The Limit of a Real Function at Infinity

Jarosław Kotowicz
Warsaw University
Białystok

Abstract

Summary. We introduced the halflines (open and closed), real sequences divergent to infinity (plus and minus) and the proper and improper limit of a real function at infinty. We prove basic properties of halflines, sequences divergent to infinity and the limit of function at infinity.

MML Identifier: LIMFUNC1.
WWW: http://mizar.org/JFM/Vol2/limfunc1.html

The articles [11], [14], [1], [12], [2], [9], [5], [3], [4], [8], [15], [13], [6], [10], and [7] provide the notation and terminology for this paper.

For simplicity, we follow the rules: $r_{1}, r_{2}, g_{1}, g_{2}$ denote real numbers, n, m, k denote natural numbers, s_{1}, s_{2}, s_{3} denote sequences of real numbers, and f, f_{1}, f_{2} denote partial functions from \mathbb{R} to \mathbb{R}.

Let us consider n, m. Then $\max (n, m)$ is a natural number.
We now state the proposition
(1) If $0 \leq r_{1}$ and $r_{1}<r_{2}$ and $0<g_{1}$ and $g_{1} \leq g_{2}$, then $r_{1} \cdot g_{1}<r_{2} \cdot g_{2}$.

Let r be a real number. We introduce $]-\infty, r$ as a synonym of $\mathrm{HL}(r)$.
In the sequel $r, r_{1}, r_{2}, g, g_{1}$ denote real numbers.
Let r be a real number. The functor $]-\infty, r]$ yielding a subset of \mathbb{R} is defined as follows:
(Def. 1) $\quad]-\infty, r]=\{g: g \leq r\}$.
The functor $[r,+\infty[$ yields a subset of \mathbb{R} and is defined as follows:
(Def. 2) $\quad[r,+\infty[=\{g: r \leq g\}$.
The functor $] r,+\infty[$ yields a subset of \mathbb{R} and is defined as follows:
(Def. 3) $\quad] r,+\infty[=\{g: r<g\}$.
One can prove the following propositions:
$(8)^{1}$ If $r_{1} \leq r_{2}$, then $] r_{2},+\infty[\subseteq] r_{1},+\infty[$.
(9) If $r_{1} \leq r_{2}$, then $\left[r_{2},+\infty\left[\subseteq\left[r_{1},+\infty[\right.\right.\right.$.
(10) $] r,+\infty[\subseteq[r,+\infty[$.
(11) $] r, g[\subseteq] r,+\infty[$.

[^0](12) $\quad[r, g] \subseteq[r,+\infty[$.
(13) If $r_{1} \leq r_{2}$, then $]-\infty, r_{1}[\subseteq]-\infty, r_{2}[$.
(14) If $r_{1} \leq r_{2}$, then $\left.\left.\left.]-\infty, r_{1}\right] \subseteq\right]-\infty, r_{2}\right]$.
(15) $]-\infty, r[\subseteq]-\infty, r]$.
(16) $] g, r[\subseteq]-\infty, r[$.
(17) $[g, r] \subseteq]-\infty, r]$.
(18) $]-\infty, r[\cap] g,+\infty[=] g, r[$.
(19) $]-\infty, r] \cap[g,+\infty[=[g, r]$.
(20) If $r \leq r_{1}$, then $] r_{1}, r_{2}[\subseteq] r,+\infty\left[\right.$ and $\left[r_{1}, r_{2}\right] \subseteq[r,+\infty[$.
(21) If $r<r_{1}$, then $\left.\left[r_{1}, r_{2}\right] \subseteq\right] r,+\infty[$.
(22) If $r_{2} \leq r$, then $] r_{1}, r_{2}[\subseteq]-\infty, r\left[\right.$ and $\left.\left.\left[r_{1}, r_{2}\right] \subseteq\right]-\infty, r\right]$.
(23) If $r_{2}<r$, then $\left.\left[r_{1}, r_{2}\right] \subseteq\right]-\infty, r[$.
(24) $\mathbb{R} \backslash] r,+\infty[=]-\infty, r]$ and $\mathbb{R} \backslash[r,+\infty[=]-\infty, r[$ and $\mathbb{R} \backslash]-\infty, r[=[r,+\infty[$ and $\mathbb{R} \backslash]-\infty, r]=$ $] r,+\infty[$.
(25) $\left.\mathbb{R} \backslash] r_{1}, r_{2}[=]-\infty, r_{1}\right] \cup\left[r_{2},+\infty\left[\right.\right.$ and $\left.\mathbb{R} \backslash\left[r_{1}, r_{2}\right]=\right]-\infty, r_{1}[\cup] r_{2},+\infty[$.
(26) If s_{1} is non-decreasing, then s_{1} is lower bounded and if s_{1} is non-increasing, then s_{1} is upper bounded.
(27) If s_{1} is non-zero and convergent and $\lim s_{1}=0$ and s_{1} is non-decreasing, then for every n holds $s_{1}(n)<0$.
(28) If s_{1} is non-zero and convergent and $\lim s_{1}=0$ and s_{1} is non-increasing, then for every n holds $0<s_{1}(n)$.
(29) If s_{1} is convergent and $0<\lim s_{1}$, then there exists n such that for every m such that $n \leq m$ holds $0<s_{1}(m)$.
(30) If s_{1} is convergent and $0<\lim s_{1}$, then there exists n such that for every m such that $n \leq m$ holds $\frac{\lim s_{1}}{2}<s_{1}(m)$.

Let us consider s_{1}. We say that s_{1} is divergent to $+\infty$ if and only if:
(Def. 4) For every r there exists n such that for every m such that $n \leq m$ holds $r<s_{1}(m)$.
We say that s_{1} is divergent to $-\infty$ if and only if:
(Def. 5) For every r there exists n such that for every m such that $n \leq m$ holds $s_{1}(m)<r$.
The following propositions are true:
(33) Suppose s_{1} is divergent to $+\infty$ and divergent to $-\infty$. Then there exists n such that for every m such that $n \leq m$ holds $s_{1} \uparrow m$ is non-zero.
(34)(i) If $s_{1} \uparrow k$ is divergent to $+\infty$, then s_{1} is divergent to $+\infty$, and
(ii) if $s_{1} \uparrow k$ is divergent to $-\infty$, then s_{1} is divergent to $-\infty$.
(35) If s_{2} is divergent to $+\infty$ and s_{3} is divergent to $+\infty$, then $s_{2}+s_{3}$ is divergent to $+\infty$.
(36) If s_{2} is divergent to $+\infty$ and s_{3} is lower bounded, then $s_{2}+s_{3}$ is divergent to $+\infty$.

[^1](37) If s_{2} is divergent to $+\infty$ and s_{3} is divergent to $+\infty$, then $s_{2} s_{3}$ is divergent to $+\infty$.
(38) If s_{2} is divergent to $-\infty$ and s_{3} is divergent to $-\infty$, then $s_{2}+s_{3}$ is divergent to $-\infty$.
(39) If s_{2} is divergent to $-\infty$ and s_{3} is upper bounded, then $s_{2}+s_{3}$ is divergent to $-\infty$.
(40)(i) If s_{1} is divergent to $+\infty$ and $r>0$, then $r s_{1}$ is divergent to $+\infty$,
(ii) if s_{1} is divergent to $+\infty$ and $r<0$, then $r s_{1}$ is divergent to $-\infty$, and
(iii) if s_{1} is divergent to $+\infty$ and $r=0$, then $\operatorname{rng}\left(r s_{1}\right)=\{0\}$ and $r s_{1}$ is constant.
(41)(i) If s_{1} is divergent to $-\infty$ and $r>0$, then $r s_{1}$ is divergent to $-\infty$,
(ii) if s_{1} is divergent to $-\infty$ and $r<0$, then $r s_{1}$ is divergent to $+\infty$, and
(iii) if s_{1} is divergent to $-\infty$ and $r=0$, then $\operatorname{rng}\left(r s_{1}\right)=\{0\}$ and $r s_{1}$ is constant.
(42)(i) If s_{1} is divergent to $+\infty$, then $-s_{1}$ is divergent to $-\infty$, and
(ii) if s_{1} is divergent to $-\infty$, then $-s_{1}$ is divergent to $+\infty$.
(43) If s_{1} is lower bounded and s_{2} is divergent to $-\infty$, then $s_{1}-s_{2}$ is divergent to $+\infty$.
(44) If s_{1} is upper bounded and s_{2} is divergent to $+\infty$, then $s_{1}-s_{2}$ is divergent to $-\infty$.
(45) If s_{1} is divergent to $+\infty$ and s_{2} is convergent, then $s_{1}+s_{2}$ is divergent to $+\infty$.
(46) If s_{1} is divergent to $-\infty$ and s_{2} is convergent, then $s_{1}+s_{2}$ is divergent to $-\infty$.
(47) If for every n holds $s_{1}(n)=n$, then s_{1} is divergent to $+\infty$.
(48) If for every n holds $s_{1}(n)=-n$, then s_{1} is divergent to $-\infty$.
(49) If s_{2} is divergent to $+\infty$ and there exists r such that $r>0$ and for every n holds $s_{3}(n) \geq r$, then $s_{2} s_{3}$ is divergent to $+\infty$.
(50) If s_{2} is divergent to $-\infty$ and there exists r such that $0<r$ and for every n holds $s_{3}(n) \geq r$, then $s_{2} s_{3}$ is divergent to $-\infty$.
(51) If s_{2} is divergent to $-\infty$ and s_{3} is divergent to $-\infty$, then $s_{2} s_{3}$ is divergent to $+\infty$.
(52) If s_{1} is divergent to $+\infty$ and divergent to $-\infty$, then $\left|s_{1}\right|$ is divergent to $+\infty$.
(53) If s_{1} is divergent to $+\infty$ and s_{2} is a subsequence of s_{1}, then s_{2} is divergent to $+\infty$.
(54) If s_{1} is divergent to $-\infty$ and s_{2} is a subsequence of s_{1}, then s_{2} is divergent to $-\infty$.
(55) If s_{2} is divergent to $+\infty$ and s_{3} is convergent and $0<\lim s_{3}$, then $s_{2} s_{3}$ is divergent to $+\infty$.
(56) If s_{1} is non-decreasing and s_{1} is not upper bounded, then s_{1} is divergent to $+\infty$.
(57) If s_{1} is non-increasing and s_{1} is not lower bounded, then s_{1} is divergent to $-\infty$.
(58) If s_{1} is increasing and s_{1} is not upper bounded, then s_{1} is divergent to $+\infty$.
(59) If s_{1} is decreasing and s_{1} is not lower bounded, then s_{1} is divergent to $-\infty$.
(60) If s_{1} is monotone, then s_{1} is convergent, divergent to $+\infty$, and divergent to $-\infty$.
(61) If s_{1} is divergent to $+\infty$ and divergent to $-\infty$, then s_{1}^{-1} is convergent and $\lim \left(s_{1}{ }^{-1}\right)=0$.
(62) Suppose s_{1} is non-zero and convergent and $\lim s_{1}=0$ and there exists k such that for every n such that $k \leq n$ holds $0<s_{1}(n)$. Then s_{1}^{-1} is divergent to $+\infty$.
(63) Suppose s_{1} is non-zero and convergent and $\lim s_{1}=0$ and there exists k such that for every n such that $k \leq n$ holds $s_{1}(n)<0$. Then $s_{1}{ }^{-1}$ is divergent to $-\infty$.
(64) If s_{1} is non-zero and convergent and $\lim s_{1}=0$ and s_{1} is non-decreasing, then $s_{1}{ }^{-1}$ is divergent to $-\infty$.
(65) If s_{1} is non-zero and convergent and $\lim s_{1}=0$ and s_{1} is non-increasing, then s_{1}^{-1} is divergent to $+\infty$.
(66) If s_{1} is non-zero and convergent and $\lim s_{1}=0$ and s_{1} is increasing, then s_{1}^{-1} is divergent to $-\infty$.
(67) If s_{1} is non-zero and convergent and $\lim s_{1}=0$ and s_{1} is decreasing, then s_{1}^{-1} is divergent to $+\infty$.
(68) Suppose s_{2} is bounded and s_{3} is divergent to $+\infty$, divergent to $-\infty$, and non-zero. Then s_{2} / s_{3} is convergent and $\lim \left(s_{2} / s_{3}\right)=0$.
(69) If s_{1} is divergent to $+\infty$ and for every n holds $s_{1}(n) \leq s_{2}(n)$, then s_{2} is divergent to $+\infty$.
(70) If s_{1} is divergent to $-\infty$ and for every n holds $s_{2}(n) \leq s_{1}(n)$, then s_{2} is divergent to $-\infty$.

Let us consider f. We say that f is convergent in $+\infty$ if and only if the conditions (Def. 6) are satisfied.
(Def. 6)(i) For every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$, and
(ii) there exists g such that for every s_{1} such that s_{1} is divergent to $+\infty$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.

We say that f is divergent in $+\infty$ to $+\infty$ if and only if the conditions (Def. 7) are satisfied.
(Def. 7)(i) For every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$, and
(ii) for every s_{1} such that s_{1} is divergent to $+\infty$ and $\operatorname{nng} s_{1} \subseteq \operatorname{dom} f$ holds $f \cdot s_{1}$ is divergent to $+\infty$.

We say that f is divergent in $+\infty$ to $-\infty$ if and only if the conditions (Def. 8) are satisfied.
(Def. 8)(i) For every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$, and
(ii) for every s_{1} such that s_{1} is divergent to $+\infty$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ holds $f \cdot s_{1}$ is divergent to $-\infty$.

We say that f is convergent in $-\infty$ if and only if the conditions (Def. 9) are satisfied.
(Def. 9)(i) For every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$, and
(ii) there exists g such that for every s_{1} such that s_{1} is divergent to $-\infty$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=g$.

We say that f is divergent in $-\infty$ to $+\infty$ if and only if the conditions (Def. 10) are satisfied.
(Def. 10)(i) For every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$, and
(ii) for every s_{1} such that s_{1} is divergent to $-\infty$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ holds $f \cdot s_{1}$ is divergent to $+\infty$.

We say that f is divergent in $-\infty$ to $-\infty$ if and only if the conditions (Def. 11) are satisfied.
(Def. 11)(i) For every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$, and
(ii) for every s_{1} such that s_{1} is divergent to $-\infty$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ holds $f \cdot s_{1}$ is divergent to $-\infty$.

Next we state a number of propositions:
$(77)^{3} f$ is convergent in $+\infty$ if and only if the following conditions are satisfied:
(i) for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$, and
(ii) there exists g such that for every g_{1} such that $0<g_{1}$ there exists r such that for every r_{1} such that $r<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
(78) f is convergent in $-\infty$ if and only if the following conditions are satisfied:
(i) for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$, and
(ii) there exists g such that for every g_{1} such that $0<g_{1}$ there exists r such that for every r_{1} such that $r_{1}<r$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
(79) f is divergent in $+\infty$ to $+\infty$ if and only if for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and for every g there exists r such that for every r_{1} such that $r<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $g<f\left(r_{1}\right)$.
(80) f is divergent in $+\infty$ to $-\infty$ if and only if for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and for every g there exists r such that for every r_{1} such that $r<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $f\left(r_{1}\right)<g$.
(81) f is divergent in $-\infty$ to $+\infty$ if and only if for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and for every g there exists r such that for every r_{1} such that $r_{1}<r$ and $r_{1} \in \operatorname{dom} f$ holds $g<f\left(r_{1}\right)$.
(82) f is divergent in $-\infty$ to $-\infty$ if and only if for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and for every g there exists r such that for every r_{1} such that $r_{1}<r$ and $r_{1} \in \operatorname{dom} f$ holds $f\left(r_{1}\right)<g$.
(83) Suppose that
(i) f_{1} is divergent in $+\infty$ to $+\infty$,
(ii) f_{2} is divergent in $+\infty$ to $+\infty$, and
(iii) for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$.

Then $f_{1}+f_{2}$ is divergent in $+\infty$ to $+\infty$ and $f_{1} f_{2}$ is divergent in $+\infty$ to $+\infty$.
(84) Suppose that
(i) f_{1} is divergent in $+\infty$ to $-\infty$,
(ii) f_{2} is divergent in $+\infty$ to $-\infty$, and
(iii) for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$.

Then $f_{1}+f_{2}$ is divergent in $+\infty$ to $-\infty$ and $f_{1} f_{2}$ is divergent in $+\infty$ to $+\infty$.
(85) Suppose that
(i) f_{1} is divergent in $-\infty$ to $+\infty$,
(ii) f_{2} is divergent in $-\infty$ to $+\infty$, and
(iii) for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$.

Then $f_{1}+f_{2}$ is divergent in $-\infty$ to $+\infty$ and $f_{1} f_{2}$ is divergent in $-\infty$ to $+\infty$.
(86) Suppose that
(i) f_{1} is divergent in $-\infty$ to $-\infty$,
(ii) f_{2} is divergent in $-\infty$ to $-\infty$, and
(iii) for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$.

Then $f_{1}+f_{2}$ is divergent in $-\infty$ to $-\infty$ and $f_{1} f_{2}$ is divergent in $-\infty$ to $+\infty$.

[^2](87) Suppose that
(i) f_{1} is divergent in $+\infty$ to $+\infty$,
(ii) for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$, and
(iii) there exists r such that f_{2} is lower bounded on $] r,+\infty[$.

Then $f_{1}+f_{2}$ is divergent in $+\infty$ to $+\infty$.
(88) Suppose that
(i) f_{1} is divergent in $+\infty$ to $+\infty$,
(ii) for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$, and
(iii) there exist r, r_{1} such that $0<r$ and for every g such that $\left.g \in \operatorname{dom} f_{2} \cap\right] r_{1},+\infty[$ holds $r \leq f_{2}(g)$.
Then $f_{1} f_{2}$ is divergent in $+\infty$ to $+\infty$.
(89) Suppose that
(i) $\quad f_{1}$ is divergent in $-\infty$ to $+\infty$,
(ii) for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$, and
(iii) there exists r such that f_{2} is lower bounded on $]-\infty, r[$.

Then $f_{1}+f_{2}$ is divergent in $-\infty$ to $+\infty$.
(90) Suppose that
(i) f_{1} is divergent in $-\infty$ to $+\infty$,
(ii) for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$, and
(iii) there exist r, r_{1} such that $0<r$ and for every g such that $\left.g \in \operatorname{dom} f_{2} \cap\right]-\infty, r_{1}[$ holds $r \leq f_{2}(g)$.
Then $f_{1} f_{2}$ is divergent in $-\infty$ to $+\infty$.
(91)(i) If f is divergent in $+\infty$ to $+\infty$ and $r>0$, then $r f$ is divergent in $+\infty$ to $+\infty$,
(ii) if f is divergent in $+\infty$ to $+\infty$ and $r<0$, then $r f$ is divergent in $+\infty$ to $-\infty$,
(iii) if f is divergent in $+\infty$ to $-\infty$ and $r>0$, then $r f$ is divergent in $+\infty$ to $-\infty$, and
(iv) if f is divergent in $+\infty$ to $-\infty$ and $r<0$, then $r f$ is divergent in $+\infty$ to $+\infty$.
(92)(i) If f is divergent in $-\infty$ to $+\infty$ and $r>0$, then $r f$ is divergent in $-\infty$ to $+\infty$,
(ii) if f is divergent in $-\infty$ to $+\infty$ and $r<0$, then $r f$ is divergent in $-\infty$ to $-\infty$,
(iii) if f is divergent in $-\infty$ to $-\infty$ and $r>0$, then $r f$ is divergent in $-\infty$ to $-\infty$, and
(iv) if f is divergent in $-\infty$ to $-\infty$ and $r<0$, then $r f$ is divergent in $-\infty$ to $+\infty$.
(93) Suppose f is divergent in $+\infty$ to $+\infty$ and divergent in $+\infty$ to $-\infty$. Then $|f|$ is divergent in $+\infty$ to $+\infty$.
(94) Suppose f is divergent in $-\infty$ to $+\infty$ and divergent in $-\infty$ to $-\infty$. Then $|f|$ is divergent in $-\infty$ to $+\infty$.
(95) Suppose there exists r such that f is non-decreasing on $] r,+\infty[$ and f is not upper bounded on $] r,+\infty[$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$. Then f is divergent in $+\infty$ to $+\infty$.
(96) Suppose there exists r such that f is increasing on $] r,+\infty[$ and f is not upper bounded on $] r,+\infty[$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$. Then f is divergent in $+\infty$ to $+\infty$.
(97) Suppose there exists r such that f is non increasing on $] r,+\infty[$ and f is not lower bounded on $] r,+\infty[$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$. Then f is divergent in $+\infty$ to $-\infty$.
(98) Suppose there exists r such that f is decreasing on $] r,+\infty[$ and f is not lower bounded on $] r,+\infty[$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$. Then f is divergent in $+\infty$ to $-\infty$.
(99) Suppose there exists r such that f is non increasing on $]-\infty, r$ and f is not upper bounded on $]-\infty, r$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$. Then f is divergent in $-\infty$ to $+\infty$.
(100) Suppose there exists r such that f is decreasing on $]-\infty, r[$ and f is not upper bounded on $]-\infty, r[$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$. Then f is divergent in $-\infty$ to $+\infty$.
(101) Suppose there exists r such that f is non-decreasing on $]-\infty, r$ and f is not lower bounded on $]-\infty, r$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$. Then f is divergent in $-\infty$ to $-\infty$.
(102) Suppose there exists r such that f is increasing on $]-\infty, r[$ and f is not lower bounded on $]-\infty, r[$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$. Then f is divergent in $-\infty$ to $-\infty$.

(103) Suppose that

(i) f_{1} is divergent in $+\infty$ to $+\infty$,
(ii) for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$, and
(iii) there exists r such that $\operatorname{dom} f \cap] r,+\infty\left[\subseteq \operatorname{dom} f_{1} \cap\right] r,+\infty[$ and for every g such that $g \in$ $\operatorname{dom} f \cap] r,+\infty\left[\right.$ holds $f_{1}(g) \leq f(g)$.
Then f is divergent in $+\infty$ to $+\infty$.
(104) Suppose that
(i) f_{1} is divergent in $+\infty$ to $-\infty$,
(ii) for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$, and
(iii) there exists r such that $\operatorname{dom} f \cap] r,+\infty\left[\subseteq \operatorname{dom} f_{1} \cap\right] r,+\infty[$ and for every g such that $g \in$ $\operatorname{dom} f \cap] r,+\infty\left[\right.$ holds $f(g) \leq f_{1}(g)$.
Then f is divergent in $+\infty$ to $-\infty$.
(105) Suppose that
(i) f_{1} is divergent in $-\infty$ to $+\infty$,
(ii) for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$, and
(iii) there exists r such that $\operatorname{dom} f \cap]-\infty, r\left[\subseteq \operatorname{dom} f_{1} \cap\right]-\infty, r[$ and for every g such that $g \in$ $\operatorname{dom} f \cap]-\infty, r\left[\right.$ holds $f_{1}(g) \leq f(g)$.
Then f is divergent in $-\infty$ to $+\infty$.
(106) Suppose that
(i) f_{1} is divergent in $-\infty$ to $-\infty$,
(ii) for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$, and
(iii) there exists r such that $\operatorname{dom} f \cap]-\infty, r\left[\subseteq \operatorname{dom} f_{1} \cap\right]-\infty, r[$ and for every g such that $g \in$ $\operatorname{dom} f \cap]-\infty, r\left[\right.$ holds $f(g) \leq f_{1}(g)$.
Then f is divergent in $-\infty$ to $-\infty$.
(107) Suppose f_{1} is divergent in $+\infty$ to $+\infty$ and there exists r such that $] r,+\infty\left[\subseteq \operatorname{dom} f \cap \operatorname{dom} f_{1}\right.$ and for every g such that $g \in] r,+\infty\left[\right.$ holds $f_{1}(g) \leq f(g)$. Then f is divergent in $+\infty$ to $+\infty$.
(108) Suppose f_{1} is divergent in $+\infty$ to $-\infty$ and there exists r such that $] r,+\infty\left[\subseteq \operatorname{dom} f \cap \operatorname{dom} f_{1}\right.$ and for every g such that $g \in] r,+\infty\left[\right.$ holds $f(g) \leq f_{1}(g)$. Then f is divergent in $+\infty$ to $-\infty$.
(109) Suppose f_{1} is divergent in $-\infty$ to $+\infty$ and there exists r such that $]-\infty, r\left[\subseteq \operatorname{dom} f \cap \operatorname{dom} f_{1}\right.$ and for every g such that $g \in]-\infty, r$ holds $f_{1}(g) \leq f(g)$. Then f is divergent in $-\infty$ to $+\infty$.
(110) Suppose f_{1} is divergent in $-\infty$ to $-\infty$ and there exists r such that $]-\infty, r\left[\subseteq \operatorname{dom} f \cap \operatorname{dom} f_{1}\right.$ and for every g such that $g \in]-\infty, r\left[\right.$ holds $f(g) \leq f_{1}(g)$. Then f is divergent in $-\infty$ to $-\infty$.

Let us consider f. Let us assume that f is convergent in $+\infty$. The functor $\lim _{+\infty} f$ yields a real number and is defined by:
(Def. 12) For every s_{1} such that s_{1} is divergent to $+\infty$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=\lim _{+\infty} f$.

Let us consider f. Let us assume that f is convergent in $-\infty$. The functor $\lim _{-\infty} f$ yields a real number and is defined by:
(Def. 13) For every s_{1} such that s_{1} is divergent to $-\infty$ and $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ holds $f \cdot s_{1}$ is convergent and $\lim \left(f \cdot s_{1}\right)=\lim _{-\infty} f$.

We now state a number of propositions:
(113 $]^{4}$ Suppose f is convergent in $-\infty$. Then $\lim _{-\infty} f=g$ if and only if for every g_{1} such that $0<$ g_{1} there exists r such that for every r_{1} such that $r_{1}<r$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
(114) Suppose f is convergent in $+\infty$. Then $\lim _{+\infty} f=g$ if and only if for every g_{1} such that $0<$ g_{1} there exists r such that for every r_{1} such that $r<r_{1}$ and $r_{1} \in \operatorname{dom} f$ holds $\left|f\left(r_{1}\right)-g\right|<g_{1}$.
(115) If f is convergent in $+\infty$, then $r f$ is convergent in $+\infty$ and $\lim _{+\infty}(r f)=r \cdot \lim _{+\infty} f$.
(116) If f is convergent in $+\infty$, then $-f$ is convergent in $+\infty$ and $\lim _{+\infty}(-f)=-\lim _{+\infty} f$.
(117) Suppose f_{1} is convergent in $+\infty$ and f_{2} is convergent in $+\infty$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$. Then $f_{1}+f_{2}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(f_{1}+f_{2}\right)=$ $\lim _{+\infty} f_{1}+\lim _{+\infty} f_{2}$.
(118) Suppose f_{1} is convergent in $+\infty$ and f_{2} is convergent in $+\infty$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{1}-f_{2}\right)$. Then $f_{1}-f_{2}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(f_{1}-f_{2}\right)=$ $\lim _{+\infty} f_{1}-\lim _{+\infty} f_{2}$.
(119) If f is convergent in $+\infty$ and $f^{-1}(\{0\})=\emptyset$ and $\lim _{+\infty} f \neq 0$, then $\frac{1}{f}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(\frac{1}{f}\right)=\left(\lim _{+\infty} f\right)^{-1}$.
(120) If f is convergent in $+\infty$, then $|f|$ is convergent in $+\infty$ and $\lim _{+\infty}|f|=\left|\lim _{+\infty} f\right|$.
(121) Suppose f is convergent in $+\infty$ and $\lim _{+\infty} f \neq 0$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$. Then $\frac{1}{f}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(\frac{1}{f}\right)=\left(\lim _{+\infty} f\right)^{-1}$.
(122) Suppose f_{1} is convergent in $+\infty$ and f_{2} is convergent in $+\infty$ and for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$. Then $f_{1} f_{2}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(f_{1} f_{2}\right)=$ $\lim _{+\infty} f_{1} \cdot \lim _{+\infty} f_{2}$.
(123) Suppose that
(i) f_{1} is convergent in $+\infty$,
(ii) f_{2} is convergent in $+\infty$,
(iii) $\lim _{+\infty} f_{2} \neq 0$, and
(iv) for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(\frac{f_{1}}{f_{2}}\right)$.

Then $\frac{f_{1}}{f_{2}}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(\frac{f_{1}}{f_{2}}\right)=\frac{\lim _{+\infty} f_{1}}{\lim _{+\infty} f_{2}}$.
(124) If f is convergent in $-\infty$, then $r f$ is convergent in $-\infty$ and $\lim _{-\infty}(r f)=r \cdot \lim _{-\infty} f$.

[^3](125) If f is convergent in $-\infty$, then $-f$ is convergent in $-\infty$ and $\lim _{-\infty}(-f)=-\lim _{-\infty} f$.
(126) Suppose f_{1} is convergent in $-\infty$ and f_{2} is convergent in $-\infty$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{1}+f_{2}\right)$. Then $f_{1}+f_{2}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(f_{1}+f_{2}\right)=$ $\lim _{-\infty} f_{1}+\lim _{-\infty} f_{2}$.
(127) Suppose f_{1} is convergent in $-\infty$ and f_{2} is convergent in $-\infty$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{1}-f_{2}\right)$. Then $f_{1}-f_{2}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(f_{1}-f_{2}\right)=$ $\lim _{-\infty} f_{1}-\lim _{-\infty} f_{2}$.
(128) If f is convergent in $-\infty$ and $f^{-1}(\{0\})=0$ and $\lim _{-\infty} f \neq 0$, then $\frac{1}{f}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(\frac{1}{f}\right)=\left(\lim _{-\infty} f\right)^{-1}$.
(129) If f is convergent in $-\infty$, then $|f|$ is convergent in $-\infty$ and $\lim _{-\infty}|f|=\left|\lim _{-\infty} f\right|$.
(130) Suppose f is convergent in $-\infty$ and $\lim _{-\infty} f \neq 0$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$. Then $\frac{1}{f}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(\frac{1}{f}\right)=\left(\lim _{-\infty} f\right)^{-1}$.
(131) Suppose f_{1} is convergent in $-\infty$ and f_{2} is convergent in $-\infty$ and for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$. Then $f_{1} f_{2}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(f_{1} f_{2}\right)=$ $\lim _{-\infty} f_{1} \cdot \lim _{-\infty} f_{2}$.
(132) Suppose that
(i) f_{1} is convergent in $-\infty$,
(ii) f_{2} is convergent in $-\infty$,
(iii) $\lim _{-\infty} f_{2} \neq 0$, and
(iv) for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(\frac{f_{1}}{f_{2}}\right)$.

Then $\frac{f_{1}}{f_{2}}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(\frac{f_{1}}{f_{2}}\right)=\frac{\lim _{-\infty} f_{1}}{\lim _{-\infty} f_{2}}$.
(133) Suppose that
(i) f_{1} is convergent in $+\infty$,
(ii) $\lim _{+\infty} f_{1}=0$,
(iii) for every r there exists g such that $r<g$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$, and
(iv) there exists r such that f_{2} is bounded on $] r,+\infty[$.

Then $f_{1} f_{2}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(f_{1} f_{2}\right)=0$.
(134) Suppose that
(i) f_{1} is convergent in $-\infty$,
(ii) $\lim _{-\infty} f_{1}=0$,
(iii) for every r there exists g such that $g<r$ and $g \in \operatorname{dom}\left(f_{1} f_{2}\right)$, and
(iv) there exists r such that f_{2} is bounded on $]-\infty, r[$.

Then $f_{1} f_{2}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(f_{1} f_{2}\right)=0$.
(135) Suppose that
(i) f_{1} is convergent in $+\infty$,
(ii) f_{2} is convergent in $+\infty$,
(iii) $\lim _{+\infty} f_{1}=\lim _{+\infty} f_{2}$,
(iv) for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$, and
(v) there exists r such that $\left.\operatorname{dom} f_{1} \cap\right] r,+\infty\left[\subseteq \operatorname{dom} f_{2} \cap\right] r,+\infty[$ and $\operatorname{dom} f \cap] r,+\infty\left[\subseteq \operatorname{dom} f_{1} \cap\right.$ $] r,+\infty\left[\right.$ or $\left.\operatorname{dom} f_{2} \cap\right] r,+\infty\left[\subseteq \operatorname{dom} f_{1} \cap\right] r,+\infty[$ and $\operatorname{dom} f \cap] r,+\infty\left[\subseteq \operatorname{dom} f_{2} \cap\right] r,+\infty[$ but for every g such that $g \in \operatorname{dom} f \cap] r,+\infty\left[\right.$ holds $f_{1}(g) \leq f(g)$ and $f(g) \leq f_{2}(g)$.
Then f is convergent in $+\infty$ and $\lim _{+\infty} f=\lim _{+\infty} f_{1}$.
(136) Suppose that
(i) f_{1} is convergent in $+\infty$,
(ii) f_{2} is convergent in $+\infty$,
(iii) $\lim _{+\infty} f_{1}=\lim _{+\infty} f_{2}$, and
(iv) there exists r such that $] r,+\infty\left[\subseteq \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2} \cap \operatorname{dom} f\right.$ and for every g such that $g \in$ $] r,+\infty\left[\right.$ holds $f_{1}(g) \leq f(g)$ and $f(g) \leq f_{2}(g)$.
Then f is convergent in $+\infty$ and $\lim _{+\infty} f=\lim _{+\infty} f_{1}$.
(137) Suppose that
(i) $\quad f_{1}$ is convergent in $-\infty$,
(ii) f_{2} is convergent in $-\infty$,
(iii) $\lim _{-\infty} f_{1}=\lim _{-\infty} f_{2}$,
(iv) for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$, and
(v) there exists r such that $\left.\operatorname{dom} f_{1} \cap\right]-\infty, r\left[\subseteq \operatorname{dom} f_{2} \cap\right]-\infty, r[$ and $\operatorname{dom} f \cap]-\infty, r\left[\subseteq \operatorname{dom} f_{1} \cap\right.$ $]-\infty, r\left[\right.$ or $\left.\operatorname{dom} f_{2} \cap\right]-\infty, r\left[\subseteq \operatorname{dom} f_{1} \cap\right]-\infty, r[$ and $\operatorname{dom} f \cap]-\infty, r\left[\subseteq \operatorname{dom} f_{2} \cap\right]-\infty, r[$ but for every g such that $g \in \operatorname{dom} f \cap]-\infty, r\left[\right.$ holds $f_{1}(g) \leq f(g)$ and $f(g) \leq f_{2}(g)$.
Then f is convergent in $-\infty$ and $\lim _{-\infty} f=\lim _{-\infty} f_{1}$.
(138) Suppose that
(i) $\quad f_{1}$ is convergent in $-\infty$,
(ii) f_{2} is convergent in $-\infty$,
(iii) $\lim _{-\infty} f_{1}=\lim _{-\infty} f_{2}$, and
(iv) there exists r such that $]-\infty, r\left[\subseteq \operatorname{dom} f_{1} \cap \operatorname{dom} f_{2} \cap \operatorname{dom} f\right.$ and for every g such that $g \in$ $]-\infty, r\left[\right.$ holds $f_{1}(g) \leq f(g)$ and $f(g) \leq f_{2}(g)$.
Then f is convergent in $-\infty$ and $\lim _{-\infty} f=\lim _{-\infty} f_{1}$.
(139) Suppose that
(i) f_{1} is convergent in $+\infty$,
(ii) f_{2} is convergent in $+\infty$, and
(iii) there exists r such that $\left.\operatorname{dom} f_{1} \cap\right] r,+\infty\left[\subseteq \operatorname{dom} f_{2} \cap\right] r,+\infty[$ and for every g such that $g \in$ $\left.\operatorname{dom} f_{1} \cap\right] r,+\infty\left[\right.$ holds $f_{1}(g) \leq f_{2}(g)$ or $\left.\operatorname{dom} f_{2} \cap\right] r,+\infty\left[\subseteq \operatorname{dom} f_{1} \cap\right] r,+\infty[$ and for every g such that $\left.g \in \operatorname{dom} f_{2} \cap\right] r,+\infty\left[\right.$ holds $f_{1}(g) \leq f_{2}(g)$.
Then $\lim _{+\infty} f_{1} \leq \lim _{+\infty} f_{2}$.
(140) Suppose that
(i) f_{1} is convergent in $-\infty$,
(ii) f_{2} is convergent in $-\infty$, and
(iii) there exists r such that $\left.\operatorname{dom} f_{1} \cap\right]-\infty, r\left[\subseteq \operatorname{dom} f_{2} \cap\right]-\infty, r[$ and for every g such that $\left.g \in \operatorname{dom} f_{1} \cap\right]-\infty, r\left[\right.$ holds $f_{1}(g) \leq f_{2}(g)$ or $\left.\operatorname{dom} f_{2} \cap\right]-\infty, r\left[\subseteq \operatorname{dom} f_{1} \cap\right]-\infty, r[$ and for every g such that $\left.g \in \operatorname{dom} f_{2} \cap\right]-\infty, r\left[\right.$ holds $f_{1}(g) \leq f_{2}(g)$.
Then $\lim _{-\infty} f_{1} \leq \lim _{-\infty} f_{2}$.
(141) Suppose that
(i) f is divergent in $+\infty$ to $+\infty$ and divergent in $+\infty$ to $-\infty$, and
(ii) for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$. Then $\frac{1}{f}$ is convergent in $+\infty$ and $\lim _{+\infty}\left(\frac{1}{f}\right)=0$.
(142) Suppose that
(i) f is divergent in $-\infty$ to $+\infty$ and divergent in $-\infty$ to $-\infty$, and
(ii) for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$.

Then $\frac{1}{f}$ is convergent in $-\infty$ and $\lim _{-\infty}\left(\frac{1}{f}\right)=0$.
(143) Suppose that
(i) f is convergent in $+\infty$,
(ii) $\lim _{+\infty} f=0$,
(iii) for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$, and
(iv) there exists r such that for every g such that $g \in \operatorname{dom} f \cap] r,+\infty[$ holds $0 \leq f(g)$. Then $\frac{1}{f}$ is divergent in $+\infty$ to $+\infty$.
(144) Suppose that
(i) f is convergent in $+\infty$,
(ii) $\lim _{+\infty} f=0$,
(iii) for every r there exists g such that $r<g$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$, and
(iv) there exists r such that for every g such that $g \in \operatorname{dom} f \cap] r,+\infty[$ holds $f(g) \leq 0$.

Then $\frac{1}{f}$ is divergent in $+\infty$ to $-\infty$.
(145) Suppose that
(i) f is convergent in $-\infty$,
(ii) $\lim _{-\infty} f=0$,
(iii) for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$, and
(iv) there exists r such that for every g such that $g \in \operatorname{dom} f \cap]-\infty, r[$ holds $0 \leq f(g)$.

Then $\frac{1}{f}$ is divergent in $-\infty$ to $+\infty$.
(146) Suppose that
(i) f is convergent in $-\infty$,
(ii) $\lim _{-\infty} f=0$,
(iii) for every r there exists g such that $g<r$ and $g \in \operatorname{dom} f$ and $f(g) \neq 0$, and
(iv) there exists r such that for every g such that $g \in \operatorname{dom} f \cap]-\infty, r[$ holds $f(g) \leq 0$.

Then $\frac{1}{f}$ is divergent in $-\infty$ to $-\infty$.
(147) Suppose f is convergent in $+\infty$ and $\lim _{+\infty} f=0$ and there exists r such that for every g such that $g \in \operatorname{dom} f \cap] r,+\infty\left[\right.$ holds $0<f(g)$. Then $\frac{1}{f}$ is divergent in $+\infty$ to $+\infty$.
(148) Suppose f is convergent in $+\infty$ and $\lim _{+\infty} f=0$ and there exists r such that for every g such that $g \in \operatorname{dom} f \cap] r,+\infty\left[\right.$ holds $f(g)<0$. Then $\frac{1}{f}$ is divergent in $+\infty$ to $-\infty$.
(149) Suppose f is convergent in $-\infty$ and $\lim _{-\infty} f=0$ and there exists r such that for every g such that $g \in \operatorname{dom} f \cap]-\infty, r\left[\right.$ holds $0<f(g)$. Then $\frac{1}{f}$ is divergent in $-\infty$ to $+\infty$.
(150) Suppose f is convergent in $-\infty$ and $\lim _{-\infty} f=0$ and there exists r such that for every g such that $g \in \operatorname{dom} f \cap]-\infty, r\left[\right.$ holds $f(g)<0$. Then $\frac{1}{f}$ is divergent in $-\infty$ to $-\infty$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html
[3] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/seq_2.html
[4] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/seqm_3.html
[5] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seq_1.html
[6] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/rfunct_1.html
[7] Jarosław Kotowicz. Properties of real functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_ 2.html
[8] Andrzej Nȩdzusiak. σ-fields and probability. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/prob_1. html.
[9] Jan Popiołek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/absvalue.html
[10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[12] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[13] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/square_1.html.
[14] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[15] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ relset_1.html

Received August 20, 1990
Published January 2, 2004

[^0]: ${ }^{1}$ The propositions (2)-(7) have been removed.

[^1]: ${ }^{2}$ The propositions (31) and (32) have been removed.

[^2]: ${ }^{3}$ The propositions (71)-(76) have been removed.

[^3]: ${ }^{4}$ The propositions (111) and (112) have been removed.

