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Summary. Alattice is defined as an algebra on a nonempty set with binary operations
join and meet which are commutative and associative, and satisfy the absorption identities.
The following kinds of lattices are considered: distributive, modular, bounded (with zero and
unit elements), complemented, and Boolean (with complement). The article includes also
theorems which immediately follow from definitions.

MML Identifier: LATTICES.

WWW: http://mizar.org/JFM/Voll/lattices.html

The articles([2],[[3], and [1] provide the notation and terminology for this paper.
We introduce-semi lattice structures which are extensions of 1-sorted structure and are systems
( a carrier, a meet operation

where the carrier is a set and the meet operation is a binary operation on the carrier.
We introduce -semi lattice structures which are extensions of 1-sorted structure and are systems
( a carrier, a join operation

where the carrier is a set and the join operation is a binary operation on the carrier.
We consider lattice structures as extensions-semi lattice structure and-semi lattice struc-

ture as systems

( a carrier, a join operation, a meet operatjon

where the carrier is a set and the join operation and the meet operation are binary operations on the
carrier.

One can check the following observations:
x there exists al-semi lattice structure which is strict and non empty,
x there exists @l-semi lattice structure which is strict and non empty, and
x there exists a lattice structure which is strict and non empty.

Let G be a non emptyl-semi lattice structure and Igt g be elements ofs. The functorpLiq
yields an element dB and is defined as follows:

(Def. 1) pUq= (the join operation of5)(p, ).

Let G be a non emptyl-semi lattice structure and Igt q be elements o6. The functorpmq
yielding an element of is defined as follows:

(Def. 2) prq= (the meet operation @)(p, ).

Let G be a non emptyl-semi lattice structure and let g be elements of. The predicate C g
is defined as follows:

(Def. 3) puUg=gq.
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Letl; be a non emptyl-semi lattice structure. We say tHatis join-commutative if and only if:
(Def. 4) For all elementa, b of I; holdsaL/b=bUa.
We say that; is join-associative if and only if:
(Def. 5) For all elements, b, c of I1 holdsalLl (bUic) = (alLl/b) Lc.

Let1; be a non emptyl-semi lattice structure. We say tHatis meet-commutative if and only
if:

(Def. 6) For all elementa, b of I; holdsarb=bMa.
We say that; is meet-associative if and only if:
(Def. 7) For all elementa, b, c of I1 holdsar (bmc) = (arnb)nc.
Letl; be a non empty lattice structure. We say thds meet-absorbing if and only if:
(Def. 8) For all elements, b of I; holds(arb)Lib=h.
We say that; is join-absorbing if and only if:
(Def. 9) For all elements, b of I; holdsarn (alb) = a.

Letl; be a non empty lattice structure. We say thds lattice-like if and only if the condition
(Def. 10) is satisfied.

(Def. 10) 11 is join-commutative, join-associative, meet-absorbing, meet-commutative, meet-
associative, and join-absorbing.

Let us note that every non empty lattice structure which is lattice-like is also join-commutative,
join-associative, meet-absorbing, meet-commutative, meet-associative, and join-absorbing and ev-
ery non empty lattice structure which is join-commutative, join-associative, meet-absorbing, meet-
commutative, meet-associative, and join-absorbing is also lattice-like.

One can verify the following observations:

* there exists a non empty-semi lattice structure which is strict, join-commutative, and
join-associative,

x there exists a non empty-semi lattice structure which is strict, meet-commutative, and
meet-associative, and

x there exists a non empty lattice structure which is strict and lattice-like.

A lattice is a lattice-like non empty lattice structure.

Let L be a join-commutative non empty-semi lattice structure and let b be elements of.
Let us note that the functaib is commutative.

Let L be a meet-commutative non emptysemi lattice structure and lat b be elements of.
Let us observe that the functarib is commutative.

LetI; be a non empty lattice structure. We say thas distributive if and only if:

(Def. 11) For all elements, b, c of I holdsar (buc) = (anb) U (amc).
Letl; be a non empty lattice structure. We say thas modular if and only if:
(Def. 12) For all elements, b, c of 11 such thag C ¢ holdsall (bmc) = (alUb)Mc.
LetI; be a non emptyi-semi lattice structure. We say tHatis lower-bounded if and only if:

(Def. 13) There exists an elemenif |1 such that for every elemesat of 1; holdscrma= ¢ and
arc=c.

Let I, be a non emptyl-semi lattice structure. We say thatis upper-bounded if and only if:
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(Def. 14) There exists an elemeabf I; such that for every elemetof I, holdscUa = c and
allc=c.

Let us observe that there exists a lattice which is strict, distributive, lower-bounded, upper-
bounded, and modular.

A distributive lattice is a distributive lattice. A modular lattice is a modular lattice. A lower
bound lattice is a lower-bounded lattice. An upper bound lattice is an upper-bounded lattice.

LetI; be a non empty lattice structure. We say thds bounded if and only if:

(Def. 15) | is lower-bounded and upper-bounded.

Let us observe that every non empty lattice structure which is lower-bounded and upper-bounded
is also bounded and every non empty lattice structure which is bounded is also lower-bounded and
upper-bounded.

Let us note that there exists a lattice which is bounded and strict.

A bound lattice is a bounded lattice.

Let L be a non emptyl-semi lattice structure. Let us assume thds lower-bounded. The
functor L yields an element df and is defined by:

(Def. 16) For every elemertof L holds 1 Mma= 1, andan .l = 1,.

Let L be a non emptyl-semi lattice structure. Let us assume thds upper-bounded. The
functor T yields an element df and is defined as follows:

(Def. 17) For every elemermtof L holds T Lla=T_ andal T =T|.

LetL be a non empty lattice structure anddeb be elements df. We say thahis a complement
of bif and only if:

(Def. 18) allb=T_ andbla= T andanb= 1, andbrma=1,.
Letl; be a non empty lattice structure. We say thdas complemented if and only if:
(Def. 19) For every elemettof I, holds there exists an elementlgfwhich is a complement dd.

Let us note that there exists a lattice which is bounded, complemented, and strict.
A complemented lattice is a complemented bound lattice.
LetI; be a non empty lattice structure. We say thas Boolean if and only if:

(Def. 20) 14 is bounded, complemented, and distributive.

Let us mention that every non empty lattice structure which is Boolean is also bounded, com-
plemented, and distributive and every non empty lattice structure which is bounded, complemented,
and distributive is also Boolean.

Let us observe that there exists a lattice which is Boolean and strict.

A Boolean lattice is a Boolean lattice.

In the sequel denotes a meet-absorbing join-absorbing meet-commutative non empty lattice
structure and denotes an element bof

Next we state two propositions:

A7y ava=a
(18) ana=a.

In the sequel denotes a lattice aral b, c denote elements af.
One can prove the following propositions:

(19) For alla, b, c holdsar (buic) = (amnb)u (arc) iff for all a, b, c holdsaLl (brc) =
(aub)rn(auc).

1 The propositions (1)-(16) have been removed.
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(21E] Let L be a meet-absorbing join-absorbing non empty lattice structure,dnle elements
of L. ThenaC bif and only ifamnb=a.

(22) LetL be a meet-absorbing join-absorbing join-associative meet-commutative non empty
lattice structure and, b be elements of. ThenaC allb.

(23) For every meet-absorbing meet-commutative non empty lattice struicamne for all ele-
mentsa, b of L holdsamnbC a.

LetL be a meet-absorbing join-absorbing meet-commutative non empty lattice structure and let
a, b be elements of. Let us note that the predicate_ b is reflexive.
We now state four propositions:

(25 LetL be a join-associative non emptysemi lattice structure ara b, c be elements of.
If aCbandbC c, thenaCc.

(26) LetL be a join-commutative non empty-semi lattice structure ara b be elements of.
If aC bandbC a, thena=h.

(27) LetL be a meet-absorbing join-absorbing meet-associative non empty lattice structure and
a, b, cbe elements of. If aC b, thenamncC brc.

(29@ For every latticd such that for all elements b, c of L holds(arb)L (brc)L (cMa) =
(alb)m(buUc)M(cua) holdsL is distributive.

In the sequel is a distributive lattice and, b, c are elements df.
The following propositions are true:

(31f] au(bnc) = (aub)n(auo).
(32) Ifcma=cnbandcuUa=clb,thena=h.
(34 (aub)yn(buc)r(cua) = (anb)L (bric)U(cMa).

One can check that every lattice which is distributive is also modular.
In the sequel denotes a lower bound lattice aadlenotes an element bf
Next we state three propositions:

(B9 Lua=a
(40) L na=1..
41) 1 . Ca

In the sequel denotes an upper bound lattice amdenotes an element bf
We now state three propositions:

(43@ TLMNa=a
(44) TLUa=T..
(45) aC T..

Let L be a non empty lattice structure and ¥dbe an element of. Let us assume thatis a
complemented distributive lattice. The functSryielding an element of is defined as follows:

2 The proposition (20) has been removed.
3 The proposition (24) has been removed.
4 The proposition (28) has been removed.
5 The proposition (30) has been removed.
6 The proposition (33) has been removed.
" The propositions (35)—(38) have been removed.
8 The proposition (42) has been removed.
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(Def. 21) xis a complement of.

In the sequel is a Boolean lattice and, b are elements df.
One can prove the following propositions:

@47F ana= 1.
(48) a‘ua=T..
49) (@)°=a
(50) (anb)®=a®ube.

(51) (aub)*=a’nbe.

(52) brna= 1, iff bEa°.
(53) IfaCt b, thenb®C aC.
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