The One-Side Limits of a Real Function at a Point

Jarosław Kotowicz Warsaw University Białystok

Summary. We introduce the left-side and the right-side limit of a real function at a point. We prove a few properties of the operations on the proper and improper one-side limits and show that Cauchy and Heine characterizations of the one-side limit are equivalent.

MML Identifier: LIMFUNC2.

WWW: http://mizar.org/JFM/Vol2/limfunc2.html

The articles [11], [13], [2], [12], [3], [1], [9], [5], [4], [14], [10], [7], [8], and [6] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: r, r_1, r_2, g, g_1, x_0 are real numbers, n, k are natural numbers, s_1 is a sequence of real numbers, and f, f_1, f_2 are partial functions from \mathbb{R} to \mathbb{R} .

We now state several propositions:

- (1) If s_1 is convergent and $r < \lim s_1$, then there exists *n* such that for every *k* such that $n \le k$ holds $r < s_1(k)$.
- (2) If s_1 is convergent and $\lim s_1 < r$, then there exists *n* such that for every *k* such that $n \le k$ holds $s_1(k) < r$.
- (3) If $0 < r_2$ and $]r_1 r_2, r_1[\subseteq \text{dom } f$, then for every r such that $r < r_1$ there exists g such that r < g and $g < r_1$ and $g \in \text{dom } f$.
- (4) If $0 < r_2$ and $]r_1, r_1 + r_2[\subseteq \text{dom } f$, then for every r such that $r_1 < r$ there exists g such that g < r and $r_1 < g$ and $g \in \text{dom } f$.
- (5) If for every *n* holds $x_0 \frac{1}{n+1} < s_1(n)$ and $s_1(n) < x_0$ and $s_1(n) \in \text{dom } f$, then s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \text{dom } f$ and $\operatorname{rng} s_1 \subseteq \text{dom } f \cap] -\infty, x_0[$.
- (6) If for every *n* holds $x_0 < s_1(n)$ and $s_1(n) < x_0 + \frac{1}{n+1}$ and $s_1(n) \in \text{dom } f$, then s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap]x_0, +\infty[$.

Let us consider f, x_0 . We say that f is left convergent in x_0 if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) For every *r* such that *r* < *x*₀ there exists *g* such that *r* < *g* and *g* < *x*₀ and *g* ∈ dom *f*, and
(ii) there exists *g* such that for every *s*₁ such that *s*₁ is convergent and lim *s*₁ = *x*₀ and rng *s*₁ ⊆ dom *f* ∩]−∞, *x*₀[holds *f* ⋅ *s*₁ is convergent and lim(*f* ⋅ *s*₁) = *g*.

We say that f is left divergent to $+\infty$ in x_0 if and only if the conditions (Def. 2) are satisfied.

- (Def. 2)(i) For every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom } f$, and
 - (ii) for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap]-\infty, x_0[$ holds $f \cdot s_1$ is divergent to $+\infty$.

We say that *f* is left divergent to $-\infty$ in x_0 if and only if the conditions (Def. 3) are satisfied.

(Def. 3)(i) For every *r* such that *r* < *x*₀ there exists *g* such that *r* < *g* and *g* < *x*₀ and *g* ∈ dom *f*, and
(ii) for every *s*₁ such that *s*₁ is convergent and lim *s*₁ = *x*₀ and rng *s*₁ ⊆ dom *f* ∩]−∞, *x*₀[holds *f* ⋅ *s*₁ is divergent to −∞.

We say that f is right convergent in x_0 if and only if the conditions (Def. 4) are satisfied.

- (Def. 4)(i) For every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom } f$, and
 - (ii) there exists g such that for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap]x_0, +\infty[$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = g$.

We say that f is right divergent to $+\infty$ in x_0 if and only if the conditions (Def. 5) are satisfied.

(Def. 5)(i) For every *r* such that x₀ < *r* there exists *g* such that *g* < *r* and x₀ < *g* and *g* ∈ dom *f*, and
(ii) for every s₁ such that s₁ is convergent and lim s₁ = x₀ and rng s₁ ⊆ dom *f* ∩]x₀, +∞[holds *f* ⋅ s₁ is divergent to +∞.

We say that f is right divergent to $-\infty$ in x_0 if and only if the conditions (Def. 6) are satisfied.

- (Def. 6)(i) For every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom } f$, and
 - (ii) for every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap]x_0, +\infty[$ holds $f \cdot s_1$ is divergent to $-\infty$.

We now state a number of propositions:

- $(13)^{1}$ f is left convergent in x_0 if and only if the following conditions are satisfied:
 - (i) for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom } f$, and
- (ii) there exists g such that for every g_1 such that $0 < g_1$ there exists r such that $r < x_0$ and for every r_1 such that $r < r_1$ and $r_1 < x_0$ and $r_1 \in \text{dom } f$ holds $|f(r_1) g| < g_1$.
- (14) *f* is left divergent to $+\infty$ in x_0 if and only if the following conditions are satisfied:
 - (i) for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom } f$, and
- (ii) for every g_1 there exists r such that $r < x_0$ and for every r_1 such that $r < r_1$ and $r_1 < x_0$ and $r_1 \in \text{dom } f$ holds $g_1 < f(r_1)$.
- (15) f is left divergent to $-\infty$ in x_0 if and only if the following conditions are satisfied:
- (i) for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom } f$, and
- (ii) for every g_1 there exists r such that $r < x_0$ and for every r_1 such that $r < r_1$ and $r_1 < x_0$ and $r_1 \in \text{dom } f$ holds $f(r_1) < g_1$.
- (16) f is right convergent in x_0 if and only if the following conditions are satisfied:
- (i) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$, and
- (ii) there exists g such that for every g_1 such that $0 < g_1$ there exists r such that $x_0 < r$ and for every r_1 such that $r_1 < r$ and $x_0 < r_1$ and $r_1 \in \text{dom } f$ holds $|f(r_1) g| < g_1$.
- (17) *f* is right divergent to $+\infty$ in x_0 if and only if the following conditions are satisfied:
- (i) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$, and
- (ii) for every g_1 there exists r such that $x_0 < r$ and for every r_1 such that $r_1 < r$ and $x_0 < r_1$ and $r_1 \in \text{dom } f$ holds $g_1 < f(r_1)$.
- (18) f is right divergent to $-\infty$ in x_0 if and only if the following conditions are satisfied:
 - (i) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom } f$, and
- (ii) for every g_1 there exists r such that $x_0 < r$ and for every r_1 such that $r_1 < r$ and $x_0 < r_1$ and $r_1 \in \text{dom } f$ holds $f(r_1) < g_1$.

¹ The propositions (7)–(12) have been removed.

- (19) Suppose that
 - (i) f_1 is left divergent to $+\infty$ in x_0 ,
- (ii) f_2 is left divergent to $+\infty$ in x_0 , and
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f_1 \cap \text{dom } f_2$.

Then $f_1 + f_2$ is left divergent to $+\infty$ in x_0 and $f_1 + f_2$ is left divergent to $+\infty$ in x_0 .

- (20) Suppose that
- (i) f_1 is left divergent to $-\infty$ in x_0 ,
- (ii) f_2 is left divergent to $-\infty$ in x_0 , and
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f_1 \cap \text{dom } f_2$.

Then $f_1 + f_2$ is left divergent to $-\infty$ in x_0 and $f_1 f_2$ is left divergent to $+\infty$ in x_0 .

- (21) Suppose that
- (i) f_1 is right divergent to $+\infty$ in x_0 ,
- (ii) f_2 is right divergent to $+\infty$ in x_0 , and
- (iii) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom } f_1 \cap \text{dom } f_2$.

Then $f_1 + f_2$ is right divergent to $+\infty$ in x_0 and $f_1 + f_2$ is right divergent to $+\infty$ in x_0 .

- (22) Suppose that
- (i) f_1 is right divergent to $-\infty$ in x_0 ,
- (ii) f_2 is right divergent to $-\infty$ in x_0 , and
- (iii) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom } f_1 \cap \text{dom } f_2$.

Then $f_1 + f_2$ is right divergent to $-\infty$ in x_0 and $f_1 f_2$ is right divergent to $+\infty$ in x_0 .

- (23) Suppose that
 - (i) f_1 is left divergent to $+\infty$ in x_0 ,
- (ii) for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom}(f_1 + f_2)$, and
- (iii) there exists *r* such that 0 < r and f_2 is lower bounded on $]x_0 r, x_0[$.

Then $f_1 + f_2$ is left divergent to $+\infty$ in x_0 .

- (24) Suppose that
 - (i) f_1 is left divergent to $+\infty$ in x_0 ,
- (ii) for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom}(f_1 f_2)$, and
- (iii) there exist r, r_1 such that 0 < r and $0 < r_1$ and for every g such that $g \in \text{dom } f_2 \cap]x_0 r, x_0[$ holds $r_1 \le f_2(g)$.

Then $f_1 f_2$ is left divergent to $+\infty$ in x_0 .

- (25) Suppose that
- (i) f_1 is right divergent to $+\infty$ in x_0 ,
- (ii) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom}(f_1 + f_2)$, and
- (iii) there exists *r* such that 0 < r and f_2 is lower bounded on $]x_0, x_0 + r[$.

Then $f_1 + f_2$ is right divergent to $+\infty$ in x_0 .

- (26) Suppose that
 - (i) f_1 is right divergent to $+\infty$ in x_0 ,
- (ii) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom}(f_1 f_2)$, and
- (iii) there exist r, r_1 such that 0 < r and $0 < r_1$ and for every g such that $g \in \text{dom } f_2 \cap]x_0, x_0 + r[$ holds $r_1 \le f_2(g)$.

Then $f_1 f_2$ is right divergent to $+\infty$ in x_0 .

- (27)(i) If *f* is left divergent to $+\infty$ in x_0 and r > 0, then *r f* is left divergent to $+\infty$ in x_0 ,
- (ii) if *f* is left divergent to $+\infty$ in x_0 and r < 0, then *r f* is left divergent to $-\infty$ in x_0 ,
- (iii) if f is left divergent to $-\infty$ in x_0 and r > 0, then r f is left divergent to $-\infty$ in x_0 , and
- (iv) if *f* is left divergent to $-\infty$ in x_0 and r < 0, then *r f* is left divergent to $+\infty$ in x_0 .
- (28)(i) If *f* is right divergent to $+\infty$ in x_0 and r > 0, then *r f* is right divergent to $+\infty$ in x_0 ,
- (ii) if *f* is right divergent to $+\infty$ in x_0 and r < 0, then *r f* is right divergent to $-\infty$ in x_0 ,
- (iii) if *f* is right divergent to $-\infty$ in x_0 and r > 0, then *r f* is right divergent to $-\infty$ in x_0 , and
- (iv) if *f* is right divergent to $-\infty$ in x_0 and r < 0, then *r f* is right divergent to $+\infty$ in x_0 .
- (29) Suppose f is left divergent to $+\infty$ in x_0 and left divergent to $-\infty$ in x_0 . Then |f| is left divergent to $+\infty$ in x_0 .
- (30) Suppose f is right divergent to $+\infty$ in x_0 and right divergent to $-\infty$ in x_0 . Then |f| is right divergent to $+\infty$ in x_0 .
- (31) Suppose that
- (i) there exists *r* such that 0 < r and *f* is non-decreasing on $]x_0 r, x_0[$ and *f* is not upper bounded on $]x_0 r, x_0[$, and
- (ii) for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom } f$. Then *f* is left divergent to $+\infty$ in x_0 .
- (32) Suppose that
- (i) there exists *r* such that 0 < r and *f* is increasing on $]x_0 r, x_0[$ and *f* is not upper bounded on $]x_0 r, x_0[$, and
- (ii) for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom } f$. Then *f* is left divergent to $+\infty$ in x_0 .
- (33) Suppose that
- (i) there exists *r* such that 0 < r and *f* is non increasing on $]x_0 r, x_0[$ and *f* is not lower bounded on $]x_0 r, x_0[$, and
- (ii) for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom } f$. Then *f* is left divergent to $-\infty$ in x_0 .
- (34) Suppose that
- (i) there exists *r* such that 0 < r and *f* is decreasing on $]x_0 r, x_0[$ and *f* is not lower bounded on $]x_0 r, x_0[$, and
- (ii) for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom } f$. Then *f* is left divergent to $-\infty$ in x_0 .
- (35) Suppose that
- (i) there exists *r* such that 0 < r and *f* is non increasing on $]x_0, x_0 + r[$ and *f* is not upper bounded on $]x_0, x_0 + r[$, and
- (ii) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom } f$. Then *f* is right divergent to $+\infty$ in x_0 .

- (36) Suppose that
- (i) there exists *r* such that 0 < r and *f* is decreasing on $]x_0, x_0 + r[$ and *f* is not upper bounded on $]x_0, x_0 + r[$, and
- (ii) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom } f$. Then *f* is right divergent to $+\infty$ in x_0 .
- (37) Suppose that
- (i) there exists *r* such that 0 < r and *f* is non-decreasing on $]x_0, x_0 + r[$ and *f* is not lower bounded on $]x_0, x_0 + r[$, and
- (ii) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom } f$. Then *f* is right divergent to $-\infty$ in x_0 .
- (38) Suppose that
- (i) there exists *r* such that 0 < r and *f* is increasing on $]x_0, x_0 + r[$ and *f* is not lower bounded on $]x_0, x_0 + r[$, and
- (ii) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom } f$. Then *f* is right divergent to $-\infty$ in x_0 .
- (39) Suppose that
 - (i) f_1 is left divergent to $+\infty$ in x_0 ,
- (ii) for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom } f$, and
- (iii) there exists *r* such that 0 < r and dom $f \cap]x_0 r, x_0[\subseteq \text{dom } f_1 \cap]x_0 r, x_0[$ and for every *g* such that $g \in \text{dom } f \cap]x_0 r, x_0[$ holds $f_1(g) \le f(g)$.

Then *f* is left divergent to $+\infty$ in x_0 .

- (40) Suppose that
 - (i) f_1 is left divergent to $-\infty$ in x_0 ,
- (ii) for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom } f$, and
- (iii) there exists *r* such that 0 < r and dom $f \cap]x_0 r, x_0[\subseteq \text{dom } f_1 \cap]x_0 r, x_0[$ and for every *g* such that $g \in \text{dom } f \cap]x_0 r, x_0[$ holds $f(g) \le f_1(g)$.

Then *f* is left divergent to $-\infty$ in x_0 .

- (41) Suppose that
 - (i) f_1 is right divergent to $+\infty$ in x_0 ,
- (ii) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom } f$, and
- (iii) there exists r such that 0 < r and dom $f \cap]x_0, x_0 + r[\subseteq \text{dom } f_1 \cap]x_0, x_0 + r[$ and for every g such that $g \in \text{dom } f \cap]x_0, x_0 + r[$ holds $f_1(g) \leq f(g)$.

Then *f* is right divergent to $+\infty$ in x_0 .

- (42) Suppose that
 - (i) f_1 is right divergent to $-\infty$ in x_0 ,
- (ii) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom } f$, and
- (iii) there exists *r* such that 0 < r and dom $f \cap]x_0, x_0 + r[\subseteq \text{dom } f_1 \cap]x_0, x_0 + r[$ and for every *g* such that $g \in \text{dom } f \cap]x_0, x_0 + r[$ holds $f(g) \le f_1(g)$.

Then *f* is right divergent to $-\infty$ in x_0 .

- (43) Suppose that
- (i) f_1 is left divergent to $+\infty$ in x_0 , and
- (ii) there exists *r* such that 0 < r and $]x_0 r, x_0[\subseteq \text{dom } f \cap \text{dom } f_1 \text{ and for every } g$ such that $g \in]x_0 r, x_0[$ holds $f_1(g) \leq f(g)$.

Then f is left divergent to $+\infty$ in x_0 .

- (44) Suppose that
 - (i) f_1 is left divergent to $-\infty$ in x_0 , and
- (ii) there exists *r* such that 0 < r and $]x_0 r, x_0[\subseteq \text{dom } f \cap \text{dom } f_1 \text{ and for every } g$ such that $g \in]x_0 r, x_0[$ holds $f(g) \leq f_1(g)$.

Then *f* is left divergent to $-\infty$ in x_0 .

- (45) Suppose that
- (i) f_1 is right divergent to $+\infty$ in x_0 , and
- (ii) there exists *r* such that 0 < r and $]x_0, x_0 + r[\subseteq \text{dom } f \cap \text{dom } f_1 \text{ and for every } g$ such that $g \in]x_0, x_0 + r[$ holds $f_1(g) \leq f(g)$.

Then *f* is right divergent to $+\infty$ in x_0 .

- (46) Suppose that
 - (i) f_1 is right divergent to $-\infty$ in x_0 , and
- (ii) there exists *r* such that 0 < r and $]x_0, x_0 + r[\subseteq \text{dom } f \cap \text{dom } f_1 \text{ and for every } g$ such that $g \in]x_0, x_0 + r[$ holds $f(g) \leq f_1(g)$.

Then *f* is right divergent to $-\infty$ in x_0 .

Let us consider f, x_0 . Let us assume that f is left convergent in x_0 . The functor $\lim_{x_0^-} f$ yields a real number and is defined as follows:

(Def. 7) For every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap] -\infty, x_0[$ holds $f \cdot s_1$ is convergent and $\lim (f \cdot s_1) = \lim_{x_0^-} f$.

Let us consider f, x_0 . Let us assume that f is right convergent in x_0 . The functor $\lim_{x_0^+} f$ yields a real number and is defined by:

(Def. 8) For every s_1 such that s_1 is convergent and $\lim s_1 = x_0$ and $\operatorname{rng} s_1 \subseteq \operatorname{dom} f \cap]x_0, +\infty[$ holds $f \cdot s_1$ is convergent and $\lim(f \cdot s_1) = \lim_{x_0^+} f$.

One can prove the following propositions:

- (49)² Suppose *f* is left convergent in x_0 . Then $\lim_{x_0^-} f = g$ if and only if for every g_1 such that $0 < g_1$ there exists *r* such that $r < x_0$ and for every r_1 such that $r < r_1$ and $r_1 < x_0$ and $r_1 \in \text{dom } f$ holds $|f(r_1) g| < g_1$.
- (50) Suppose *f* is right convergent in x_0 . Then $\lim_{x_0^+} f = g$ if and only if for every g_1 such that $0 < g_1$ there exists *r* such that $x_0 < r$ and for every r_1 such that $r_1 < r$ and $x_0 < r_1$ and $r_1 \in \text{dom } f$ holds $|f(r_1) g| < g_1$.
- (51) If f is left convergent in x_0 , then r f is left convergent in x_0 and $\lim_{x_0^-} (r f) = r \cdot \lim_{x_0^-} f$.
- (52) If f is left convergent in x_0 , then -f is left convergent in x_0 and $\lim_{x_0^-} (-f) = -\lim_{x_0^-} f$.
- (53) Suppose that
- (i) f_1 is left convergent in x_0 ,
- (ii) f_2 is left convergent in x_0 , and
- (iii) for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom}(f_1 + f_2)$. Then $f_1 + f_2$ is left convergent in x_0 and $\lim_{x_0^-} (f_1 + f_2) = \lim_{x_0^-} f_1 + \lim_{x_0^-} f_2$.
- (54) Suppose that
- (i) f_1 is left convergent in x_0 ,
- (ii) f_2 is left convergent in x_0 , and
- (iii) for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom}(f_1 f_2)$.

Then $f_1 - f_2$ is left convergent in x_0 and $\lim_{x_0^-} (f_1 - f_2) = \lim_{x_0^-} f_1 - \lim_{x_0^-} f_2$.

² The propositions (47) and (48) have been removed.

- (55) If f is left convergent in x_0 and $f^{-1}(\{0\}) = \emptyset$ and $\lim_{x_0^-} f \neq 0$, then $\frac{1}{f}$ is left convergent in x_0 and $\lim_{x_0^-} (\frac{1}{f}) = (\lim_{x_0^-} f)^{-1}$.
- (56) If f is left convergent in x_0 , then |f| is left convergent in x_0 and $\lim_{x_0^-} |f| = |\lim_{x_0^-} f|$.
- (57) Suppose *f* is left convergent in x_0 and $\lim_{x_0^-} f \neq 0$ and for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom } f$ and $f(g) \neq 0$. Then $\frac{1}{f}$ is left convergent in x_0 and $\lim_{x_0^-} (\frac{1}{f}) = (\lim_{x_0^-} f)^{-1}$.
- (58) Suppose that
- (i) f_1 is left convergent in x_0 ,
- (ii) f_2 is left convergent in x_0 , and
- (iii) for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom}(f_1 f_2)$. Then $f_1 f_2$ is left convergent in x_0 and $\lim_{x_0^-} (f_1 f_2) = \lim_{x_0^-} f_1 \cdot \lim_{x_0^-} f_2$.
- (59) Suppose that
- (i) f_1 is left convergent in x_0 ,
- (ii) f_2 is left convergent in x_0 ,
- (iii) $\lim_{x_0^-} f_2 \neq 0$, and
- (iv) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(\frac{J_1}{f_2})$.

Then $\frac{f_1}{f_2}$ is left convergent in x_0 and $\lim_{x_0^-} \left(\frac{f_1}{f_2}\right) = \frac{\lim_{x_0^-} f_1}{\lim_{x_0^-} f_2}$.

- (60) If *f* is right convergent in x_0 , then *r f* is right convergent in x_0 and $\lim_{x_0^+} (r f) = r \cdot \lim_{x_0^+} f$.
- (61) If f is right convergent in x_0 , then -f is right convergent in x_0 and $\lim_{x_0^+} (-f) = -\lim_{x_0^+} f$.
- (62) Suppose that
- (i) f_1 is right convergent in x_0 ,
- (ii) f_2 is right convergent in x_0 , and
- (iii) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom}(f_1 + f_2)$. Then $f_1 + f_2$ is right convergent in x_0 and $\lim_{x_0^+} (f_1 + f_2) = \lim_{x_0^+} f_1 + \lim_{x_0^+} f_2$.
- (63) Suppose that
- (i) f_1 is right convergent in x_0 ,
- (ii) f_2 is right convergent in x_0 , and
- (iii) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom}(f_1 f_2)$. Then $f_1 - f_2$ is right convergent in x_0 and $\lim_{x_0^+} (f_1 - f_2) = \lim_{x_0^+} f_1 - \lim_{x_0^+} f_2$.
- (64) If f is right convergent in x_0 and $f^{-1}(\{0\}) = \emptyset$ and $\lim_{x_0^+} f \neq 0$, then $\frac{1}{f}$ is right convergent in x_0 and $\lim_{x_0^+} (\frac{1}{f}) = (\lim_{x_0^+} f)^{-1}$.
- (65) If f is right convergent in x_0 , then |f| is right convergent in x_0 and $\lim_{x_0^+} |f| = |\lim_{x_0^+} f|$.
- (66) Suppose *f* is right convergent in x_0 and $\lim_{x_0^+} f \neq 0$ and for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom } f$ and $f(g) \neq 0$. Then $\frac{1}{f}$ is right convergent in x_0 and $\lim_{x_0^+} (\frac{1}{f}) = (\lim_{x_0^+} f)^{-1}$.

8

- (67) Suppose that
- (i) f_1 is right convergent in x_0 ,
- (ii) f_2 is right convergent in x_0 , and
- (iii) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom}(f_1 f_2)$. Then $f_1 f_2$ is right convergent in x_0 and $\lim_{x_0^+} (f_1 f_2) = \lim_{x_0^+} f_1 \cdot \lim_{x_0^+} f_2$.
- (68) Suppose that
- (i) f_1 is right convergent in x_0 ,
- (ii) f_2 is right convergent in x_0 ,
- (iii) $\lim_{x_0^+} f_2 \neq 0$, and
- (iv) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom}(\frac{f_1}{f_2})$.

Then $\frac{f_1}{f_2}$ is right convergent in x_0 and $\lim_{x_0^+} \left(\frac{f_1}{f_2}\right) = \frac{\lim_{x_0^+} f_1}{\lim_{x_0^+} f_2}$.

- (69) Suppose that
 - (i) f_1 is left convergent in x_0 ,
- (ii) $\lim_{x_0^-} f_1 = 0$,
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom}(f_1 f_2)$, and
- (iv) there exists *r* such that 0 < r and f_2 is bounded on $]x_0 r, x_0[$.

Then $f_1 f_2$ is left convergent in x_0 and $\lim_{x_0^-} (f_1 f_2) = 0$.

- (70) Suppose that
- (i) f_1 is right convergent in x_0 ,
- (ii) $\lim_{x_0^+} f_1 = 0$,
- (iii) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom}(f_1 f_2)$, and
- (iv) there exists *r* such that 0 < r and f_2 is bounded on $]x_0, x_0 + r[$.

Then $f_1 f_2$ is right convergent in x_0 and $\lim_{x_0^+} (f_1 f_2) = 0$.

- (71) Suppose that
- (i) f_1 is left convergent in x_0 ,
- (ii) f_2 is left convergent in x_0 ,
- (iii) $\lim_{x_0^-} f_1 = \lim_{x_0^-} f_2$,
- (iv) for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom } f$, and
- (v) there exists *r* such that 0 < r but for every *g* such that $g \in \text{dom } f \cap]x_0 r, x_0[$ holds $f_1(g) \le f(g)$ and $f(g) \le f_2(g)$ but dom $f_1 \cap]x_0 r, x_0[\subseteq \text{dom } f_2 \cap]x_0 r, x_0[$ and dom $f \cap]x_0 r, x_0[\subseteq \text{dom } f_1 \cap]x_0 r, x_0[$ or dom $f_2 \cap]x_0 r, x_0[\subseteq \text{dom } f_1 \cap]x_0 r, x_0[$ and dom $f \cap]x_0 r, x_0[\subseteq \text{dom } f_2 \cap]x_0 r, x_0[\subseteq \text{dom } f_2 \cap]x_0 r, x_0[$

Then *f* is left convergent in x_0 and $\lim_{x_0^-} f = \lim_{x_0^-} f_1$.

- (72) Suppose that
- (i) f_1 is left convergent in x_0 ,
- (ii) f_2 is left convergent in x_0 ,
- (iii) $\lim_{x_0^-} f_1 = \lim_{x_0^-} f_2$, and
- (iv) there exists *r* such that 0 < r and $]x_0 r, x_0[\subseteq \text{dom } f_1 \cap \text{dom } f_2 \cap \text{dom } f$ and for every *g* such that $g \in]x_0 r, x_0[$ holds $f_1(g) \leq f(g)$ and $f(g) \leq f_2(g)$.

Then f is left convergent in x_0 and $\lim_{x_0^-} f = \lim_{x_0^-} f_1$.

- (73) Suppose that
- (i) f_1 is right convergent in x_0 ,
- (ii) f_2 is right convergent in x_0 ,
- (iii) $\lim_{x_0^+} f_1 = \lim_{x_0^+} f_2$,
- (iv) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom } f$, and
- (v) there exists *r* such that 0 < r but for every *g* such that $g \in \text{dom } f \cap]x_0, x_0 + r[$ holds $f_1(g) \le f(g)$ and $f(g) \le f_2(g)$ but dom $f_1 \cap]x_0, x_0 + r[\subseteq \text{dom } f_2 \cap]x_0, x_0 + r[$ and dom $f \cap]x_0, x_0 + r[\subseteq \text{dom } f_1 \cap]x_0, x_0 + r[$ or dom $f_2 \cap]x_0, x_0 + r[\subseteq \text{dom } f_1 \cap]x_0, x_0 + r[$ and dom $f \cap]x_0, x_0 + r[\subseteq \text{dom } f_2 \cap]x_0, x_0 + r[$

Then f is right convergent in x_0 and $\lim_{x_0^+} f = \lim_{x_0^+} f_1$.

- (74) Suppose that
 - (i) f_1 is right convergent in x_0 ,
- (ii) f_2 is right convergent in x_0 ,
- (iii) $\lim_{x_0^+} f_1 = \lim_{x_0^+} f_2$, and
- (iv) there exists *r* such that 0 < r and $]x_0, x_0 + r[\subseteq \text{dom } f_1 \cap \text{dom } f_2 \cap \text{dom } f$ and for every *g* such that $g \in]x_0, x_0 + r[$ holds $f_1(g) \leq f(g)$ and $f(g) \leq f_2(g)$.

Then f is right convergent in x_0 and $\lim_{x_0^+} f = \lim_{x_0^+} f_1$.

- (75) Suppose that
 - (i) f_1 is left convergent in x_0 ,
- (ii) f_2 is left convergent in x_0 , and
- (iii) there exists *r* such that 0 < r but dom $f_1 \cap]x_0 r, x_0[\subseteq \text{dom } f_2 \cap]x_0 r, x_0[$ and for every *g* such that $g \in \text{dom } f_1 \cap]x_0 r, x_0[$ holds $f_1(g) \le f_2(g)$ or dom $f_2 \cap]x_0 r, x_0[\subseteq \text{dom } f_1 \cap]x_0 r, x_0[$ and for every *g* such that $g \in \text{dom } f_2 \cap]x_0 r, x_0[$ holds $f_1(g) \le f_2(g)$.

Then $\lim_{x_0^-} f_1 \leq \lim_{x_0^-} f_2$.

- (76) Suppose that
 - (i) f_1 is right convergent in x_0 ,
- (ii) f_2 is right convergent in x_0 , and
- (iii) there exists *r* such that 0 < r but dom $f_1 \cap]x_0, x_0 + r[\subseteq \text{dom } f_2 \cap]x_0, x_0 + r[$ and for every *g* such that $g \in \text{dom } f_1 \cap]x_0, x_0 + r[$ holds $f_1(g) \le f_2(g)$ or dom $f_2 \cap]x_0, x_0 + r[\subseteq \text{dom } f_1 \cap]x_0, x_0 + r[$ and for every *g* such that $g \in \text{dom } f_2 \cap]x_0, x_0 + r[$ holds $f_1(g) \le f_2(g)$.

Then $\lim_{x_0^+} f_1 \leq \lim_{x_0^+} f_2$.

- (77) Suppose that
 - (i) *f* is left divergent to $+\infty$ in x_0 and left divergent to $-\infty$ in x_0 , and
- (ii) for every *r* such that $r < x_0$ there exists *g* such that r < g and $g < x_0$ and $g \in \text{dom } f$ and $f(g) \neq 0$.

Then $\frac{1}{f}$ is left convergent in x_0 and $\lim_{x_0^-} (\frac{1}{f}) = 0$.

- (78) Suppose that
- (i) *f* is right divergent to $+\infty$ in x_0 and right divergent to $-\infty$ in x_0 , and
- (ii) for every *r* such that $x_0 < r$ there exists *g* such that g < r and $x_0 < g$ and $g \in \text{dom } f$ and $f(g) \neq 0$.

Then $\frac{1}{t}$ is right convergent in x_0 and $\lim_{x_0^+} \left(\frac{1}{t}\right) = 0$.

(79) Suppose f is left convergent in x_0 and $\lim_{x_0^-} f = 0$ and there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0 - r, x_0[$ holds 0 < f(g). Then $\frac{1}{f}$ is left divergent to $+\infty$ in x_0 .

- (80) Suppose f is left convergent in x_0 and $\lim_{x_0^-} f = 0$ and there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0 r, x_0[$ holds f(g) < 0. Then $\frac{1}{f}$ is left divergent to $-\infty$ in x_0 .
- (81) Suppose f is right convergent in x_0 and $\lim_{x_0^+} f = 0$ and there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0, x_0 + r[$ holds 0 < f(g). Then $\frac{1}{f}$ is right divergent to $+\infty$ in x_0 .
- (82) Suppose f is right convergent in x_0 and $\lim_{x_0^+} f = 0$ and there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0, x_0 + r[$ holds f(g) < 0. Then $\frac{1}{f}$ is right divergent to $-\infty$ in x_0 .
- (83) Suppose that
- (i) f is left convergent in x_0 ,
- (ii) $\lim_{x_0^-} f = 0$,
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$ and $f(g) \neq 0$, and
- (iv) there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0 r, x_0[$ holds $0 \le f(g)$.

Then $\frac{1}{f}$ is left divergent to $+\infty$ in x_0 .

- (84) Suppose that
- (i) f is left convergent in x_0 ,
- (ii) $\lim_{x_0^-} f = 0$,
- (iii) for every r such that $r < x_0$ there exists g such that r < g and $g < x_0$ and $g \in \text{dom } f$ and $f(g) \neq 0$, and
- (iv) there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0 r, x_0[$ holds $f(g) \le 0$.

Then $\frac{1}{f}$ is left divergent to $-\infty$ in x_0 .

- (85) Suppose that
- (i) f is right convergent in x_0 ,
- (ii) $\lim_{x_0^+} f = 0$,
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$ and $f(g) \neq 0$, and
- (iv) there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0, x_0 + r[$ holds $0 \le f(g)$.

Then $\frac{1}{f}$ is right divergent to $+\infty$ in x_0 .

- (86) Suppose that
- (i) f is right convergent in x_0 ,
- (ii) $\lim_{x_0^+} f = 0$,
- (iii) for every r such that $x_0 < r$ there exists g such that g < r and $x_0 < g$ and $g \in \text{dom } f$ and $f(g) \neq 0$, and
- (iv) there exists r such that 0 < r and for every g such that $g \in \text{dom } f \cap]x_0, x_0 + r[$ holds $f(g) \le 0$.

Then $\frac{1}{f}$ is right divergent to $-\infty$ in x_0 .

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal1. html.
- [3] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/real_1.html.
- [4] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/seq_2.html.
- [5] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/seg_1.html.
- [6] Jarosław Kotowicz. The limit of a real function at infinity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/limfunc1.html.
- [7] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/rfunct_1.html.
- [8] Jarosław Kotowicz. Properties of real functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_ 2.html.
- [9] Jan Popiołek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html.
- [10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [12] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.
- [13] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [14] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ relset_1.html.

Received August 20, 1990

Published January 2, 2004