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Summary. We introduced the halflinespenandclosed, real sequences divergent to
infinity (plusandminug and the proper and improper limit of a real function at infinty. We

prove basic properties of halflines, sequences divergent to infinity and the limit of function at
infinity.
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The articles[[11],[[14],10],1212],[12],[10], 5], 3], 14], 18], [15], [18], [6], [10], and 7] provide the
notation and terminology for this paper.

For simplicity, we follow the rulesry, r», g1, g2 denote real numbers, m, k denote natural

numberss;, S, sz denote sequences of real numbers, &ntl, f» denote partial functions frofR
toR.

Let us considen, m. Then maxn, m) is a natural number.
We now state the proposition

(1) Ifo<rpandry<rpandO0<g; andg; < gy, thenri-gs <rz-go.

Letr be a real number. We introduteco, r[ as a synonym of H{r).
In the sequet, ry, r2, g, g1 denote real numbers.
Letr be a real number. The functpro, ] yielding a subset dR is defined as follows:

(Def. 1) |—oo,r]={g:g<r}.
The functor]r, +o| yields a subset dR and is defined as follows:
(Def.2) [r,4o[={g:r <g}.
The functor]r, +| yields a subset dR and is defined as follows:
(Def. 3) Jr,+oo[={g:r <g}.
One can prove the following propositions:
8H 1f ri <rz, then]ry, +-oo[ Cry, +oo.
(9) Ifry <rp,then(ry,+oo[ C [r1,+ool.
(10) Jr,+eo[ C [r, +oo].
(11) r,g[ S ]r,+ool.

1 The propositions (2)—-(7) have been removed.
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(12) [r,gl S [r,+o.

(13) Ifrq <rp,then]—oo,ri[ C]—oo,ry].

(14) Ifry <rp, then]—oo,rq] C]—oo,r3].

(15) |-, r[C—oo,r].

(16) Jg.r{C]—eor[.

(A7) lgr]Sl-ew,r].

(18) ]—oo,r[N]g,+oo[=]g,r[.

(19) |—oo,rjN[g, +oo[ =[g,r].

(20) Ifr <rq,then]ry,ro[ Cr,+oof and]ry,ro] C [r,+oo[.
(21) Ifr <rq, thenfry,rp] Cr,+oo].

(22) Ifry <r then]ry,ro[ C]—oo,r[ andry,ra] C]—oo,r].
(23) Ifry <r, thenfry,ry] C]—oo,r|.

(24) R\]r,+oo[=]—oco,r] @andR \ [r, +-00o[ = ]—oo,r[@andR \ | —co,r[ = [, +-o0o[ andR \ | —oo,r] =
|r,4-o0].

(25) R\]Jry,ro[=]—00,r1]U[ra, 4ol andR \ [r1,r2] =]—oc0,r1[U]rp, 4oo].

(26) If 1 is non-decreasing, thes is lower bounded and i§; is non-increasing, thes; is
upper bounded.

(27) If 51 is non-zero and convergent and Bim= 0 ands; is non-decreasing, then for evany
holdss; (n) < 0.

(28) If 51 is non-zero and convergent and Bm= 0 ands; is non-increasing, then for every
holds 0< s;(n).

(29) If 1 is convergent and & lim s, then there exista such that for everyn such thanh <m
holds 0< s1(m).

(30) If s is convergent and & lim s1, then there exista such that for everyn such than <m
holds ™ < s;(m).

Let us consides;. We say thas; is divergent tot+ if and only if:
(Def. 4) For every there exists1 such that for everyn such than < mholdsr < s;(m).
We say thas; is divergent to—o if and only if:
(Def. 5) For every there exists such that for everyn such thain < mholdss;(m) <.

The following propositions are true:

(33E] Supposes; is divergent to+-co and divergent te-c. Then there exists such that for every
msuch than < mholdss; T mis non-zero.

(34)()) If s11kis divergent tot-, thens; is divergent to+o, and
(i) if s Tkis divergent to—e, thens; is divergent to—oo.

(35) If ;is divergent to+co ands; is divergent tot-oo, thens, + sz is divergent to+oo.

(36) If s is divergent to+o andss is lower bounded, thesy + s3 is divergent to+oo.

2 The propositions (31) and (32) have been removed.
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(37) If sp is divergent to+co ands;s is divergent tot-eo, thens, s; is divergent to+oo.
(38) If s is divergent to— ands; is divergent to—oo, thens, + s3 is divergent to—co.
(39) If s, is divergent to—oo andss is upper bounded, thes + s3 is divergent to—co.

(40)(i) If 1 is divergent to+-c andr > 0, thenr s; is divergent to+oo,
(i) if s is divergent toteo andr < O, thenr s; is divergent to—oo, and
(i) if s1is divergent to+-co andr = O, then rndr s1) = {0} andr s; is constant.

(41)()) If 51 is divergent to—c andr > 0, thenr s; is divergent to—oo,
(i) if s is divergent to—c andr < 0O, thenr s; is divergent tot-o, and
(iiiy if s is divergent to—c andr = 0, then rndr s;) = {0} andr s; is constant.

(42)(i) If 5 is divergent tot-oo, then—s; is divergent to—co, and
(i) if s is divergent to—co, then—s; is divergent tot+co.

(43) If s is lower bounded ang is divergent to—o, thens; — s, is divergent tof-co.
(44) If 1 is upper bounded argg is divergent toto, thens; — s, is divergent to—co.
(45) If s is divergent to+oo ands; is convergent, theg + s, is divergent tot+oo.
(46) If 5 is divergent to—o ands; is convergent, theg + s, is divergent to—co.
(47) If for everyn holdss; (n) = n, thens; is divergent tot+oo.

(48) If for everyn holdss; (n) = —n, thens is divergent to—co.

(49) If s is divergent to+-o and there exists such thar > 0 and for evenyn holdssz(n) >,
thens, s3 is divergent tot+oo.

(50) If ; is divergent to—c and there exists such that O< r and for everyn holdssz(n) >,
thens, s; is divergent to—co.

(51) If s, is divergent to—co ands; is divergent to—oo, thens, s; is divergent to+oo.

(52) If s is divergent tot-o and divergent ta-o, then|s; | is divergent tot+co.

(53) If 5 is divergent to+c ands; is a subsequence ef, thens; is divergent to4-co.

(54) If s is divergent to—o ands; is a subsequence &f, thens; is divergent to—co.

(55) If s, is divergent to+o andss is convergent and € lim sz, thens; sz is divergent tot+co.
(56) If 51 is non-decreasing argd is not upper bounded, thes is divergent to+oo.

(57) If 51 is non-increasing ansk is not lower bounded, thes is divergent to—co.

(58) If g isincreasing and, is not upper bounded, thes is divergent to+oo.

(59) If s is decreasing ansi is not lower bounded, thex is divergent to—co.

(60) If 51 is monotone, thes; is convergent, divergent tgeo, and divergent te-co.

(61) If sy is divergent to+-e and divergent te-o, thens; ~1 is convergent and lifs; =) = 0.

(62) Suppose; is non-zero and convergent and k= 0 and there existis such that for every
n such thak < n holds 0< s;(n). Thens; 1 is divergent to+co.

(63) Suppose; is non-zero and convergent and k= 0 and there existis such that for every
n such thak < n holdss; (n) < 0. Thens; 1 is divergent to—co.
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(64) If 51 is non-zero and convergent and Bm= 0 ands; is non-decreasing, thes ! is
divergent to—oo.

(65) If 51 is non-zero and convergent and km= 0 ands; is non-increasing, thes 1 is diver-
gent to+oo,

(66) If s is non-zero and convergent and Bin= 0 ands; is increasing, thes; 1 is divergent
to —oo.

(67) If s is non-zero and convergent and Bm= 0 ands; is decreasing, thes ! is divergent
to H-o0.

(68) Supposes is bounded and; is divergent to+oo, divergent to—, and non-zero. Then
S/s3 is convergent and liffs, /s3) = 0.

(69) If 51 is divergent to+o and for everyn holdss; (n) < s(n), thens; is divergent totco.

(70) If 51 is divergent to—c and for everyn holdssy(n) < s1(n), thens; is divergent to—co.

Let us considerf. We say thatf is convergent int- if and only if the conditions (Def. 6) are
satisfied.

(Def. 6)()) For every there existg such that < g andg € domf, and

(i)  there existsg such that for everg; such thats; is divergent to4-c and rngs; € domf
holdsf - 51 is convergent and liff - s1) = g.

We say thaff is divergent i+ to +oo if and only if the conditions (Def. 7) are satisfied.

(Def. 7)(i) For every there existg such that < g andg € domf, and

(i) for everys; such thaty is divergent to+c and rngs; C domf holdsf - s; is divergent to
+00.

We say thaff is divergent in4-c to —oo if and only if the conditions (Def. 8) are satisfied.

(Def. 8)() For every there existg such that < g andg € domf, and
(i) for everys; such thaty is divergent to+c and rngs; C domf holdsf - s; is divergent to

—00,
We say thaff is convergent in- if and only if the conditions (Def. 9) are satisfied.

(Def. 9)()) For every there existg such thag < r andg € domf, and

(i) there existsg such that for everyg, such thats; is divergent to—o and rngs; € domf
holdsf - s; is convergent and ligf - 1) = g.

We say thaff is divergent in—oo to +o if and only if the conditions (Def. 10) are satisfied.

(Def. 10)(i) For every there existg such thag < r andg € domf, and

(i) for everys; such thats; is divergent to—c and rngs; C domf holds f - 5 is divergent to
+oo,

We say thatff is divergent in—o to —oo if and only if the conditions (Def. 11) are satisfied.

(Def. 11)(i) For every there existg such thag < r andg € domf, and

(i) for everys; such thaty is divergent to—c and rngs; C domf holdsf - s; is divergent to
—00,

Next we state a number of propositions:
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(77 f is convergent int-o if and only if the following conditions are satisfied:
(i) for everyr there existg such thar < gandg € domf, and
(ii) there existsy such that for everg; such that 0< g; there exists such that for every;
such that < ry andr; € domf holds|f(r1) —g| < 9s.
(78) f is convergent in-co if and only if the following conditions are satisfied:
(i) for everyr there existg such thag < r andg € domf, and
(i) there existgy such that for everg; such that 0< g; there exists such that for every;
such thaty < r andry € domf holds|f(r1) —g| < 1.

(79) f is divergent in+oco to +oo if and only if for everyr there existg such that < g and
g € domf and for evenyg there exists such that for every; such that < r; andr; € domf
holdsg < f(ry).

(80) f is divergent in+o to —oo if and only if for everyr there existg) such thatr < g and
g € domf and for everyg there exists such that for every; such that < r1 andr; € domf
holdsf(r1) < g.

(81) f is divergent in—o to 4+ if and only if for everyr there existgy such thaty < r and
g € domf and for evenyg there exists such that for every; such that; < r andr; € domf
holdsg < f(r1).

(82) f is divergent in—co to —oo if and only if for everyr there existg such thaty < r and
g € domf and for evenyg there exists such that for every; such that; < r andr; € domf
holdsf(r1) < g.

(83) Suppose that

(i) fqisdivergent intoco to +oo,
(i)  fis divergent in4-o to 40, and

(i)  for everyr there existg such that < gandg € domf; ndomf,.

Thenfy + fy is divergent intco to 400 and f; f; is divergent irH-co to +co.

(84) Suppose that
(i) f1isdivergentintoo to —oo,
(i) fis divergent irHo to —oo, and
(iii)  for everyr there existg such that < g andg € domf; ndomfs.
Thenfy + f, is divergent int+oo to —co and fy f; is divergent in4-oco to oo,

(85) Suppose that
(i) f1isdivergentin—co to 4o,
(i) fyis divergentin—c to 4o, and
(i)  for everyr there existg such thag < r andg € domf; Nndomf,.
Thenfy + fy is divergent in—oco to 4-c0 and f1 f; is divergent in—co to +oo.

(86) Suppose that
(i) fyisdivergentin—oo to —oo,
(i)  fois divergent in—oco to —oo, and
(i)  for everyr there existg such thag < r andg € domf; Nndomf,.
Thenf; + f, is divergent in—o to —co and f1 f; is divergent in—oo to +oo.

3 The propositions (71)-(76) have been removed.
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(87) Suppose that
(i) fqisdivergent intoo to +oo,
(i) for everyr there existg such that < gandg € dom(f; + f2), and
(iii)  there exists such thatf; is lower bounded ofr,+oo].
Then fy + f2 is divergent in4-co to +oo.

(88) Suppose that
(i) f1isdivergent intoo to +oo,
(i) for everyr there existg such that < g andg € dom(f; f,), and
(i)  there existr, rqy such that O< r and for everyg such thatg € domf, N]ry,+[ holds
r < f2(9).
Thenf; f, is divergent intoco to +-co,
(89) Suppose that
(i) fqisdivergentin—oco to +oo,
(i) for everyr there existg such thag < r andg € dom(f; + f2), and
(iiiy  there existsr such thatf, is lower bounded of—co,r|.
Thenfy + fy is divergent in—oo to +-co.

(90) Suppose that
(i) fqisdivergent in—oo to oo,
(i) for everyr there existg such thag < r andg € dom(f; f,), and
(i)  there existr, rq1 such that O< r and for everyg such thatg € domf, N]—co,r1] holds
r < f2(9).
Thenf; f, is divergent in—oo to +-co,
(91)()) If f is divergent in4-oo to +oc0 andr > O, thenr f is divergent in+oco to +oo,
(i) if fisdivergentimd-o to 400 andr < O, thenr f is divergent in+oco to —oo,
(iii) if fisdivergentird-o to —oo andr > O, thenr f is divergent in+oo to —oo, and
(iv) if fisdivergentinto to —oo andr < O, thenr f is divergent inH-co to +oo.

(92)(i) If f is divergentin—oo to +c0 andr > 0O, thenr f is divergent in—oco to +oo,
(i) if fisdivergentin—coto 4o andr < O, thenr f is divergent in—oo to —oo,

(i) if fisdivergentin—o to —oco andr > 0O, thenr f is divergent in—o to —c, and
(iv) if fisdivergentin—o to —c andr < O, thenr f is divergent in—oo to +co.

(93) Supposd is divergent irH-oo to +c0 and divergent int-oo to —co. Then|f| is divergent in
~+00 t0 +-00.

(94) Supposd is divergent in—co to +o and divergent in-c to —co. Then|f| is divergent in
—o0 t0 -0,

(95) Suppose there exigtsuch thatf is non-decreasing dm, [ and f is not upper bounded
on|r,+oo[ and for every there existg such thatr < gandg € domf. Thenf is divergent in
+o00 {0 +00.

(96) Suppose there existsuch thatf is increasing onr,+o[ and f is not upper bounded on
Jr,+oo[ and for everyr there existgy such that < g andg € domf. Thenf is divergent in
~+00 t0 +-00.

(97) Suppose there existsuch thatf is non increasing ofr,+[ and f is not lower bounded
onl]r,+oo[ and for every there existg such that < gandg € domf. Thenf is divergent in
00 t0 —00.
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(98) Suppose there exigtsuch thatf is decreasing oir,+[ and f is not lower bounded on
Jr,+oo[ and for everyr there existg such that < g andg € domf. Thenf is divergent in
00 t0 —o0.

(99) Suppose there existsuch thatf is non increasing oh-, r[ and f is not upper bounded
on]—oo,r[ and for every there existg such thag < r andg € domf. Thenf is divergentin
—o0 t0 00,

(100) Suppose there existsuch thatf is decreasing oh—oo,r[ and f is not upper bounded on
]—oo,r[ and for everyr there existg) such thalg < r andg € domf. Then f is divergent in
—o00 {0 +-00.

(101) Suppose there existsuch thatf is non-decreasing da-c,r[ andf is not lower bounded
on]—oo,r[ and for every there existg such thag < r andg € domf. Thenf is divergent in
—o0 t0 —o0,

(102) Suppose there existsuch thatf is increasing ofl—eo,r[ and f is not lower bounded on
]—oo,r[ and for everyr there existg such thalg < r andg € domf. Thenf is divergent in

—00 {0 —00.

(103) Suppose that

(i) fyisdivergent int-oo to +oo,

(ii) for everyr there existg such that < gandg € domf, and

(i)  there existsr such that doni N]r,+[ C domfy N]r, 4] and for everyg such thaty €
domf N]r,+oo[ holds f1(g) < f(9).

Thenf is divergent in4-co to +o.

(104) Suppose that
(i) fqisdivergentintoo to —oo,
(i) for everyr there existg such that < g andg € domf, and

(iif)  there existsr such that donfi N ]r, +e[ C domf; N]r, +eo[ and for everyy such that
domf N]r,+oo[ holds f(g) < f1(g).

Thenf is divergent in4-co to —co.

(105) Suppose that
(i) f1isdivergent in—co to 4o,
(ii) for everyr there existg such thag < r andg € domf, and

(i)  there existsr such that donf N]—oco,r[ C domf;N]—co,r[ and for everyg such thag
domf N]—eo,r[ holdsfi(g) < f(9).

Thenf is divergent in—oo to +co,

(106) Suppose that
(i) fqisdivergentin—oco to —oo,
(i) for everyr there existg such thag < r andg € domf, and

(iif)  there existsr such that donf N]—oco,r[ C domf;N]—eo,r[ and for everyg such thag e
domf N]—oo,r{ holdsf(g) < f1(g).

Thenf is divergent in—oco to —co.

(107) Supposé; is divergent ir4-co to + and there exists such thatr, +0[ C domf ndomf;
and for everyg such thag € Jr,+[ holds f1(g) < f(g). Thenf is divergent intoo to +oco.

(108) Supposé; is divergent ir4-co to —oo and there exists such thair, +[ C domf ndomf;
and for everyg such thag € ]r,+o[ holds f (g) < f1(g). Thenf is divergent intoco to —oo.
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(109) Supposé is divergent in—co to 40 and there exists such thai—c, r[ C domf ndomfy
and for everyg such thag € |—oo, r[ holds f1(g) < f(g). Thenf is divergent in—co to +oo.

(110) Supposé; is divergent in— to —co and there exists such that—co, r[ C domf ndomfy
and for everyg such thag € |—o,r[ holds f (g) < f1(g). Thenf is divergent in—co to —co.

Let us considerf. Let us assume thdtis convergent int-c. The functor lim.. f yields a real
number and is defined by:

(Def. 12) For everys; such thats; is divergent to+e and rngsy C domf holds f - s; is convergent
and lim(f-s;) =lim e f.

Let us considerf. Let us assume thdtis convergent in-c. The functor lim.. f yields a real
number and is defined by:

(Def. 13) For everys; such thats; is divergent to—oc and rngs; C domf holds f -5 is convergent
and lim(f-s;) =lim_o, f.

We now state a number of propositions:

(113@] Supposef is convergent in-c. Then lim_., f = gif and only if for everyg; such that O<
01 there exists such that for every; such that; < r andr; € domf holds|f(r1) —g| < 01.

(114) Supposé is convergent int-o. Then lim.. f = gif and only if for everyg; such that O<
01 there exists such that for every; such thar < rq andry € domf holds|f(r1) —g| < g1.

(115) |If f is convergent int-oo, thenr f is convergent intco and lim, o (r f) =r-lim o f.
(116) If f is convergent int-co, then—f is convergent int-co and lim o (—f) = —lim ;. f.

(117) Supposéd; is convergent int-co and f; is convergent int-co and for everyr there existg
such that < gandg € dom(f1 + f;). Thenf; + 2 is convergent int-oo and lim,.« (f1+ f2) =

(118) Supposd; is convergent int-co and f; is convergent int-co and for everyr there existg
such that < gandg € dom(f; — f;). Thenf; — 2 is convergent int-o and lim, .« (f1 — f2) =

(119) If f is convergent int-o0 and f~({0}) = @ and lim ., f # 0, then% is convergent inf-co
and lim;e(§) = (lim e )~ L.

(120) If f is convergent into, then|f| is convergent int-oo and lim | f| = |lim o f|.

(121) Supposd is convergent int-oo and limy, f # 0 and for every there existg) such that
r < gandg € domf andf(g) #0. Then% is convergent in-c and Iim+oo(%) = (lim o f)~1

(122) Supposd; is convergent int-co and f, is convergent int-oo and for everyr there exists
g such that < g andg € dom(f; f2). Then f; f2 is convergent int-co and lim,o(f1 f2) =
lim, e f1-lim. e fo.

(123) Suppose that

(i) fyis convergent intoo,
(i)  fois convergentint-co,
(iiiy  lim 4 f2 £ 0, and
(iv) for everyr there existg such that < gandg € dom(%).

fl : H H fl _ Iim+m fl
Then < is convergent in+e and I|m+oc(f—2) = mat

(124) If f is convergent in-oo, thenr f is convergentin-co and lim_e(r f) =r-lim_., f.

4 The propositions (111) and (112) have been removed.
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(125) |If f is convergent in-oo, then—f is convergent in-co and lim_(—f) = —lim_, f.

(126) Supposd; is convergent in-c and f; is convergent in-co and for everyr there existg
such thag < r andg € dom(f; + f2). Thenf; + 2 is convergent in-co and lim_. (f1+ f2) =
|im700 f]_ + |im700 f2.

(127) Supposd; is convergent in-c and f; is convergent in-co and for everyr there existg
such thag < r andg € dom(f; — f,). Thenf; — fy is convergent in-co and lim_ (f; — f2) =
|im700 f]_ - |im700 f2

(128) If f is convergent in-c0 and f~1({0}) = 0 and lim ., f # 0, then% is convergent in-oo
and lim_q(}) = (lim_q, f)~L.

(129) If f is convergent in-oo, then|f| is convergent in-o and lim | f| = |lim _o, f|.

(130) Supposd is convergent in-c0 and lim_., f #£ 0 and for every there existg such that
g <randg € domf andf(g) # 0. Then# is convergent in-e and lim_« ($) = (lim_, f)~%.

(131) Supposd; is convergent in—c and f is convergent in—c and for everyr there exists
g such thatg < r andg € dom(f; fp). Then f; 5 is convergent in—co and lim_(f1 f2) =
|im700 f]_ M Iimfoo f2

(132) Suppose that

(i) fqis convergentin-co,
(i)  fois convergent in-oo,
(i) lim _» f2 #0, and
(iv) for everyr there existg such thag < r andg € dom(%).

Clim_w i
T m wf

fr - . . f
Then< is convergent in-co and lim_o.(¢)

(133) Suppose that
(i) fyis convergent intoo,
(i) lim,,f; =0,
(iiiy  for everyr there existg such thar < g andg € dom(f; f2), and
(iv) there exists such thatf; is bounded ofr, +oeo|.
Thenf; f, is convergent intoo and lim;.(f1 f2) = 0.

(134) Suppose that
(i) fqis convergentin-oo,
(i) lim_g,f; =0,
(iii)  for everyr there existg such thag < r andg € dom(f; f,), and
(iv) there exists such thatf, is bounded of—oo,r|.
Thenf; f, is convergent in-c and lim_(f1 f2) = 0.

(135) Suppose that
(i) fqis convergent intoo,
(i)  fis convergent int-oo,
(i) lim 4o f1 =lim e f2,
(iv) for everyr there existg such that < gandg € domf, and

(v) there exists such that donfy N]r, +c[ C domfaN]r, 4+ and domf N]r, 4-co[ C domfiN
Jr, oo or domfz N ]r, e[ C domfy N]r,+o0 and domf N ]r,+oeo[ C domfy N ]r,+oo[ but for
everyg such thag € domf N]r, 4o holds f1(g) < f(g) andf(g) < f2(g).

Thenf is convergent intco and lim, o, f = lim . f1.
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(136) Suppose that
(i) f1is convergent into,
(i)  fois convergent int-co,
iy lim 1o f =lim .« fp, and

(iv) there existy such thafr,+c[ C domf; ndomf, ndomf and for everyg such thatg €
Jr,+oo[ holds f1(g) < f(g) andf(g) < f2(9).

Thenf is convergent inf-o0 and lim;o f = lim_o f1.
(137) Suppose that
(i) fq1is convergent in-oo,
(i)  fois convergent in-oo,
(i) lim _o f1 =lim_q fp,
(iv) for everyr there existg such thag < r andg € domf, and

(v) there exists such that donfy N]—oo,r[ C domfyN]—oo,r[ and domf N]—eo,r[ C domfiN
]—oo,r[ or domfaN]—co,r[ C domfiN]—oo,r[ and domf N]—oo,r[ C domf,N]—oo, r[ but for
everyg such thag € domf N]—oeo,r[ holds f1(g) < f(g) andf(g) < f2(g).

Thenf is convergent in-co and lim_o f = lim_, f1.
(138) Suppose that
(i) fyisconvergentin-oo,
(i)  fois convergent in-co,
(i)  lim _o fy =1lim_4 fo, and

(iv) there existg such thaf—co, r[ C domf;Ndomf, Ndomf and for everyg such thaig €
]—oo,r[ holds f1(g) < f(g) andf(g) < f2(g).

Thenf is convergent in-co and lim_o, f = lim_, f1.
(139) Suppose that
(i) f1is convergent into,
(i)  fois convergentint-c, and

(iii)  there existsr such that donfiy N]r, 4+ C domfaN]r,4co[ and for everyg such thaig €

domfy N ]Jr,+oo[ holds f1(g) < f2(g) or domfaN]r, 4o C domfyN|r,+oo[ and for everyy
such thag € domf,N]r,+oo[ holds f1(g) < f2(g).

Then limye f1 <lim o fo.
(140) Suppose that
(i) f1is convergentin-co,
(i)  fyis convergentin-oo, and
(i)  there existsr such that donfiy N]—o,r[ C domf, N]—oo,r[ and for everyg such that

g€ domfiN]—oco,r[holdsfi(g) < f2(g) or domfyN]—oo,r[ C domfyN]—oo,r[ and for every
g such thag € domfaN]—co, r[ holds f1(g) < f2(g).

Then lim_, f1 <lim_q fa.
(141) Suppose that
(i) fisdivergentinto to 4+ and divergent int-c to —o, and
(i) for everyr there existg such that < g andg € domf andf(g) # 0.
Then% is convergent int-co and Iim+oo(%) =0.
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(142) Suppose that
(i) fisdivergentin—o to 4+ and divergent in-c to —o, and
(i) for everyr there existg such thag < r andg € domf and f(g) # 0.
Then+# is convergent in-e and lim_«(}) = 0.

(143) Suppose that
(i) fisconvergentinto,
(i) lim,ef=0,
(iiiy  for everyr there existg such that < g andg € domf andf(g) # 0, and
(iv) there exists such that for everg such thag € domf N]r, +[ holds 0< f(g).
Then is divergent int-co to +oo.

(144) Suppose that
(i) fis convergent intoo,
(i) lim,wf=0,
(iiiy  for everyr there existg such that < g andg € domf andf(g) # 0, and
(iv) there exists such that for everg such thag € domf N]r, +oo[ holds f(g) < 0.
Then+ is divergent int-co to —oo.

(145) Suppose that
(i) fisconvergentin-co,
(i) lim_of=0,
(iiiy  for everyr there existg such thag < r andg € domf andf(g) # 0, and
(iv) there exists such that for everg such thag € domf N]—co, r[ holds 0< f(g).
Then+ is divergent in—co to +-co.

(146) Suppose that
(i) fisconvergentin-co,
(i) lim_of=0,
(iiiy  for everyr there existg such thag < r andg € domf andf(g) # 0, and
(iv) there exists such that for everg such thag € domf N]—co, r[ holds f(g) < 0.
Then+ is divergent in—co to —oo.

(147) Supposd is convergent int-o0 and limy, f = 0 and there exists such that for everyg
such thag € domf N]r,+eo[ holds 0< f(g). Then# is divergent in+oo to +oo.

(148) Supposd is convergent int-co and lim,., f = 0 and there exists such that for everyg
such thag € domf N]r,+e[ holds f(g) < 0. Then$ is divergent in+oo to —o.

(149) Supposd is convergent in-c and lim_., f = 0 and there exists such that for everyg
such thag € domf N]—eo,r[ holds 0< f(g). Then% is divergent in—oo to +oo.

(150) Supposd is convergent in—c and lim_., f = 0 and there exists such that for every
such thag € domf N]—oo,r[ holds f(g) < 0. Then# is divergent in—co to —c.
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