The Jónsson Theorem

Jarosław Gryko University of Białystok

MML Identifier: LATTICE5.

WWW: http://mizar.org/JFM/Vol9/lattice5.html

The articles [23], [22], [14], [27], [28], [30], [29], [11], [12], [5], [25], [2], [18], [3], [4], [1], [24], [21], [13], [16], [26], [19], [17], [9], [15], [31], [6], [10], [7], [8], [32], and [20] provide the notation and terminology for this paper.

1. Preliminaries

The scheme *RecChoice* deals with a set \mathcal{A} and a ternary predicate \mathcal{P} , and states that:

There exists a function f such that dom $f = \mathbb{N}$ and $f(0) = \mathcal{A}$ and for every element n of \mathbb{N} holds $\mathcal{P}[n, f(n), f(n+1)]$

provided the parameters satisfy the following condition:

- For every natural number n and for every set x there exists a set y such that $\mathcal{P}[n,x,y]$. One can prove the following three propositions:
- (1) For every function f and for every function yielding function F such that $f = \bigcup \operatorname{rng} F$ holds $\operatorname{dom} f = \bigcup \operatorname{rng} (\operatorname{dom}_{\kappa} F(\kappa))$.
- (2) For all non empty sets A, B holds $[: \bigcup A, \bigcup B:] = \bigcup \{[:a,b:]; a \text{ ranges over elements of } A, b \text{ ranges over elements of } B: a \in A \land b \in B\}.$
- (3) For every non empty set A such that A is \subseteq -linear holds $[: \bigcup A, \bigcup A:] = \bigcup \{[:a,a:]; a \text{ ranges over elements of } A: a \in A\}.$

2. AN EQUIVALENCE LATTICE OF A SET

In the sequel *X* is a non empty set.

Let *A* be a set. The functor EqRelPoset(*A*) yields a poset and is defined as follows:

(Def. 1) EqRelPoset(A) = Poset(EqRelLatt(A)).

Let A be a set. Observe that EqRelPoset(A) has g.l.b.'s and l.u.b.'s. We now state several propositions:

- (4) For all sets A, x holds $x \in \text{the carrier of EqRelPoset}(A)$ iff x is an equivalence relation of A.
- (5) For every set A and for all elements x, y of EqRelLatt(A) holds $x \sqsubseteq y$ iff $x \subseteq y$.
- (6) For every set *A* and for all elements *a*, *b* of EqRelPoset(*A*) holds $a \le b$ iff $a \subseteq b$.
- (7) For every lattice L and for all elements a, b of Poset(L) holds $a \sqcap b = `a \sqcap `b$.

- (8) For every set *A* and for all elements *a*, *b* of EqRelPoset(*A*) holds $a \sqcap b = a \cap b$.
- (9) For every lattice *L* and for all elements *a*, *b* of Poset(*L*) holds $a \sqcup b = \cdot a \sqcup \cdot b$.
- (10) Let A be a set, a, b be elements of EqRelPoset(A), and E_1 , E_2 be equivalence relations of A. If $a = E_1$ and $b = E_2$, then $a \sqcup b = E_1 \sqcup E_2$.

Let L be a non empty relational structure. Let us observe that L is complete if and only if the condition (Def. 2) is satisfied.

(Def. 2) Let X be a subset of L. Then there exists an element a of L such that $a \le X$ and for every element b of L such that $b \le X$ holds $b \le a$.

Let *A* be a set. Observe that EqRelPoset(*A*) is complete.

3. A Type of a Sublattice of Equivalence Lattice of a Set

Let L_1 , L_2 be lattices. Note that there exists a map from L_1 into L_2 which is meet-preserving and join-preserving.

Let L_1 , L_2 be lattices. A homomorphism from L_1 to L_2 is a meet-preserving join-preserving map from L_1 into L_2 .

Let L be a lattice. Observe that there exists a relational substructure of L which is meetinheriting, join-inheriting, and strict.

Let L_1 , L_2 be lattices and let f be a homomorphism from L_1 to L_2 . Then Im f is a strict full sublattice of L_2 .

We adopt the following convention: e, e_1 , e_2 denote equivalence relations of X and x, y denote sets.

Let us consider X, let f be a non empty finite sequence of elements of X, let us consider x, y, and let R_1 , R_2 be binary relations. We say that x and y are joint by f, R_1 and R_2 if and only if the conditions (Def. 3) are satisfied.

- (Def. 3)(i) f(1) = x,
 - (ii) $f(\operatorname{len} f) = y$, and
 - (iii) for every natural number i such that $1 \le i$ and i < len f holds if i is odd, then $\langle f(i), f(i+1) \rangle \in R_1$ and if i is even, then $\langle f(i), f(i+1) \rangle \in R_2$.

Next we state two propositions:

- (12)¹ Let x be a set, o be a natural number, R_1 , R_2 be binary relations, and f be a non empty finite sequence of elements of X. Suppose R_1 is reflexive in X and R_2 is reflexive in X and $f = o \mapsto x$. Then x and x are joint by f, R_1 and R_2 .
- $(14)^2$ Let x, y be sets, R_1 , R_2 be binary relations, and n, m be natural numbers. Suppose that
 - (i) $n \leq m$,
- (ii) R_1 is reflexive in X,
- (iii) R_2 is reflexive in X, and
- (iv) there exists a non empty finite sequence f of elements of X such that len f = n and x and y are joint by f, R_1 and R_2 .

Then there exists a non empty finite sequence h of elements of X such that len h = m and x and y are joint by h, R_1 and R_2 .

Let us consider X and let Y be a sublattice of EqRelPoset(X). Let us assume that there exists e such that $e \in$ the carrier of Y $e \neq \mathrm{id}_X$. And let us assume that there exists a natural number o such that for all e_1 , e_2 , x, y such that $e_1 \in$ the carrier of Y and $e_2 \in$ the carrier of Y and $e_3 \in$ there exists a non empty finite sequence F of elements of X such that len F = o and x and y are joint by F, e_1 and e_2 . The type of Y is a natural number and is defined by the conditions (Def. 4).

¹ The proposition (11) has been removed.

² The proposition (13) has been removed.

- (Def. 4)(i) For all e_1 , e_2 , x, y such that $e_1 \in$ the carrier of Y and $e_2 \in$ the carrier of Y and $\langle x, y \rangle \in e_1 \sqcup e_2$ there exists a non empty finite sequence F of elements of X such that len F = (the type of Y) + 2 and X and Y are joint by Y, Y, Y and Y and Y are joint by Y, Y, Y and Y and Y are joint by Y, Y, Y and Y and Y are joint by Y, Y, Y and Y and Y are joint by Y, Y and Y are joint by Y and Y are joint by Y.
 - (ii) there exist e_1 , e_2 , x, y such that $e_1 \in$ the carrier of Y and $e_2 \in$ the carrier of Y and $\langle x, y \rangle \in e_1 \sqcup e_2$ and it is not true that there exists a non empty finite sequence F of elements of X such that len F = (the type of Y) + 1 and X and Y are joint by F, e_1 and e_2 .

One can prove the following proposition

- (15) Let Y be a sublattice of EqRelPoset(X) and n be a natural number. Suppose that
 - (i) there exists e such that $e \in$ the carrier of Y and $e \neq id_X$, and
 - (ii) for all e_1, e_2, x, y such that $e_1 \in$ the carrier of Y and $e_2 \in$ the carrier of Y and $\langle x, y \rangle \in e_1 \sqcup e_2$ there exists a non empty finite sequence F of elements of X such that len F = n + 2 and x and y are joint by F, e_1 and e_2 .

Then the type of $Y \leq n$.

4. A MEET-REPRESENTATION OF A LATTICE

In the sequel A is a non empty set and L is a lower-bounded lattice.

Let us consider A, L. A bifunction from A into L is a function from [:A,A:] into the carrier of L. Let us consider A, L, let f be a bifunction from A into L, and let x, y be elements of A. Then f(x,y) is an element of L.

Let us consider A, L and let f be a bifunction from A into L. We say that f is symmetric if and only if:

(Def. 6)³ For all elements x, y of A holds f(x, y) = f(y, x).

We say that f is zeroed if and only if:

(Def. 7) For every element x of A holds $f(x, x) = \bot_L$.

We say that f satisfies triangle inequality if and only if:

(Def. 8) For all elements x, y, z of A holds $f(x, y) \sqcup f(y, z) \ge f(x, z)$.

Let us consider A, L. One can check that there exists a bifunction from A into L which is symmetric and zeroed and satisfies triangle inequality.

Let us consider A, L. A distance function of A, L is a symmetric zeroed bifunction from A into L satisfying triangle inequality.

Let us consider A, L and let d be a distance function of A, L. The functor $\alpha(d)$ yields a map from L into EqRelPoset(A) and is defined by the condition (Def. 9).

(Def. 9) Let e be an element of L. Then there exists an equivalence relation E of A such that $E = (\alpha(d))(e)$ and for all elements x, y of A holds $\langle x, y \rangle \in E$ iff $d(x, y) \leq e$.

We now state two propositions:

- (16) For every distance function d of A, L holds $\alpha(d)$ is meet-preserving.
- (17) For every distance function d of A, L such that d is onto holds $\alpha(d)$ is one-to-one.

³ The definition (Def. 5) has been removed.

5. THE JÓNSSON THEOREM

Let A be a set. The functor A^* is defined by:

(Def. 10) $A^* = A \cup \{\{A\}, \{\{A\}\}, \{\{\{A\}\}\}\}\}.$

Let A be a set. One can verify that A^* is non empty.

Let us consider A, L, let d be a bifunction from A into L, and let q be an element of [:A,A], the carrier of L, the carrier of L:]. The functor d_q^* yields a bifunction from A^* into L and is defined by the conditions (Def. 11).

(Def. 11) For all elements u, v of A holds $d_q^*(u, v) = d(u, v)$ and $d_q^*(\{A\}, \{A\}) = \bot_L$ and $d_q^*(\{\{A\}\}, \{\{A\}\}\}) = \bot_L$ and $d_q^*(\{\{A\}\}, \{\{A\}\}\}) = \bot_L$ and $d_q^*(\{\{A\}\}, \{\{A\}\}\}) = q_3$ and $d_q^*(\{\{A\}\}\}, \{\{A\}\}) = q_4$ and $d_q^*(\{\{A\}\}, \{A\}\}) = q_4$ and $d_q^*(\{\{A\}\}, \{A\}\}) = q_4$ and $d_q^*(\{\{A\}\}\}, \{A\}\}) = q_3 \sqcup q_4$ and $d_q^*(\{\{A\}\}\}, \{A\}\}) = q_3 \sqcup q_4$ and for every element u of A holds $d_q^*(u, \{A\}) = d(u, q_1) \sqcup q_3$ and $d_q^*(\{A\}, u) = d(u, q_1) \sqcup q_3$ and $d_q^*(u, \{\{A\}\}\}) = d(u, q_2) \sqcup q_4$ and $d_q^*(\{\{A\}\}\}, u) = d(u, q_2) \sqcup q_4$ and $d_q^*(\{\{A\}\}\}, u) = d(u, q_2) \sqcup q_4$.

Next we state several propositions:

- (18) Let d be a bifunction from A into L. Suppose d is zeroed. Let q be an element of [:A,A], the carrier of L; In the d_q^* is zeroed.
- (19) Let d be a bifunction from A into L. Suppose d is symmetric. Let q be an element of [A, A], the carrier of L, the carrier of L: Then d_q^* is symmetric.
- (20) Let d be a bifunction from A into L. Suppose d is symmetric and satisfies triangle inequality. Let q be an element of [A, A], the carrier of L, the carrier of L. If $d(q_1, q_2) \le q_3 \sqcup q_4$, then d_q^* satisfies triangle inequality.
- (21) For every set *A* holds $A \subseteq A^*$.
- (22) Let d be a bifunction from A into L and q be an element of [A, A], the carrier of L, the carrier of L: Then $d \subseteq d_q^*$.

Let us consider A, L and let d be a bifunction from A into L. The functor DistEsti(d) yielding a cardinal number is defined as follows:

(Def. 12) DistEsti(d) $\approx \{\langle x, y, a, b \rangle; x \text{ ranges over elements of } A, y \text{ ranges over elements of } A, a \text{ ranges over elements of } L, b \text{ ranges over elements of } L: d(x, y) \leq a \sqcup b \}.$

Next we state the proposition

(23) For every distance function d of A, L holds DistEsti $(d) \neq \emptyset$.

In the sequel T is a transfinite sequence and O, O_1 , O_2 are ordinal numbers.

Let us consider A and let us consider O. The functor ConsecutiveSet(A, O) is defined by the condition (Def. 13).

- (Def. 13) There exists a transfinite sequence L_0 such that
 - (i) ConsecutiveSet(A, O) = last L_0 ,
 - (ii) $dom L_0 = succ O$,
 - (iii) $L_0(\emptyset) = A$,
 - (iv) for every ordinal number C such that $\operatorname{succ} C \in \operatorname{succ} O$ holds $L_0(\operatorname{succ} C) = L_0(C)^*$, and
 - (v) for every ordinal number C such that $C \in \operatorname{succ} O$ and $C \neq \emptyset$ and C is a limit ordinal number holds $L_0(C) = \bigcup \operatorname{rng}(L_0 \upharpoonright C)$.

One can prove the following three propositions:

- (24) ConsecutiveSet(A, \emptyset) = A.
- (25) ConsecutiveSet(A, succ O) = (ConsecutiveSet(A, O))*.
- (26) Suppose $O \neq \emptyset$ and O is a limit ordinal number and dom T = O and for every ordinal number O_1 such that $O_1 \in O$ holds $T(O_1) = \text{ConsecutiveSet}(A, O_1)$. Then $\text{ConsecutiveSet}(A, O) = \bigcup \text{rng } T$.

Let us consider A and let us consider O. Observe that ConsecutiveSet(A, O) is non empty. One can prove the following proposition

(27) $A \subseteq \text{ConsecutiveSet}(A, O)$.

Let us consider A, L and let d be a bifunction from A into L. A transfinite sequence of elements of [A, A], the carrier of L, the carrier of L: is said to be a sequence of quadruples of d if it satisfies the conditions (Def. 14).

- (Def. 14)(i) domit is a cardinal number,
 - (ii) it is one-to-one, and
 - (iii) rngit = $\{\langle x, y, a, b \rangle; x \text{ ranges over elements of } A, y \text{ ranges over elements of } A, a \text{ ranges over elements of } L; b \text{ ranges over elements of } L: d(x, y) \le a \sqcup b \}.$

Let us consider A, L, let d be a bifunction from A into L, let q be a sequence of quadruples of d, and let us consider O. Let us assume that $O \in \text{dom } q$. The functor Quadr(q, O) yielding an element of [:ConsecutiveSet(A, O), ConsecutiveSet(A, O), the carrier of L, the carrier of L: is defined by:

(Def. 15) Quadr(q, O) = q(O).

We now state the proposition

(28) Let d be a bifunction from A into L and q be a sequence of quadruples of d. Then $O \in \text{DistEsti}(d)$ if and only if $O \in \text{dom } q$.

Let us consider A, L and let z be a set. Let us assume that z is a bifunction from A into L. The functor BiFun(z,A,L) yielding a bifunction from A into L is defined by:

(Def. 16) BiFun(z,A,L) = z.

Let us consider A, L, let d be a bifunction from A into L, let q be a sequence of quadruples of d, and let us consider O. The functor ConsecutiveDelta(q, O) is defined by the condition (Def. 17).

- (Def. 17) There exists a transfinite sequence L_0 such that
 - (i) ConsecutiveDelta $(q, O) = last L_0$,
 - (ii) $dom L_0 = succ O$,
 - (iii) $L_0(\emptyset) = d$,
 - (iv) for every ordinal number C such that $\operatorname{succ} C \in \operatorname{succ} O$ holds $L_0(\operatorname{succ} C) = (\operatorname{BiFun}(L_0(C), \operatorname{ConsecutiveSet}(A, C), L))^*_{\operatorname{Ouadr}(a, C)}$, and
 - (v) for every ordinal number C such that $C \in \operatorname{succ} O$ and $C \neq \emptyset$ and C is a limit ordinal number holds $L_0(C) = \bigcup \operatorname{rng}(L_0 \upharpoonright C)$.

Next we state several propositions:

- (29) For every bifunction d from A into L and for every sequence q of quadruples of d holds ConsecutiveDelta $(q, \emptyset) = d$.
- (30) For every bifunction d from A into L and for every sequence q of quadruples of d holds ConsecutiveDelta $(q, \operatorname{succ} O) = (\operatorname{BiFun}(\operatorname{ConsecutiveDelta}(q, O), \operatorname{ConsecutiveSet}(A, O), L))^*_{\operatorname{Ouadr}(q, O)}$.

- (31) Let d be a bifunction from A into L and q be a sequence of quadruples of d. Suppose $O \neq \emptyset$ and O is a limit ordinal number and dom T = O and for every ordinal number O_1 such that $O_1 \in O$ holds $T(O_1) = \text{ConsecutiveDelta}(q, O_1)$. Then $\text{ConsecutiveDelta}(q, O) = \bigcup \text{rng } T$.
- (32) If $O_1 \subseteq O_2$, then ConsecutiveSet $(A, O_1) \subseteq$ ConsecutiveSet (A, O_2) .
- (33) Let d be a bifunction from A into L and q be a sequence of quadruples of d. Then ConsecutiveDelta(q, O) is a bifunction from ConsecutiveSet(A, O) into L.

Let us consider A, L, let d be a bifunction from A into L, let q be a sequence of quadruples of d, and let us consider O. Then ConsecutiveDelta(q, O) is a bifunction from ConsecutiveSet(A, O) into L.

One can prove the following propositions:

- (34) For every bifunction d from A into L and for every sequence q of quadruples of d holds $d \subseteq \text{ConsecutiveDelta}(q, O)$.
- (35) For every bifunction d from A into L and for every sequence q of quadruples of d such that $O_1 \subseteq O_2$ holds ConsecutiveDelta $(q, O_1) \subseteq$ ConsecutiveDelta (q, O_2) .
- (36) Let d be a bifunction from A into L. Suppose d is zeroed. Let q be a sequence of quadruples of d. Then ConsecutiveDelta(q, O) is zeroed.
- (37) Let d be a bifunction from A into L. Suppose d is symmetric. Let q be a sequence of quadruples of d. Then ConsecutiveDelta(q, O) is symmetric.
- (38) Let d be a bifunction from A into L. Suppose d is symmetric and satisfies triangle inequality. Let q be a sequence of quadruples of d. If $O \subseteq \mathsf{DistEsti}(d)$, then $\mathsf{ConsecutiveDelta}(q,O)$ satisfies triangle inequality.
- (39) Let d be a distance function of A, L and q be a sequence of quadruples of d. If $O \subseteq \text{DistEsti}(d)$, then ConsecutiveDelta(q, O) is a distance function of ConsecutiveSet(A, O), L.

Let us consider A, L and let d be a bifunction from A into L. The functor NextSet(d) is defined by:

(Def. 18) NextSet(d) = ConsecutiveSet(A, DistEsti(d)).

Let us consider A, L and let d be a bifunction from A into L. Note that NextSet(d) is non empty. Let us consider A, L, let d be a bifunction from A into L, and let q be a sequence of quadruples of d. The functor NextDelta(q) is defined by:

(Def. 19) NextDelta(q) = ConsecutiveDelta(q, DistEsti(d)).

Let us consider A, L, let d be a distance function of A, L, and let q be a sequence of quadruples of d. Then NextDelta(q) is a distance function of NextSet(d), L.

Let us consider A, L, let d be a distance function of A, L, let A_1 be a non empty set, and let d_1 be a distance function of A_1 , L. We say that (A_1, d_1) is extension of (A, d) if and only if:

(Def. 20) There exists a sequence q of quadruples of d such that $A_1 = \text{NextSet}(d)$ and $d_1 = \text{NextDelta}(q)$.

Next we state the proposition

(40) Let d be a distance function of A, L, A_1 be a non empty set, and d_1 be a distance function of A_1 , L. Suppose (A_1, d_1) is extension of (A, d). Let x, y be elements of A and a, b be elements of L. Suppose $d(x, y) \le a \sqcup b$. Then there exist elements z_1, z_2, z_3 of A_1 such that $d_1(x, z_1) = a$ and $d_1(z_2, z_3) = a$ and $d_1(z_1, z_2) = b$ and $d_1(z_3, y) = b$.

Let us consider A, L and let d be a distance function of A, L. A function is called an extension sequence of (A,d) if it satisfies the conditions (Def. 21).

- (Def. 21)(i) dom it = \mathbb{N} ,
 - (ii) it(0) = $\langle A, d \rangle$, and
 - (iii) for every natural number n there exists a non empty set A' and there exists a distance function d' of A', L and there exists a non empty set A_1 and there exists a distance function d_1 of A_1 , L such that (A_1, d_1) is extension of (A', d') and it $(n) = \langle A', d' \rangle$ and it $(n+1) = \langle A_1, d_1 \rangle$.

Next we state two propositions:

- (41) Let d be a distance function of A, L, S be an extension sequence of (A, d), and k, l be natural numbers. If $k \le l$, then $S(k)_1 \subseteq S(l)_1$.
- (42) Let d be a distance function of A, L, S be an extension sequence of (A, d), and k, l be natural numbers. If $k \le l$, then $S(k)_2 \subseteq S(l)_2$.

Let us consider L. The functor $\delta_0(L)$ yielding a distance function of the carrier of L, L is defined by:

(Def. 22) For all elements x, y of L holds if $x \neq y$, then $(\delta_0(L))(x,y) = x \sqcup y$ and if x = y, then $(\delta_0(L))(x,y) = \bot_L$.

We now state several propositions:

- (43) $\delta_0(L)$ is onto.
- (44) Let S be an extension sequence of (the carrier of L, $\delta_0(L)$) and F_1 be a non empty set. Suppose $F_1 = \bigcup \{S(i)_1 : i \text{ ranges over natural numbers} \}$. Then $\bigcup \{S(i)_2 : i \text{ ranges over natural numbers} \}$ is a distance function of F_1 , L.
- (45) Let S be an extension sequence of (the carrier of L, $\delta_0(L)$), F_1 be a non empty set, F_2 be a distance function of F_1 , L, x, y be elements of F_1 , and a, b be elements of L. Suppose $F_1 = \bigcup \{S(i)_1 : i \text{ ranges over natural numbers}\}$ and $F_2 = \bigcup \{S(i)_2 : i \text{ ranges over natural numbers}\}$ and $F_2(x, y) \le a \sqcup b$. Then there exist elements z_1 , z_2 , z_3 of F_1 such that $F_2(x, z_1) = a$ and $F_2(z_2, z_3) = a$ and $F_2(z_1, z_2) = b$ and $F_2(z_3, y) = b$.
- (46) Let S be an extension sequence of (the carrier of L, $\delta_0(L)$), F_1 be a non empty set, F_2 be a distance function of F_1 , L, f be a homomorphism from L to EqRelPoset(F_1), x, y be elements of F_1 , e_1 , e_2 be equivalence relations of F_1 , and given x, y. Suppose that
 - (i) $f = \alpha(F_2)$,
- (ii) $F_1 = \bigcup \{S(i)_1 : i \text{ ranges over natural numbers} \},$
- (iii) $F_2 = \bigcup \{S(i)_2 : i \text{ ranges over natural numbers} \},$
- (iv) $e_1 \in \text{the carrier of Im } f$,
- (v) $e_2 \in \text{the carrier of Im } f$, and
- (vi) $\langle x, y \rangle \in e_1 \sqcup e_2$.

Then there exists a non empty finite sequence F of elements of F_1 such that len F = 3 + 2 and x and y are joint by F, e_1 and e_2 .

(47) There exists a non empty set A and there exists a homomorphism f from L to EqRelPoset(A) such that f is one-to-one and the type of Im $f \le 3$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall.html.

- [4] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [5] Grzegorz Bancerek. Cartesian product of functions. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/funct 6.html.
- [6] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [7] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [8] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [9] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [10] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [11] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct 1.html.
- [12] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_
- [13] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [14] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [15] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [16] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pralg_1.html.
- [17] Robert Milewski. Lattice of congruences in many sorted algebra. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/msualg_5.html.
- [18] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [19] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/eqrel_1.html.
- [20] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/ JFM/Vo19/abian.html.
- [21] Andrzej Trybulec. Domains and their Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/domain 1.html.
- [22] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/enumsetl.html.
- [23] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [24] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/mcart_1.html.
- [25] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [26] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- $[27] \begin{tabular}{ll} Zinaida\ Trybulec.\ Properties\ of\ subsets.\ \emph{Journal\ of\ Formalized\ Mathematics},\ 1,1989.\ \verb|http://mizar.org/JFM/Voll/subset_1.html.|\\ \end{tabular}$
- [28] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [29] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.
- [30] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html.
- [31] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/lattices.html.

[32] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_2.html.

Received November 13, 1997

Published January 2, 2004
