The One-Side Limits of a Real Function at a Point

Jarosław Kotowicz
Warsaw University
Białystok

Abstract

Summary. We introduce the left-side and the right-side limit of a real function at a point. We prove a few properties of the operations on the proper and improper one-side limits and show that Cauchy and Heine characterizations of the one-side limit are equivalent.

MML Identifier: LIMFUNC2.
WWW: http://mizar.org/JFM/Vol2/limfunc2.html

The articles [11], [13], [2], [12], [3], [1], [9], [5], [4], [14], [10], [7], [8], and [6] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: $r, r_{1}, r_{2}, g, g_{1}, x_{0}$ are real numbers, n, k are natural numbers, s_{1} is a sequence of real numbers, and f, f_{1}, f_{2} are partial functions from \mathbb{R} to \mathbb{R}.

We now state several propositions:
(1) If s_{1} is convergent and $r<\lim s_{1}$, then there exists n such that for every k such that $n \leq k$ holds $r<s_{1}(k)$.
(2) If s_{1} is convergent and $\lim s_{1}<r$, then there exists n such that for every k such that $n \leq k$ holds $s_{1}(k)<r$.
(3) If $0<r_{2}$ and $] r_{1}-r_{2}, r_{1}\left[\subseteq \operatorname{dom} f\right.$, then for every r such that $r<r_{1}$ there exists g such that $r<g$ and $g<r_{1}$ and $g \in \operatorname{dom} f$.
(4) If $0<r_{2}$ and $] r_{1}, r_{1}+r_{2}\left[\subseteq \operatorname{dom} f\right.$, then for every r such that $r_{1}<r$ there exists g such that $g<r$ and $r_{1}<g$ and $g \in \operatorname{dom} f$.
(5) If for every n holds $x_{0}-\frac{1}{n+1}<s_{1}(n)$ and $s_{1}(n)<x_{0}$ and $s_{1}(n) \in \operatorname{dom} f$, then s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right]-\infty, x_{0}[$.
(6) If for every n holds $x_{0}<s_{1}(n)$ and $s_{1}(n)<x_{0}+\frac{1}{n+1}$ and $s_{1}(n) \in \operatorname{dom} f$, then s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right] x_{0},+\infty[$.

Let us consider f, x_{0}. We say that f is left convergent in x_{0} if and only if the conditions (Def. 1) are satisfied.
(Def. 1)(i) For every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$, and
(ii) there exists g such that for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\mathrm{rng} s_{1} \subseteq$ $\operatorname{dom} f \cap]-\infty, x_{0}\left[\right.$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.

We say that f is left divergent to $+\infty$ in x_{0} if and only if the conditions (Def. 2) are satisfied.
(Def. 2)(i) For every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$, and
(ii) for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right]-\infty, x_{0}[$ holds $f \cdot s_{1}$ is divergent to $+\infty$.

We say that f is left divergent to $-\infty$ in x_{0} if and only if the conditions (Def. 3) are satisfied.
(Def. 3)(i) For every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$, and
(ii) for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right]-\infty, x_{0}[$ holds $f \cdot s_{1}$ is divergent to $-\infty$.
We say that f is right convergent in x_{0} if and only if the conditions (Def. 4) are satisfied.
(Def. 4)(i) For every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$, and
(ii) there exists g such that for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and rng $s_{1} \subseteq$ $\operatorname{dom} f \cap] x_{0},+\infty\left[\right.$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.
We say that f is right divergent to $+\infty$ in x_{0} if and only if the conditions (Def. 5) are satisfied.
(Def. 5)(i) For every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$, and
(ii) for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right] x_{0},+\infty[$ holds $f \cdot s_{1}$ is divergent to $+\infty$.
We say that f is right divergent to $-\infty$ in x_{0} if and only if the conditions (Def. 6) are satisfied.
(Def. 6)(i) For every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$, and
(ii) for every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right] x_{0},+\infty[$ holds $f \cdot s_{1}$ is divergent to $-\infty$.
We now state a number of propositions:
(13 ${ }^{T} f$ is left convergent in x_{0} if and only if the following conditions are satisfied:
(i) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$, and
(ii) there exists g such that for every g_{1} such that $0<g_{1}$ there exists r such that $r<x_{0}$ and for every r_{1} such that $r<r_{1}$ and $r_{1}<x_{0}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
(14) f is left divergent to $+\infty$ in x_{0} if and only if the following conditions are satisfied:
(i) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$, and
(ii) for every g_{1} there exists r such that $r<x_{0}$ and for every r_{1} such that $r<r_{1}$ and $r_{1}<x_{0}$ and $r_{1} \in \operatorname{dom} f$ holds $g_{1}<f\left(r_{1}\right)$.
(15) f is left divergent to $-\infty$ in x_{0} if and only if the following conditions are satisfied:
(i) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$, and
(ii) for every g_{1} there exists r such that $r<x_{0}$ and for every r_{1} such that $r<r_{1}$ and $r_{1}<x_{0}$ and $r_{1} \in \operatorname{dom} f$ holds $f\left(r_{1}\right)<g_{1}$.
(16) f is right convergent in x_{0} if and only if the following conditions are satisfied:
(i) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$, and
(ii) there exists g such that for every g_{1} such that $0<g_{1}$ there exists r such that $x_{0}<r$ and for every r_{1} such that $r_{1}<r$ and $x_{0}<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
(17) f is right divergent to $+\infty$ in x_{0} if and only if the following conditions are satisfied:
(i) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$, and
(ii) for every g_{1} there exists r such that $x_{0}<r$ and for every r_{1} such that $r_{1}<r$ and $x_{0}<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $g_{1}<f\left(r_{1}\right)$.
(18) f is right divergent to $-\infty$ in x_{0} if and only if the following conditions are satisfied:
(i) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$, and
(ii) for every g_{1} there exists r such that $x_{0}<r$ and for every r_{1} such that $r_{1}<r$ and $x_{0}<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $f\left(r_{1}\right)<g_{1}$.

[^0](19) Suppose that
(i) $\quad f_{1}$ is left divergent to $+\infty$ in x_{0},
(ii) f_{2} is left divergent to $+\infty$ in x_{0}, and
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f_{1} \cap$ $\operatorname{dom} f_{2}$.
Then $f_{1}+f_{2}$ is left divergent to $+\infty$ in x_{0} and $f_{1} f_{2}$ is left divergent to $+\infty$ in x_{0}.
(20) Suppose that
(i) $\quad f_{1}$ is left divergent to $-\infty$ in x_{0},
(ii) f_{2} is left divergent to $-\infty$ in x_{0}, and
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f_{1} \cap$ $\operatorname{dom} f_{2}$.
Then $f_{1}+f_{2}$ is left divergent to $-\infty$ in x_{0} and $f_{1} f_{2}$ is left divergent to $+\infty$ in x_{0}.
(21) Suppose that
(i) f_{1} is right divergent to $+\infty$ in x_{0},
(ii) f_{2} is right divergent to $+\infty$ in x_{0}, and
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f_{1} \cap$ $\operatorname{dom} f_{2}$.
Then $f_{1}+f_{2}$ is right divergent to $+\infty$ in x_{0} and $f_{1} f_{2}$ is right divergent to $+\infty$ in x_{0}.
(22) Suppose that
(i) f_{1} is right divergent to $-\infty$ in x_{0},
(ii) f_{2} is right divergent to $-\infty$ in x_{0}, and
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f_{1} \cap$ $\operatorname{dom} f_{2}$.
Then $f_{1}+f_{2}$ is right divergent to $-\infty$ in x_{0} and $f_{1} f_{2}$ is right divergent to $+\infty$ in x_{0}.
(23) Suppose that
(i) f_{1} is left divergent to $+\infty$ in x_{0},
(ii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$, and
(iii) there exists r such that $0<r$ and f_{2} is lower bounded on $] x_{0}-r, x_{0}[$.

Then $f_{1}+f_{2}$ is left divergent to $+\infty$ in x_{0}.
(24) Suppose that
(i) $\quad f_{1}$ is left divergent to $+\infty$ in x_{0},
(ii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$, and
(iii) there exist r, r_{1} such that $0<r$ and $0<r_{1}$ and for every g such that $\left.g \in \operatorname{dom} f_{2} \cap\right] x_{0}-r, x_{0}$ [holds $r_{1} \leq f_{2}(g)$.
Then $f_{1} f_{2}$ is left divergent to $+\infty$ in x_{0}.
(25) Suppose that
(i) f_{1} is right divergent to $+\infty$ in x_{0},
(ii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$, and
(iii) there exists r such that $0<r$ and f_{2} is lower bounded on $] x_{0}, x_{0}+r[$. Then $f_{1}+f_{2}$ is right divergent to $+\infty$ in x_{0}.
(26) Suppose that
(i) f_{1} is right divergent to $+\infty$ in x_{0},
(ii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$, and
(iii) there exist r, r_{1} such that $0<r$ and $0<r_{1}$ and for every g such that $\left.g \in \operatorname{dom} f_{2} \cap\right] x_{0}, x_{0}+r[$ holds $r_{1} \leq f_{2}(g)$.
Then $f_{1} f_{2}$ is right divergent to $+\infty$ in x_{0}.
(27)(i) If f is left divergent to $+\infty$ in x_{0} and $r>0$, then $r f$ is left divergent to $+\infty$ in x_{0},
(ii) if f is left divergent to $+\infty$ in x_{0} and $r<0$, then $r f$ is left divergent to $-\infty$ in x_{0},
(iii) if f is left divergent to $-\infty$ in x_{0} and $r>0$, then $r f$ is left divergent to $-\infty$ in x_{0}, and
(iv) if f is left divergent to $-\infty$ in x_{0} and $r<0$, then $r f$ is left divergent to $+\infty$ in x_{0}.
(28)(i) If f is right divergent to $+\infty$ in x_{0} and $r>0$, then $r f$ is right divergent to $+\infty$ in x_{0},
(ii) if f is right divergent to $+\infty$ in x_{0} and $r<0$, then $r f$ is right divergent to $-\infty$ in x_{0},
(iii) if f is right divergent to $-\infty$ in x_{0} and $r>0$, then $r f$ is right divergent to $-\infty$ in x_{0}, and
(iv) if f is right divergent to $-\infty$ in x_{0} and $r<0$, then $r f$ is right divergent to $+\infty$ in x_{0}.
(29) Suppose f is left divergent to $+\infty$ in x_{0} and left divergent to $-\infty$ in x_{0}. Then $|f|$ is left divergent to $+\infty$ in x_{0}.
(30) Suppose f is right divergent to $+\infty$ in x_{0} and right divergent to $-\infty$ in x_{0}. Then $|f|$ is right divergent to $+\infty$ in x_{0}.
(31) Suppose that
(i) there exists r such that $0<r$ and f is non-decreasing on $] x_{0}-r, x_{0}[$ and f is not upper bounded on $] x_{0}-r, x_{0}[$, and
(ii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$. Then f is left divergent to $+\infty$ in x_{0}.
(32) Suppose that
(i) there exists r such that $0<r$ and f is increasing on $] x_{0}-r, x_{0}[$ and f is not upper bounded on $] x_{0}-r, x_{0}[$, and
(ii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$. Then f is left divergent to $+\infty$ in x_{0}.
(33) Suppose that
(i) there exists r such that $0<r$ and f is non increasing on $] x_{0}-r, x_{0}[$ and f is not lower bounded on $] x_{0}-r, x_{0}[$, and
(ii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$. Then f is left divergent to $-\infty$ in x_{0}.
(34) Suppose that
(i) there exists r such that $0<r$ and f is decreasing on $] x_{0}-r, x_{0}[$ and f is not lower bounded on $] x_{0}-r, x_{0}[$, and
(ii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$. Then f is left divergent to $-\infty$ in x_{0}.
(35) Suppose that
(i) there exists r such that $0<r$ and f is non increasing on $] x_{0}, x_{0}+r[$ and f is not upper bounded on $] x_{0}, x_{0}+r[$, and
(ii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$. Then f is right divergent to $+\infty$ in x_{0}.
(36) Suppose that
(i) there exists r such that $0<r$ and f is decreasing on $] x_{0}, x_{0}+r[$ and f is not upper bounded on $] x_{0}, x_{0}+r$ [, and
(ii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$. Then f is right divergent to $+\infty$ in x_{0}.
(37) Suppose that
(i) there exists r such that $0<r$ and f is non-decreasing on $] x_{0}, x_{0}+r[$ and f is not lower bounded on $] x_{0}, x_{0}+r[$, and
(ii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$. Then f is right divergent to $-\infty$ in x_{0}.
(38) Suppose that
(i) there exists r such that $0<r$ and f is increasing on $] x_{0}, x_{0}+r[$ and f is not lower bounded on $] x_{0}, x_{0}+r$ [, and
(ii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$. Then f is right divergent to $-\infty$ in x_{0}.
(39) Suppose that
(i) f_{1} is left divergent to $+\infty$ in x_{0},
(ii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$, and
(iii) there exists r such that $0<r$ and $\operatorname{dom} f \cap] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}-r, x_{0}$ [and for every g such that $g \in \operatorname{dom} f \cap] x_{0}-r, x_{0}\left[\right.$ holds $f_{1}(g) \leq f(g)$.
Then f is left divergent to $+\infty$ in x_{0}.
(40) Suppose that
(i) $\quad f_{1}$ is left divergent to $-\infty$ in x_{0},
(ii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$, and
(iii) there exists r such that $0<r$ and $\operatorname{dom} f \cap] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}-r, x_{0}[$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}-r, x_{0}\left[\right.$ holds $f(g) \leq f_{1}(g)$.
Then f is left divergent to $-\infty$ in x_{0}.
(41) Suppose that
(i) f_{1} is right divergent to $+\infty$ in x_{0},
(ii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$, and
(iii) there exists r such that $0<r$ and $\operatorname{dom} f \cap] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}, x_{0}+r[$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}, x_{0}+r\left[\right.$ holds $f_{1}(g) \leq f(g)$.
Then f is right divergent to $+\infty$ in x_{0}.
(42) Suppose that
(i) f_{1} is right divergent to $-\infty$ in x_{0},
(ii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$, and
(iii) there exists r such that $0<r$ and $\operatorname{dom} f \cap] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}, x_{0}+r[$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}, x_{0}+r\left[\right.$ holds $f(g) \leq f_{1}(g)$.
Then f is right divergent to $-\infty$ in x_{0}.
(43) Suppose that
(i) $\quad f_{1}$ is left divergent to $+\infty$ in x_{0}, and
(ii) there exists r such that $0<r$ and $] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f \cap \operatorname{dom} f_{1}\right.$ and for every g such that $g \in] x_{0}-r, x_{0}\left[\right.$ holds $f_{1}(g) \leq f(g)$.
Then f is left divergent to $+\infty$ in x_{0}.
(44) Suppose that
(i) f_{1} is left divergent to $-\infty$ in x_{0}, and
(ii) there exists r such that $0<r$ and $] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f \cap \operatorname{dom} f_{1}\right.$ and for every g such that $g \in] x_{0}-r, x_{0}\left[\right.$ holds $f(g) \leq f_{1}(g)$.
Then f is left divergent to $-\infty$ in x_{0}.
(45) Suppose that
(i) f_{1} is right divergent to $+\infty$ in x_{0}, and
(ii) there exists r such that $0<r$ and $] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f \cap \operatorname{dom} f_{1}\right.$ and for every g such that $g \in] x_{0}, x_{0}+r\left[\right.$ holds $f_{1}(g) \leq f(g)$.
Then f is right divergent to $+\infty$ in x_{0}.
(46) Suppose that
(i) f_{1} is right divergent to $-\infty$ in x_{0}, and
(ii) there exists r such that $0<r$ and $] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f \cap \operatorname{dom} f_{1}\right.$ and for every g such that $g \in] x_{0}, x_{0}+r\left[\right.$ holds $f(g) \leq f_{1}(g)$.
Then f is right divergent to $-\infty$ in x_{0}.
Let us consider f, x_{0}. Let us assume that f is left convergent in x_{0}. The functor $\lim _{x_{0}-} f$ yields a real number and is defined as follows:
(Def. 7) For every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right]-\infty, x_{0}[$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=\lim _{x_{0}-} f$.
Let us consider f, x_{0}. Let us assume that f is right convergent in x_{0}. The functor $\lim _{x_{0}+} f$ yields a real number and is defined by:
(Def. 8) For every s_{1} such that s_{1} is convergent and $\lim s_{1}=x_{0}$ and $\left.\operatorname{rng} s_{1} \subseteq \operatorname{dom} f \cap\right] x_{0},+\infty[$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=\lim _{x_{0}+} f$.
One can prove the following propositions:
$(49)^{2}$ Suppose f is left convergent in x_{0}. Then $\lim _{x_{0}-} f=g$ if and only if for every g_{1} such that $0<g_{1}$ there exists r such that $r<x_{0}$ and for every r_{1} such that $r<r_{1}$ and $r_{1}<x_{0}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
(50) Suppose f is right convergent in x_{0}. Then $\lim _{x_{0}+} f=g$ if and only if for every g_{1} such that $0<g_{1}$ there exists r such that $x_{0}<r$ and for every r_{1} such that $r_{1}<r$ and $x_{0}<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
(51) If f is left convergent in x_{0}, then $r f$ is left convergent in x_{0} and $\lim _{x_{0}-}(r f)=r \cdot \lim _{x_{0}-} f$.
(52) If f is left convergent in x_{0}, then $-f$ is left convergent in x_{0} and $\lim _{x_{0}-}(-f)=-\lim _{x_{0}-} f$.
(53) Suppose that
(i) f_{1} is left convergent in x_{0},
(ii) f_{2} is left convergent in x_{0}, and
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$. Then $f_{1}+f_{2}$ is left convergent in x_{0} and $\lim _{x_{0}-}\left(f_{1}+f_{2}\right)=\lim _{x_{0}-} f_{1}+\lim _{x_{0}-} f_{2}$.
(54) Suppose that
(i) $\quad f_{1}$ is left convergent in x_{0},
(ii) f_{2} is left convergent in x_{0}, and
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{1}-f_{2}\right)$. Then $f_{1}-f_{2}$ is left convergent in x_{0} and $\lim _{x_{0}-}\left(f_{1}-f_{2}\right)=\lim _{x_{0}-} f_{1}-\lim _{x_{0}-} f_{2}$.

[^1](55) If f is left convergent in x_{0} and $f^{-1}(\{0\})=\emptyset$ and $\lim _{x_{0}-} f \neq 0$, then $\frac{1}{f}$ is left convergent in x_{0} and $\lim _{x_{0}-}\left(\frac{1}{f}\right)=\left(\lim _{x_{0}-} f\right)^{-1}$.
(56) If f is left convergent in x_{0}, then $|f|$ is left convergent in x_{0} and $\lim _{x_{0}-}|f|=\left|\lim _{x_{0}-} f\right|$.
(57) Suppose f is left convergent in x_{0} and $\lim _{x_{0}-f} \neq 0$ and for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$. Then $\frac{1}{f}$ is left convergent in x_{0} and $\lim _{x_{0}-}\left(\frac{1}{f}\right)=\left(\lim _{x_{0}-} f\right)^{-1}$.
(58) Suppose that
(i) f_{1} is left convergent in x_{0},
(ii) f_{2} is left convergent in x_{0}, and
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$. Then $f_{1} f_{2}$ is left convergent in x_{0} and $\lim _{x_{0}-}\left(f_{1} f_{2}\right)=\lim _{x_{0}-} f_{1} \cdot \lim _{x_{0}-} f_{2}$.
(59) Suppose that
(i) $\quad f_{1}$ is left convergent in x_{0},
(ii) f_{2} is left convergent in x_{0},
(iii) $\lim _{x_{0}-} f_{2} \neq 0$, and
(iv) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(\frac{f_{1}}{f_{2}}\right)$. Then $\frac{f_{1}}{f_{2}}$ is left convergent in x_{0} and $\lim _{x_{0}}-\left(\frac{f_{1}}{f_{2}}\right)=\frac{\lim _{x_{0}}-f_{1}}{\lim _{x_{0}-}-f_{2}}$.
(60) If f is right convergent in x_{0}, then $r f$ is right convergent in x_{0} and $\lim _{x_{0}+}(r f)=r \cdot \lim _{x_{0}+} f$.
(61) If f is right convergent in x_{0}, then $-f$ is right convergent in x_{0} and $\lim _{x_{0}+}(-f)=$ $-\lim _{x_{0}+} f$.
(62) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) f_{2} is right convergent in x_{0}, and
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$. Then $f_{1}+f_{2}$ is right convergent in x_{0} and $\lim _{x_{0}+}\left(f_{1}+f_{2}\right)=\lim _{x_{0}+}+f_{1}+\lim _{x_{0}+} f_{2}$.
(63) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) f_{2} is right convergent in x_{0}, and
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{1}-f_{2}\right)$. Then $f_{1}-f_{2}$ is right convergent in x_{0} and $\lim _{x_{0}+}\left(f_{1}-f_{2}\right)=\lim _{x_{0}+} f_{1}-\lim _{x_{0}+} f_{2}$.
(64) If f is right convergent in x_{0} and $f^{-1}(\{0\})=\emptyset$ and $\lim _{x_{0}+} f \neq 0$, then $\frac{1}{f}$ is right convergent in x_{0} and $\lim _{x_{0}+}\left(\frac{1}{f}\right)=\left(\lim _{x_{0}+} f\right)^{-1}$.
(65) If f is right convergent in x_{0}, then $|f|$ is right convergent in x_{0} and $\lim _{x_{0}+}|f|=\left|\lim _{x_{0}+} f\right|$.
(66) Suppose f is right convergent in x_{0} and $\lim _{x_{0}+} f \neq 0$ and for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$. Then $\frac{1}{f}$ is right convergent in x_{0} and $\lim _{x_{0}+}\left(\frac{1}{f}\right)=\left(\lim _{x_{0}+} f\right)^{-1}$.
(67) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) f_{2} is right convergent in x_{0}, and
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$.

Then $f_{1} f_{2}$ is right convergent in x_{0} and $\lim _{x_{0}+}\left(f_{1} f_{2}\right)=\lim _{x_{0}+} f_{1} \cdot \lim _{x_{0}+} f_{2}$.
(68) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) f_{2} is right convergent in x_{0},
(iii) $\lim _{x_{0}+} f_{2} \neq 0$, and
(iv) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(\frac{f_{1}}{f_{2}}\right)$.

(69) Suppose that
(i) $\quad f_{1}$ is left convergent in x_{0},
(ii) $\lim _{x_{0}-} f_{1}=0$,
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$, and
(iv) there exists r such that $0<r$ and f_{2} is bounded on $] x_{0}-r, x_{0}[$. Then $f_{1} f_{2}$ is left convergent in x_{0} and $\lim _{x_{0}}-\left(f_{1} f_{2}\right)=0$.
(70) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) $\lim _{x_{0}+} f_{1}=0$,
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$, and
(iv) there exists r such that $0<r$ and f_{2} is bounded on $] x_{0}, x_{0}+r$ [. Then $f_{1} f_{2}$ is right convergent in x_{0} and $\lim _{x_{0}+}\left(f_{1} f_{2}\right)=0$.
(71) Suppose that
(i) f_{1} is left convergent in x_{0},
(ii) f_{2} is left convergent in x_{0},
(iii) $\lim _{x_{0}-} f_{1}=\lim _{x_{0}-} f_{2}$,
(iv) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$, and
(v) there exists r such that $0<r$ but for every g such that $g \in \operatorname{dom} f \cap] x_{0}-r, x_{0}\left[\right.$ holds $f_{1}(g) \leq$ $f(g)$ and $f(g) \leq f_{2}(g)$ but $\left.\operatorname{dom} f_{1} \cap\right] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f_{2} \cap\right] x_{0}-r, x_{0}[$ and $\operatorname{dom} f \cap] x_{0}-r, x_{0}[\subseteq$ $\left.\operatorname{dom} f_{1} \cap\right] x_{0}-r, x_{0}\left[\right.$ or $\left.\operatorname{dom} f_{2} \cap\right] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}-r, x_{0}[$ and $\operatorname{dom} f \cap] x_{0}-r, x_{0}[\subseteq$ $\left.\operatorname{dom} f_{2} \cap\right] x_{0}-r, x_{0}[$.
Then f is left convergent in x_{0} and $\lim _{x_{0}-} f=\lim _{x_{0}-} f_{1}$.
(72) Suppose that
(i) f_{1} is left convergent in x_{0},
(ii) f_{2} is left convergent in x_{0},
(iii) $\lim _{x_{0}-} f_{1}=\lim _{x_{0}-} f_{2}$, and
(iv) there exists r such that $0<r$ and $] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2} \cap \operatorname{dom} f\right.$ and for every g such that $g \in] x_{0}-r, x_{0}\left[\right.$ holds $f_{1}(g) \leq f(g)$ and $f(g) \leq f_{2}(g)$.
Then f is left convergent in x_{0} and $\lim _{x_{0}-} f=\lim _{x_{0}-} f_{1}$.
(73) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) f_{2} is right convergent in x_{0},
(iii) $\lim _{x_{0}+} f_{1}=\lim _{x_{0}+} f_{2}$,
(iv) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$, and
(v) there exists r such that $0<r$ but for every g such that $g \in \operatorname{dom} f \cap] x_{0}, x_{0}+r\left[\right.$ holds $f_{1}(g) \leq$ $f(g)$ and $f(g) \leq f_{2}(g)$ but $\left.\operatorname{dom} f_{1} \cap\right] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f_{2} \cap\right] x_{0}, x_{0}+r[$ and $\operatorname{dom} f \cap] x_{0}, x_{0}+r[\subseteq$ $\left.\operatorname{dom} f_{1} \cap\right] x_{0}, x_{0}+r\left[\right.$ or $\left.\operatorname{dom} f_{2} \cap\right] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}, x_{0}+r[$ and $\operatorname{dom} f \cap] x_{0}, x_{0}+r[\subseteq$ $\left.\operatorname{dom} f_{2} \cap\right] x_{0}, x_{0}+r[$.
Then f is right convergent in x_{0} and $\lim _{x_{0}+} f=\lim _{x_{0}+} f_{1}$.
(74) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) f_{2} is right convergent in x_{0},
(iii) $\lim _{x_{0}+} f_{1}=\lim _{x_{0}+} f_{2}$, and
(iv) there exists r such that $0<r$ and $] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2} \cap \operatorname{dom} f\right.$ and for every g such that $g \in] x_{0}, x_{0}+r\left[\right.$ holds $f_{1}(g) \leq f(g)$ and $f(g) \leq f_{2}(g)$.
Then f is right convergent in x_{0} and $\lim _{x_{0}+} f=\lim _{x_{0}+} f_{1}$.
(75) Suppose that
(i) $\quad f_{1}$ is left convergent in x_{0},
(ii) f_{2} is left convergent in x_{0}, and
(iii) there exists r such that $0<r$ but $\left.\operatorname{dom} f_{1} \cap\right] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f_{2} \cap\right] x_{0}-r, x_{0}[$ and for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right] x_{0}-r, x_{0}\left[\right.$ holds $f_{1}(g) \leq f_{2}(g)$ or $\left.\operatorname{dom} f_{2} \cap\right] x_{0}-r, x_{0}\left[\subseteq \operatorname{dom} f_{1} \cap\right] x_{0}-$ $r, x_{0}\left[\right.$ and for every g such that $\left.g \in \operatorname{dom} f_{2} \cap\right] x_{0}-r, x_{0}\left[\right.$ holds $f_{1}(g) \leq f_{2}(g)$.
Then $\lim _{x_{0}-} f_{1} \leq \lim _{x_{0}-} f_{2}$.
(76) Suppose that
(i) f_{1} is right convergent in x_{0},
(ii) f_{2} is right convergent in x_{0}, and
(iii) there exists r such that $0<r$ but $\left.\operatorname{dom} f_{1} \cap\right] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f_{2} \cap\right] x_{0}, x_{0}+r[$ and for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right] x_{0}, x_{0}+r\left[\right.$ holds $f_{1}(g) \leq f_{2}(g)$ or $\left.\operatorname{dom} f_{2} \cap\right] x_{0}, x_{0}+r\left[\subseteq \operatorname{dom} f_{1} \cap\right.$ $] x_{0}, x_{0}+r\left[\right.$ and for every g such that $\left.g \in \operatorname{dom} f_{2} \cap\right] x_{0}, x_{0}+r\left[\right.$ holds $f_{1}(g) \leq f_{2}(g)$.
Then $\lim _{x_{0}+} f_{1} \leq \lim _{x_{0}+} f_{2}$.
(77) Suppose that
(i) $\quad f$ is left divergent to $+\infty$ in x_{0} and left divergent to $-\infty$ in x_{0}, and
(ii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$.
Then $\frac{1}{f}$ is left convergent in x_{0} and $\lim _{x_{0}-}\left(\frac{1}{f}\right)=0$.
(78) Suppose that
(i) f is right divergent to $+\infty$ in x_{0} and right divergent to $-\infty$ in x_{0}, and
(ii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$.
Then $\frac{1}{f}$ is right convergent in x_{0} and $\lim _{x_{0}}+\left(\frac{1}{f}\right)=0$.
(79) Suppose f is left convergent in x_{0} and $\lim _{x_{0}-f}=0$ and there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}-r, x_{0}\left[\right.$ holds $0<f(g)$. Then $\frac{1}{f}$ is left divergent to $+\infty$ in x_{0}.
(80) Suppose f is left convergent in x_{0} and $\lim _{x_{0}-f}=0$ and there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}-r, x_{0}$ [holds $f(g)<0$. Then $\frac{1}{f}$ is left divergent to $-\infty$ in x_{0}.
(81) Suppose f is right convergent in x_{0} and $\lim _{x_{0}+} f=0$ and there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}, x_{0}+r\left[\right.$ holds $0<f(g)$. Then $\frac{1}{f}$ is right divergent to $+\infty$ in x_{0}.
(82) Suppose f is right convergent in x_{0} and $\lim _{x_{0}+} f=0$ and there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}, x_{0}+r\left[\right.$ holds $f(g)<0$. Then $\frac{1}{f}$ is right divergent to $-\infty$ in x_{0}.
(83) Suppose that
(i) f is left convergent in x_{0},
(ii) $\lim _{x_{0}-} f=0$,
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$, and
(iv) there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}-r, x_{0}[$ holds $0 \leq f(g)$.
Then $\frac{1}{f}$ is left divergent to $+\infty$ in x_{0}.
(84) Suppose that
(i) f is left convergent in x_{0},
(ii) $\lim _{x_{0}-} f=0$,
(iii) for every r such that $r<x_{0}$ there exists g such that $r<g$ and $g<x_{0}$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$, and
(iv) there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}-r, x_{0}[$ holds $f(g) \leq 0$.
Then $\frac{1}{f}$ is left divergent to $-\infty$ in x_{0}.
(85) Suppose that
(i) f is right convergent in x_{0},
(ii) $\lim _{x_{0}+} f=0$,
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$, and
(iv) there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}, x_{0}+r[$ holds $0 \leq f(g)$.
Then $\frac{1}{f}$ is right divergent to $+\infty$ in x_{0}.
(86) Suppose that
(i) f is right convergent in x_{0},
(ii) $\lim _{x_{0}+} f=0$,
(iii) for every r such that $x_{0}<r$ there exists g such that $g<r$ and $x_{0}<g$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$, and
(iv) there exists r such that $0<r$ and for every g such that $g \in \operatorname{dom} f \cap] x_{0}, x_{0}+r[$ holds $f(g) \leq 0$.
Then $\frac{1}{f}$ is right divergent to $-\infty$ in x_{0}.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/nat_1.html
[2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html
[4] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/seq_2.html
[5] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seq_1.html
[6] Jarosław Kotowicz. The limit of a real function at infinity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/limfunc1.html.
[7] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/rfunct_1.html
[8] Jarosław Kotowicz. Properties of real functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_ 2.html
[9] Jan Popiołek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html
[10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[12] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[13] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[14] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ relset_1.html

Published January 2, 2004

[^0]: ${ }^{1}$ The propositions (7)-(12) have been removed.

[^1]: ${ }^{2}$ The propositions (47) and (48) have been removed.

