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1. PRELIMINARIES

The schemeRecChoicedeals with a setA and a ternary predicateP , and states that:
There exists a functionf such that domf = N and f (0) = A and for every element
n of N holdsP [n, f (n), f (n+1)]

provided the parameters satisfy the following condition:
• For every natural numbern and for every setx there exists a sety such thatP [n,x,y].

One can prove the following three propositions:

(1) For every functionf and for every function yielding functionF such thatf =
⋃

rngF holds
dom f =

⋃
rng(domκ F(κ)).

(2) For all non empty setsA, B holds[:
⋃

A,
⋃

B:] =
⋃
{[:a, b:];a ranges over elements ofA, b

ranges over elements ofB: a∈ A ∧ b∈ B}.

(3) For every non empty setA such thatA is⊆-linear holds[:
⋃

A,
⋃

A:] =
⋃
{[:a, a:];a ranges

over elements ofA: a∈ A}.

2. AN EQUIVALENCE LATTICE OF A SET

In the sequelX is a non empty set.
Let A be a set. The functor EqRelPoset(A) yields a poset and is defined as follows:

(Def. 1) EqRelPoset(A) = Poset(EqRelLatt(A)).

Let A be a set. Observe that EqRelPoset(A) has g.l.b.’s and l.u.b.’s.
We now state several propositions:

(4) For all setsA, x holdsx∈ the carrier of EqRelPoset(A) iff x is an equivalence relation ofA.

(5) For every setA and for all elementsx, y of EqRelLatt(A) holdsxv y iff x⊆ y.

(6) For every setA and for all elementsa, b of EqRelPoset(A) holdsa≤ b iff a⊆ b.

(7) For every latticeL and for all elementsa, b of Poset(L) holdsaub = �au �b.
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(8) For every setA and for all elementsa, b of EqRelPoset(A) holdsaub = a∩b.

(9) For every latticeL and for all elementsa, b of Poset(L) holdsatb = �at �b.

(10) LetA be a set,a, b be elements of EqRelPoset(A), andE1, E2 be equivalence relations of
A. If a = E1 andb = E2, thenatb = E1tE2.

Let L be a non empty relational structure. Let us observe thatL is complete if and only if the
condition (Def. 2) is satisfied.

(Def. 2) LetX be a subset ofL. Then there exists an elementa of L such thata≤ X and for every
elementb of L such thatb≤ X holdsb≤ a.

Let A be a set. Observe that EqRelPoset(A) is complete.

3. A TYPE OF A SUBLATTICE OF EQUIVALENCE LATTICE OF A SET

Let L1, L2 be lattices. Note that there exists a map fromL1 into L2 which is meet-preserving and
join-preserving.

Let L1, L2 be lattices. A homomorphism fromL1 to L2 is a meet-preserving join-preserving map
from L1 into L2.

Let L be a lattice. Observe that there exists a relational substructure ofL which is meet-
inheriting, join-inheriting, and strict.

Let L1, L2 be lattices and letf be a homomorphism fromL1 to L2. Then Imf is a strict full
sublattice ofL2.

We adopt the following convention:e, e1, e2 denote equivalence relations ofX andx, y denote
sets.

Let us considerX, let f be a non empty finite sequence of elements ofX, let us considerx, y,
and letR1, R2 be binary relations. We say thatx andy are joint by f , R1 andR2 if and only if the
conditions (Def. 3) are satisfied.

(Def. 3)(i) f (1) = x,

(ii) f (len f ) = y, and

(iii) for every natural numberi such that 1≤ i and i < len f holds if i is odd, then〈〈 f (i),
f (i +1)〉〉 ∈ R1 and if i is even, then〈〈 f (i), f (i +1)〉〉 ∈ R2.

Next we state two propositions:

(12)1 Let x be a set,o be a natural number,R1, R2 be binary relations, andf be a non empty
finite sequence of elements ofX. SupposeR1 is reflexive inX andR2 is reflexive inX and
f = o 7→ x. Thenx andx are joint by f , R1 andR2.

(14)2 Let x, y be sets,R1, R2 be binary relations, andn, m be natural numbers. Suppose that

(i) n≤m,

(ii) R1 is reflexive inX,

(iii) R2 is reflexive inX, and

(iv) there exists a non empty finite sequencef of elements ofX such that lenf = n andx and
y are joint by f , R1 andR2.

Then there exists a non empty finite sequenceh of elements ofX such that lenh = m andx
andy are joint byh, R1 andR2.

Let us considerX and letY be a sublattice of EqRelPoset(X). Let us assume that there existse
such thate∈ the carrier ofY e 6= idX. And let us assume that there exists a natural numbero such
that for alle1, e2, x, y such thate1 ∈ the carrier ofY ande2 ∈ the carrier ofY and〈〈x, y〉〉 ∈ e1te2

there exists a non empty finite sequenceF of elements ofX such that lenF = o andx andy are joint
by F , e1 ande2. The type ofY is a natural number and is defined by the conditions (Def. 4).

1 The proposition (11) has been removed.
2 The proposition (13) has been removed.
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(Def. 4)(i) For all e1, e2, x, y such thate1 ∈ the carrier ofY and e2 ∈ the carrier ofY and 〈〈x,
y〉〉 ∈ e1te2 there exists a non empty finite sequenceF of elements ofX such that lenF = (the
type ofY)+2 andx andy are joint byF , e1 ande2, and

(ii) there existe1, e2, x, y such thate1 ∈ the carrier ofY ande2 ∈ the carrier ofY and 〈〈x,
y〉〉 ∈ e1te2 and it is not true that there exists a non empty finite sequenceF of elements ofX
such that lenF = (the type ofY)+1 andx andy are joint byF , e1 ande2.

One can prove the following proposition

(15) LetY be a sublattice of EqRelPoset(X) andn be a natural number. Suppose that

(i) there existsesuch thate∈ the carrier ofY ande 6= idX, and

(ii) for all e1, e2, x, y such thate1∈ the carrier ofY ande2∈ the carrier ofY and〈〈x, y〉〉 ∈ e1te2

there exists a non empty finite sequenceF of elements ofX such that lenF = n+2 andx and
y are joint byF , e1 ande2.

Then the type ofY ≤ n.

4. A MEET-REPRESENTATION OF ALATTICE

In the sequelA is a non empty set andL is a lower-bounded lattice.
Let us considerA, L. A bifunction fromA into L is a function from[:A, A:] into the carrier ofL.
Let us considerA, L, let f be a bifunction fromA into L, and letx, y be elements ofA. Then f (x,

y) is an element ofL.
Let us considerA, L and let f be a bifunction fromA into L. We say thatf is symmetric if and

only if:

(Def. 6)3 For all elementsx, y of A holds f (x, y) = f (y, x).

We say thatf is zeroed if and only if:

(Def. 7) For every elementx of A holds f (x, x) =⊥L.

We say thatf satisfies triangle inequality if and only if:

(Def. 8) For all elementsx, y, z of A holds f (x, y)t f (y, z)≥ f (x, z).

Let us considerA, L. One can check that there exists a bifunction fromA into L which is
symmetric and zeroed and satisfies triangle inequality.

Let us considerA, L. A distance function ofA, L is a symmetric zeroed bifunction fromA into
L satisfying triangle inequality.

Let us considerA, L and letd be a distance function ofA, L. The functorα(d) yields a map
from L into EqRelPoset(A) and is defined by the condition (Def. 9).

(Def. 9) Let e be an element ofL. Then there exists an equivalence relationE of A such that
E = (α(d))(e) and for all elementsx, y of A holds〈〈x, y〉〉 ∈ E iff d(x, y)≤ e.

We now state two propositions:

(16) For every distance functiond of A, L holdsα(d) is meet-preserving.

(17) For every distance functiond of A, L such thatd is onto holdsα(d) is one-to-one.

3 The definition (Def. 5) has been removed.
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5. THE JÓNSSONTHEOREM

Let A be a set. The functorA∗ is defined by:

(Def. 10) A∗ = A∪{{A},{{A}},{{{A}}}}.

Let A be a set. One can verify thatA∗ is non empty.
Let us considerA, L, let d be a bifunction fromA into L, and letq be an element of[:A, A, the

carrier ofL, the carrier ofL :]. The functord∗q yields a bifunction fromA∗ into L and is defined by
the conditions (Def. 11).

(Def. 11) For all elementsu, v of A holds d∗q(u, v) = d(u, v) and d∗q({A}, {A}) = ⊥L and
d∗q({{A}}, {{A}}) = ⊥L andd∗q({{{A}}}, {{{A}}}) = ⊥L andd∗q({{A}}, {{{A}}}) = q3
and d∗q({{{A}}}, {{A}}) = q3 and d∗q({A}, {{A}}) = q4 and d∗q({{A}}, {A}) = q4 and
d∗q({A}, {{{A}}}) = q3t q4 and d∗q({{{A}}}, {A}) = q3t q4 and for every elementu of
A holdsd∗q(u, {A}) = d(u, q1)tq3 andd∗q({A}, u) = d(u, q1)tq3 andd∗q(u, {{A}}) = d(u,
q1)tq3tq4 andd∗q({{A}}, u) = d(u, q1)tq3tq4 andd∗q(u, {{{A}}}) = d(u, q2)tq4 and
d∗q({{{A}}}, u) = d(u, q2)tq4.

Next we state several propositions:

(18) Letd be a bifunction fromA into L. Supposed is zeroed. Letq be an element of[:A, A, the
carrier ofL, the carrier ofL :]. Thend∗q is zeroed.

(19) Letd be a bifunction fromA into L. Supposed is symmetric. Letq be an element of[:A,
A, the carrier ofL, the carrier ofL :]. Thend∗q is symmetric.

(20) Letd be a bifunction fromA into L. Supposed is symmetric and satisfies triangle inequal-
ity. Let q be an element of[:A, A, the carrier ofL, the carrier ofL :]. If d(q1, q2) ≤ q3tq4,
thend∗q satisfies triangle inequality.

(21) For every setA holdsA⊆ A∗.

(22) Let d be a bifunction fromA into L andq be an element of[:A, A, the carrier ofL, the
carrier ofL :]. Thend⊆ d∗q.

Let us considerA, L and letd be a bifunction fromA into L. The functor DistEsti(d) yielding a
cardinal number is defined as follows:

(Def. 12) DistEsti(d) ≈ {〈〈x,y,a,b〉〉;x ranges over elements ofA, y ranges over elements ofA, a
ranges over elements ofL, b ranges over elements ofL: d(x, y)≤ atb}.

Next we state the proposition

(23) For every distance functiond of A, L holds DistEsti(d) 6= /0.

In the sequelT is a transfinite sequence andO, O1, O2 are ordinal numbers.
Let us considerA and let us considerO. The functor ConsecutiveSet(A,O) is defined by the

condition (Def. 13).

(Def. 13) There exists a transfinite sequenceL0 such that

(i) ConsecutiveSet(A,O) = lastL0,

(ii) domL0 = succO,

(iii) L0( /0) = A,

(iv) for every ordinal numberC such that succC∈ succO holdsL0(succC) = L0(C)∗, and

(v) for every ordinal numberC such thatC∈ succO andC 6= /0 andC is a limit ordinal number
holdsL0(C) =

⋃
rng(L0�C).

One can prove the following three propositions:
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(24) ConsecutiveSet(A, /0) = A.

(25) ConsecutiveSet(A,succO) = (ConsecutiveSet(A,O))∗.

(26) SupposeO 6= /0 andO is a limit ordinal number and domT = O and for every ordinal num-
berO1 such thatO1∈OholdsT(O1) = ConsecutiveSet(A,O1). Then ConsecutiveSet(A,O) =⋃

rngT.

Let us considerA and let us considerO. Observe that ConsecutiveSet(A,O) is non empty.
One can prove the following proposition

(27) A⊆ ConsecutiveSet(A,O).

Let us considerA, L and letd be a bifunction fromA into L. A transfinite sequence of elements
of [:A, A, the carrier ofL, the carrier ofL :] is said to be a sequence of quadruples ofd if it satisfies
the conditions (Def. 14).

(Def. 14)(i) domit is a cardinal number,

(ii) it is one-to-one, and

(iii) rng it = {〈〈x,y,a,b〉〉;x ranges over elements ofA, y ranges over elements ofA, a ranges
over elements ofL, b ranges over elements ofL: d(x, y)≤ atb}.

Let us considerA, L, let d be a bifunction fromA into L, let q be a sequence of quadruples ofd,
and let us considerO. Let us assume thatO∈ domq. The functor Quadr(q,O) yielding an element
of [:ConsecutiveSet(A,O), ConsecutiveSet(A,O), the carrier ofL, the carrier ofL :] is defined by:

(Def. 15) Quadr(q,O) = q(O).

We now state the proposition

(28) Let d be a bifunction fromA into L andq be a sequence of quadruples ofd. ThenO ∈
DistEsti(d) if and only if O∈ domq.

Let us considerA, L and letz be a set. Let us assume thatz is a bifunction fromA into L. The
functor BiFun(z,A,L) yielding a bifunction fromA into L is defined by:

(Def. 16) BiFun(z,A,L) = z.

Let us considerA, L, let d be a bifunction fromA into L, let q be a sequence of quadruples ofd,
and let us considerO. The functor ConsecutiveDelta(q,O) is defined by the condition (Def. 17).

(Def. 17) There exists a transfinite sequenceL0 such that

(i) ConsecutiveDelta(q,O) = lastL0,

(ii) domL0 = succO,

(iii) L0( /0) = d,

(iv) for every ordinal numberC such that succC ∈ succO holds L0(succC) =
(BiFun(L0(C),ConsecutiveSet(A,C),L))∗Quadr(q,C), and

(v) for every ordinal numberC such thatC∈ succO andC 6= /0 andC is a limit ordinal number
holdsL0(C) =

⋃
rng(L0�C).

Next we state several propositions:

(29) For every bifunctiond from A into L and for every sequenceq of quadruples ofd holds
ConsecutiveDelta(q, /0) = d.

(30) For every bifunctiond from A into L and for every sequenceq of quadruples ofd holds
ConsecutiveDelta(q,succO)= (BiFun(ConsecutiveDelta(q,O),ConsecutiveSet(A,O),L))∗Quadr(q,O).
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(31) Letd be a bifunction fromA into L andq be a sequence of quadruples ofd. SupposeO 6= /0
andO is a limit ordinal number and domT = O and for every ordinal numberO1 such that
O1 ∈O holdsT(O1) = ConsecutiveDelta(q,O1). Then ConsecutiveDelta(q,O) =

⋃
rngT.

(32) If O1 ⊆O2, then ConsecutiveSet(A,O1)⊆ ConsecutiveSet(A,O2).

(33) Let d be a bifunction fromA into L and q be a sequence of quadruples ofd. Then
ConsecutiveDelta(q,O) is a bifunction from ConsecutiveSet(A,O) into L.

Let us considerA, L, let d be a bifunction fromA into L, let q be a sequence of quadruples ofd,
and let us considerO. Then ConsecutiveDelta(q,O) is a bifunction from ConsecutiveSet(A,O) into
L.

One can prove the following propositions:

(34) For every bifunctiond from A into L and for every sequenceq of quadruples ofd holds
d⊆ ConsecutiveDelta(q,O).

(35) For every bifunctiond from A into L and for every sequenceq of quadruples ofd such that
O1 ⊆O2 holds ConsecutiveDelta(q,O1)⊆ ConsecutiveDelta(q,O2).

(36) Letd be a bifunction fromA into L. Supposed is zeroed. Letq be a sequence of quadruples
of d. Then ConsecutiveDelta(q,O) is zeroed.

(37) Let d be a bifunction fromA into L. Supposed is symmetric. Letq be a sequence of
quadruples ofd. Then ConsecutiveDelta(q,O) is symmetric.

(38) Letd be a bifunction fromA into L. Supposed is symmetric and satisfies triangle inequal-
ity. Let q be a sequence of quadruples ofd. If O⊆ DistEsti(d), then ConsecutiveDelta(q,O)
satisfies triangle inequality.

(39) Let d be a distance function ofA, L and q be a sequence of quadruples ofd. If O ⊆
DistEsti(d), then ConsecutiveDelta(q,O) is a distance function of ConsecutiveSet(A,O), L.

Let us considerA, L and letd be a bifunction fromA into L. The functor NextSet(d) is defined
by:

(Def. 18) NextSet(d) = ConsecutiveSet(A,DistEsti(d)).

Let us considerA, L and letd be a bifunction fromA into L. Note that NextSet(d) is non empty.
Let us considerA, L, let d be a bifunction fromA into L, and letq be a sequence of quadruples

of d. The functor NextDelta(q) is defined by:

(Def. 19) NextDelta(q) = ConsecutiveDelta(q,DistEsti(d)).

Let us considerA, L, let d be a distance function ofA, L, and letq be a sequence of quadruples
of d. Then NextDelta(q) is a distance function of NextSet(d), L.

Let us considerA, L, let d be a distance function ofA, L, let A1 be a non empty set, and letd1 be
a distance function ofA1, L. We say that(A1,d1) is extension of(A,d) if and only if:

(Def. 20) There exists a sequenceq of quadruples ofd such thatA1 = NextSet(d) and d1 =
NextDelta(q).

Next we state the proposition

(40) Letd be a distance function ofA, L, A1 be a non empty set, andd1 be a distance function of
A1, L. Suppose(A1,d1) is extension of(A,d). Let x, y be elements ofA anda, b be elements
of L. Supposed(x, y)≤ atb. Then there exist elementsz1, z2, z3 of A1 such thatd1(x, z1) = a
andd1(z2, z3) = a andd1(z1, z2) = b andd1(z3, y) = b.

Let us considerA, L and letd be a distance function ofA, L. A function is called an extension
sequence of(A,d) if it satisfies the conditions (Def. 21).
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(Def. 21)(i) domit= N,

(ii) it (0) = 〈〈A, d〉〉, and

(iii) for every natural numbern there exists a non empty setA′ and there exists a distance
functiond′ of A′, L and there exists a non empty setA1 and there exists a distance function
d1 of A1, L such that(A1,d1) is extension of(A′,d′) and it(n) = 〈〈A′, d′〉〉 and it(n+1) = 〈〈A1,
d1〉〉.

Next we state two propositions:

(41) Letd be a distance function ofA, L, Sbe an extension sequence of(A,d), andk, l be natural
numbers. Ifk≤ l , thenS(k)1 ⊆ S(l)1.

(42) Letd be a distance function ofA, L, Sbe an extension sequence of(A,d), andk, l be natural
numbers. Ifk≤ l , thenS(k)2 ⊆ S(l)2.

Let us considerL. The functorδ0(L) yielding a distance function of the carrier ofL, L is defined
by:

(Def. 22) For all elementsx, y of L holds if x 6= y, then (δ0(L))(x, y) = xt y and if x = y, then
(δ0(L))(x, y) =⊥L.

We now state several propositions:

(43) δ0(L) is onto.

(44) Let S be an extension sequence of(the carrier ofL, δ0(L)) andF1 be a non empty set.
SupposeF1 =

⋃
{S(i)1 : i ranges over natural numbers}. Then

⋃
{S(i)2 : i ranges over natural

numbers} is a distance function ofF1, L.

(45) LetSbe an extension sequence of(the carrier ofL, δ0(L)), F1 be a non empty set,F2 be a
distance function ofF1, L, x, y be elements ofF1, anda, b be elements ofL. SupposeF1 =⋃
{S(i)1 : i ranges over natural numbers} andF2 =

⋃
{S(i)2 : i ranges over natural numbers}

andF2(x, y) ≤ at b. Then there exist elementsz1, z2, z3 of F1 such thatF2(x, z1) = a and
F2(z2, z3) = a andF2(z1, z2) = b andF2(z3, y) = b.

(46) LetSbe an extension sequence of(the carrier ofL, δ0(L)), F1 be a non empty set,F2 be a
distance function ofF1, L, f be a homomorphism fromL to EqRelPoset(F1), x, y be elements
of F1, e1, e2 be equivalence relations ofF1, and givenx, y. Suppose that

(i) f = α(F2),

(ii) F1 =
⋃
{S(i)1 : i ranges over natural numbers},

(iii) F2 =
⋃
{S(i)2 : i ranges over natural numbers},

(iv) e1 ∈ the carrier of Imf ,

(v) e2 ∈ the carrier of Imf , and

(vi) 〈〈x, y〉〉 ∈ e1te2.

Then there exists a non empty finite sequenceF of elements ofF1 such that lenF = 3+2 and
x andy are joint byF , e1 ande2.

(47) There exists a non empty setA and there exists a homomorphismf from L to
EqRelPoset(A) such thatf is one-to-one and the type of Imf ≤ 3.

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/card_1.html.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.
org/JFM/Vol1/nat_1.html.

[3] Grzegorz Bancerek. The ordinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/ordinal1.
html.

http://mizar.org/JFM/Vol1/card_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/ordinal1.html
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