f is convergent in x_0 ,
- (ii) $\lim_{x_0} f \neq 0$, and
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$ and $f(g_1) \neq 0$ and $f(g_2) \neq 0$.

Then $\frac{1}{f}$ is convergent in x_0 and $\lim_{x_0} (\frac{1}{f}) = (\lim_{x_0} f)^{-1}$.

- (42) Suppose that
 - (i) f_1 is convergent in x_0 ,
- (ii) f_2 is convergent in x_0 , and
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_1 f_2)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_1 f_2)$.

Then f_1 f_2 is convergent in x_0 and $\lim_{x_0} (f_1 f_2) = \lim_{x_0} f_1 \cdot \lim_{x_0} f_2$.

- (43) Suppose that
 - (i) f_1 is convergent in x_0 ,
- (ii) f_2 is convergent in x_0 ,
- (iii) $\lim_{x_0} f_2 \neq 0$, and
- (iv) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(\frac{f_1}{f_2})$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(\frac{f_1}{f_2})$.

Then $\frac{f_1}{f_2}$ is convergent in x_0 and $\lim_{x_0} \left(\frac{f_1}{f_2}\right) = \frac{\lim_{x_0} f_1}{\lim_{x_0} f_2}$

- (44) Suppose that
 - (i) f_1 is convergent in x_0 ,
- (ii) $\lim_{x_0} f_1 = 0,$
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom}(f_1 f_2)$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom}(f_1 f_2)$, and
- (iv) there exists r such that 0 < r and f_2 is bounded on $]x_0 r, x_0[\cup]x_0, x_0 + r[$.

Then f_1 f_2 is convergent in x_0 and $\lim_{x_0} (f_1 f_2) = 0$.

- (45) Suppose that
 - (i) f_1 is convergent in x_0 ,
- (ii) f_2 is convergent in x_0 ,
- (iii) $\lim_{x_0} f_1 = \lim_{x_0} f_2,$
- (iv) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$, and
- (v) there exists r such that 0 < r but for every g such that $g \in \text{dom } f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ holds $f_1(g) \le f(g)$ and $f(g) \le f_2(g)$ but $\text{dom } f_1 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[) \subseteq \text{dom } f_2 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ and $\text{dom } f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[) \subseteq \text{dom } f_1 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ or $\text{dom } f_2 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[) \subseteq \text{dom } f_1 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ and $\text{dom } f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$.

Then f is convergent in x_0 and $\lim_{x_0} f = \lim_{x_0} f_1$.

- (46) Suppose that
 - (i) f_1 is convergent in x_0 ,
- (ii) f_2 is convergent in x_0 ,
- (iii) $\lim_{x_0} f_1 = \lim_{x_0} f_2$, and
- (iv) there exists r such that 0 < r and $]x_0 r, x_0[\cup]x_0, x_0 + r[\subseteq \text{dom } f_1 \cap \text{dom } f_2 \cap \text{dom } f$ and for every g such that $g \in]x_0 r, x_0[\cup]x_0, x_0 + r[\text{ holds } f_1(g) \le f(g) \text{ and } f(g) \le f_2(g).$

Then f is convergent in x_0 and $\lim_{x_0} f = \lim_{x_0} f_1$.

- (47) Suppose that
 - (i) f_1 is convergent in x_0 ,
- (ii) f_2 is convergent in x_0 , and
- (iii) there exists r such that 0 < r but $\text{dom } f_1 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[) \subseteq \text{dom } f_2 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ and for every g such that $g \in \text{dom } f_1 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ holds $f_1(g) \le f_2(g)$ or $\text{dom } f_2 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[) \subseteq \text{dom } f_1 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ and for every g such that $g \in \text{dom } f_2 \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ holds $f_1(g) \le f_2(g)$.

Then $\lim_{x_0} f_1 \leq \lim_{x_0} f_2$.

- (48) Suppose that
 - (i) f is divergent to $+\infty$ in x_0 and divergent to $-\infty$ in x_0 , and
- (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$ and $f(g_1) \neq 0$ and $f(g_2) \neq 0$.

Then $\frac{1}{f}$ is convergent in x_0 and $\lim_{x_0} \left(\frac{1}{f}\right) = 0$.

- (49) Suppose that
 - (i) f is convergent in x_0 ,
- (ii) $\lim_{x_0} f = 0$,
- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $g_2 \in \text{dom } f$ and $f(g_1) \neq 0$ and $f(g_2) \neq 0$, and
- (iv) there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ holds $0 \le f(g)$.

Then $\frac{1}{f}$ is divergent to $+\infty$ in x_0 .

- (50) Suppose that
 - (i) f is convergent in x_0 ,
- (ii) $\lim_{x_0} f = 0$,

- (iii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $g_2 \in \text{dom } f$ and $g_1 \neq 0$ and $g_2 \neq 0$, and
- (iv) there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ holds $f(g) \le 0$.
 - Then $\frac{1}{f}$ is divergent to $-\infty$ in x_0 .
- (51) Suppose f is convergent in x_0 and $\lim_{x_0} f = 0$ and there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ holds 0 < f(g). Then $\frac{1}{f}$ is divergent to $+\infty$ in x_0 .
- (52) Suppose f is convergent in x_0 and $\lim_{x_0} f = 0$ and there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap (]x_0 r, x_0[\cup]x_0, x_0 + r[)$ holds f(g) < 0. Then $\frac{1}{f}$ is divergent to $-\infty$ in x_0 .

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinall.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2 html
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html.
- [5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_2.html.
- [6] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seq_1.html.
- [7] Jarosław Kotowicz. The limit of a real function at infinity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/limfuncl.html.
- [8] Jarosław Kotowicz. The one-side limits of a real function at a point. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/limfunc2.html.
- [9] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_1.html.
- [10] Jarosław Kotowicz. Properties of real functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_ 2.html.
- [11] Jan Popiotek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/absvalue.html.
- [12] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [15] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [16] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received September 5, 1990

Published January 2, 2004