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1. PRELIMINARIES

The schem&ecChoicaleals with a sefd and a ternary predicat2, and states that:
There exists a functiom such that donf = N and f (0) = 4 and for every element
nof N holds®[n, f(n), f (n+1)]
provided the parameters satisfy the following condition:
e For every natural numberand for every set there exists a sgtsuch thatP[n, x, y].
One can prove the following three propositions:

(1) Forevery functiorf and for every function yielding functiof such thatf = (JrngF holds
domf = (Jrng(domy F(K)).

(2) For all non empty set4, B holds[:JA, UB] = U{[:a bJ;aranges over elements f b
ranges over elements Bf ac A A b e B}.

(3) For every non empty sétsuch thatA is C-linear holds: JA, UA] =U{[a, a];aranges
over elements of: ac A}.

2. AN EQUIVALENCE LATTICE OF A SET

In the sequek is a non empty set.
Let Abe a set. The functor EqQRelPogkY yields a poset and is defined as follows:

(Def. 1) EqRelPos¢f) = PosetEqRelLatfA)).

Let Abe a set. Observe that EqRelPdégthas g.l.b.'s and l.u.b.’s.
We now state several propositions:

(4) For all set\, x holdsx € the carrier of EqRelPos@) iff x is an equivalence relation &f
(5) Forevery sef and for all elements, y of EqRelLattA) holdsxC yiff xCy.
(6) Forevery sef and for all elements, b of EqRelPos€#\) holdsa < biff aC b.

(7) For every latticd and for all elements, b of PosefL) holdsanb =-amn-b.

1 © Association of Mizar Users
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(8) Forevery sef and for all elements, b of EqRelPos€#) holdsarb =anb.
(9) For every latticd and for all elements, b of PosefL) holdsalL/b =-aLi"b.

(10) LetAbe a seta, b be elements of EqRelPo$a), andE;, E, be equivalence relations of
A. If a=E; andb = Ey, thenalUb=E; UE>.

Let L be a non empty relational structure. Let us observeltHatcomplete if and only if the
condition (Def. 2) is satisfied.

(Def. 2) LetX be a subset df. Then there exists an elememof L such thata < X and for every
element of L such thab < X holdsb < a.

Let Abe a set. Observe that EqRelPdégts complete.

3. A TYPE OF ASUBLATTICE OF EQUIVALENCE LATTICE OF A SET

Let L1, L, be lattices. Note that there exists a map frbgrinto L, which is meet-preserving and
join-preserving.

LetL, L, be lattices. A homomorphism froln to L, is a meet-preserving join-preserving map
from L, into Lo.

Let L be a lattice. Observe that there exists a relational substructukewdfich is meet-
inheriting, join-inheriting, and strict.

Let L, Lo be lattices and lef be a homomorphism frorh; to L. Then Imf is a strict full
sublattice ofL,.

We adopt the following conventiorg, e1, e; denote equivalence relations Xfandx, y denote
sets.

Let us considek, let f be a non empty finite sequence of elementXplet us considek, y,
and letR;, Ry be binary relations. We say thataindy are joint by f, R; andRy if and only if the
conditions (Def. 3) are satisfied.

(Def. 3)()) f(1) =x,
(i) f(lenf)=y, and
(i) for every natural number such that 1< i andi < lenf holds ifi is odd, then(f (i),
f(i+1)) € Ry and ifi is even, ther{f (i), f(i+1)) € R.

Next we state two propositions:

(12E] Let x be a setp be a natural numbeR;, R, be binary relations, andl be a non empty
finite sequence of elements ¥f Supposer; is reflexive inX andR; is reflexive inX and
f =0+ x. Thenxandx are joint byf, R; andR».

(14E] Letx, y be setsR;, R, be binary relations, and, m be natural numbers. Suppose that
@ n<m
(i) Ryisreflexive inX,

(i) Ryis reflexive inX, and

(iv) there exists a non empty finite sequerfcef elements o such that lerfi = n andx and
y are joint by f, Ry andRy.

Then there exists a non empty finite sequehcéE elements oX such that leh = m andx
andy are joint byh, Ry andRy.

Let us consideX and letY be a sublattice of EQRelPo$kY. Let us assume that there exists
such thatke € the carrier ofY e+ idx. And let us assume that there exists a natural nuratseich
that for alley, ey, X, y such that; € the carrier ofY ande, € the carrier ofY and(x,y) e e1Lle;
there exists a non empty finite sequeRcef elements oX such that lefr = o andx andy are joint
by F, 1 andey. The type ofY is a natural number and is defined by the conditions (Def. 4).

1 The proposition (11) has been removed.
2 The proposition (13) has been removed.
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(Def. 4)(i) For alley, e, X, y such thate; € the carrier ofY ande, € the carrier ofY and (x,
y) € e; ey there exists a non empty finite sequehcef elements oK such that lefr = (the
type ofY) + 2 andx andy are joint byF, e; andey, and

(i) there existe;, e, X, y such thate; € the carrier ofY ande, € the carrier ofY and (x,
y) € epU ey and it is not true that there exists a non empty finite sequEmfeelements oK
such that lefr = (the type ofY) + 1 andx andy are joint byF, e; ande,.

One can prove the following proposition

(15) LetY be a sublattice of EqRelPo$®t) andn be a natural number. Suppose that
(i) there existe such thak € the carrier ofY ande # idx, and

(i) forall e, e, X, ysuch thak; € the carrier ofY ande, € the carrier ofY and({x,y) € e;Ue,

there exists a non empty finite sequekcef elements oK such that ler = n+2 andx and
y are joint byF, e; ande,.

Then the type o¥ <n.

4. A MEET-REPRESENTATION OF ALATTICE

In the sequeA is a non empty set arldis a lower-bounded lattice.
Let us consideA, L. A bifunction fromA into L is a function from: A, A] into the carrier oL.

Let us consideA, L, let f be a bifunction fromAinto L, and letx, y be elements oA. Thenf (x,
y) is an element of.

Let us consideA, L and letf be a bifunction fromA into L. We say thatf is symmetric if and
only if:

(Def. 6 For all elements, y of Aholdsf(x,y) = f(y, ).
We say thaff is zeroed if and only if:
(Def. 7) For every elementof Aholdsf(x,x) = L.
We say thaff satisfies triangle inequality if and only if:
(Def. 8) For all elements, y, zof Aholds f(x, y) L f(y, 2) > f(x, 2).

Let us consideA, L. One can check that there exists a bifunction frAnmto L which is
symmetric and zeroed and satisfies triangle inequality.

Let us consideA, L. A distance function oA, L is a symmetric zeroed bifunction frofkinto
L satisfying triangle inequality.

Let us consideA, L and letd be a distance function d&, L. The functora(d) yields a map
from L into EqRelPos€\) and is defined by the condition (Def. 9).

(Def. 9) Lete be an element of. Then there exists an equivalence relatbrof A such that
E = (a(d))(e) and for all elements, y of A holds(x, y} € Eiff d(x,y) <e.

We now state two propositions:
(16) For every distance functiahof A, L holdsa(d) is meet-preserving.

(17) For every distance functiahof A, L such thad is onto holdsx(d) is one-to-one.

3 The definition (Def. 5) has been removed.
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5. THE JONSSONTHEOREM

Let A be a set. The functok* is defined by:
(Def. 10) A" = AU{{A}L {{AH {{{A}} ]}

Let A be a set. One can verify that is non empty.

Let us consideA, L, letd be a bifunction fromA into L, and letq be an element ofA, A, the
carrier ofL, the carrier ofL]. The functord; yields a bifunction fromA* into L and is defined by
the conditions (Def. 11).

(Def. 11) For all elementa, v of A holds d3(u,v) = d(u,v) and dy({A}, {A}) = L. and
dy({{AH), {{A}}) = Lo anddg({{{A}}}, {{{A}}}) = Lo anddy({{A}}, {{{A}}}) = as
and dy({{{A}}}, {{A}}) = gz and d3({A}, {{A}}) = a4 and dy({{A}}, {A}) = a4 and
d;({A}, {{{A}}}) = azUagq and dg;({{{A}}}, {A}) = gzU s and for every element of
Aholdsdg(u, {A}) = d(u, d1) U gz anddg ({A}, u) = d(u, 1) U gs anddg (u, {{A}}) = d(u,
1) UgzUds anddy({{A}}, u) = d(u, 1) Uz Ligs anddg(u, {{{A}}}) = d(u, g2) LU s and
dy({{{A}}}, u) = d(u, g2) LU 4.

Next we state several propositions:

(18) Letd be a bifunction fromAinto L. Supposel is zeroed. Leg be an element dfA, A, the
carrier ofL, the carrier oL J. Thendj is zeroed.

(19) Letd be a bifunction fromA into L. Supposel is symmetric. Lefj be an element ofA,
A, the carrier oL, the carrier oL . Thendj is symmetric.

(20) Letd be a bifunction fronA into L. Supposea is symmetric and satisfies triangle inequal-
ity. Let q be an element of A, A, the carrier ofL, the carrier ofL}]. If d(qi, d2) < 03I Ola,
thend, satisfies triangle inequality.

(21) For every sef holdsA C A*.

(22) Letd be a bifunction fromA into L andq be an element of A, A, the carrier ofL, the
carrier ofL]. Thend C dg-

Let us consideA, L and letd be a bifunction fromA into L. The functor DistEs{d) yielding a
cardinal number is defined as follows:

(Def. 12) DistEstid) ~ {{x,y,a,b};x ranges over elements & y ranges over elements & a
ranges over elements bf b ranges over elements bf d(x, y) < allb}.

Next we state the proposition
(23) For every distance functiahof A, L holds DistEstid) # 0.

In the sequeT is a transfinite sequence a@lO;, O, are ordinal numbers.
Let us consideA and let us conside®. The functor ConsecutiveSét O) is defined by the
condition (Def. 13).
(Def. 13) There exists a transfinite sequebgsuch that

(i) ConsecutiveSén, O) = lastlo,

(i) domLg = sucaO,

(i) Lo(0)=A,

(iv) for every ordinal numbe€ such that sud€ € sucaO holdsLg(sucdC) = Lo(C)*, and

(v) for every ordinal numbeC such thatC € sucdO andC # 0 andC is a limit ordinal number

holdsLy(C) = Urng(Lo[C).

One can prove the following three propositions:
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(24) ConsecutiveS&A, 0) = A.
(25) ConsecutiveSEA sucdD) = (ConsecutiveS€A, O))*.

(26) Suppos® # 0 andO s a limit ordinal number and do= O and for every ordinal num-
berO; such tha®; € OholdsT (O1) = ConsecutiveSéa, O1). Then ConsecutiveSgk, O) =

JrngT.

Let us consideA and let us considdd. Observe that Consecutive&&tO) is non empty.
One can prove the following proposition

(27) A C ConsecutiveSéea, O).

Let us consideA, L and letd be a bifunction fromA into L. A transfinite sequence of elements
of [ A, A the carrier olL, the carrier ol ] is said to be a sequence of quadrupled dfit satisfies
the conditions (Def. 14).

(Def. 14)()) domitis a cardinal number,
(i) itis one-to-one, and
(i) rngit = {{x,y,a,b);x ranges over elements & y ranges over elements &f a ranges
over elements of, b ranges over elements bf d(x, y) < alL!b}.

Let us consideA, L, letd be a bifunction fromA into L, let q be a sequence of quadruplesdof
and let us consideD. Let us assume th& € domg. The functor Quadi, O) yielding an element
of [ ConsecutiveSéA, O), ConsecutiveSéh, O), the carrier oL, the carrier ol ] is defined by:

(Def. 15) Quadfg,O) = q(0).

We now state the proposition

(28) Letd be a bifunction fromA into L andq be a sequence of quadruplesdf ThenO €
DistEsti(d) if and only if O € domg.

Let us consideA, L and letz be a set. Let us assume tlzds a bifunction fromA into L. The
functor BiFur(z, A, L) yielding a bifunction fromA into L is defined by:

(Def. 16) BiFuriz, A|L) =z

Let us consideA, L, letd be a bifunction fromA into L, let q be a sequence of quadruplesdof
and let us considdd. The functor ConsecutiveDelig O) is defined by the condition (Def. 17).
(Def. 17) There exists a transfinite sequehgasuch that
(i) ConsecutiveDelt@, O) = lastLy,
(i) domLg = sucaO,
(i) Lo(0)=d,
(iv)  for every ordinal numberC such that suc€ € sucdO holds Lg(succC) =
(BiFun(Lp(C), ConsecutiveSéa,C), L))*Quad(q,c)’ and

(v) for every ordinal numbeC such thatC € sucdO andC # 0 andC is a limit ordinal number
holdsLy(C) = Urng(Lo[C).

Next we state several propositions:

(29) For every bifunctiord from A into L and for every sequenapof quadruples ofl holds
ConsecutiveDelt@, 0) = d.

(30) For every bifunctiord from A into L and for every sequenapof quadruples ofl holds
ConsecutiveDelt, sucdO) = (BiFun(ConsecutiveDelta, O), ConsecutiveSéa, O), L))auad(q,o)'
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(31) Letd be a bifunction fronA into L andq be a sequence of quadruplesdofSuppos®© +~ 0
andO is a limit ordinal number and doiih= O and for every ordinal numbed; such that
01 € O holdsT(0O1) = ConsecutiveDelta, O1). Then ConsecutiveDelfg, O) = JrngT.

(32) If O1 C Oy, then ConsecutiveSgh, O1) C ConsecutiveSéa, Oy).

(83) Letd be a bifunction fromA into L and q be a sequence of quadruples af Then
ConsecutiveDelta, O) is a bifunction from Consecutive3#&t O) into L.

Let us consideA, L, letd be a bifunction fromA into L, let q be a sequence of quadruplesdof
and let us considéd. Then ConsecutiveDeltg, O) is a bifunction from Consecutive3ét O) into
L.

One can prove the following propositions:

(34) For every bifunctiord from A into L and for every sequenagof quadruples ofl holds
d C ConsecutiveDelta, O).

(35) For every bifunctiom from Ainto L and for every sequenapof quadruples ofl such that
01 C Oz holds ConsecutiveDeltg,O;) C ConsecutiveDeltay, O2).

(36) Letd be a bifunction fromAinto L. Supposel is zeroed. Let be a sequence of quadruples
of d. Then ConsecutiveDeltg, O) is zeroed.

(37) Letd be a bifunction fromA into L. Supposead is symmetric. Letg be a sequence of
quadruples ofl. Then ConsecutiveDelfg, O) is symmetric.

(38) Letd be a bifunction fromA into L. Supposel is symmetric and satisfies triangle inequal-
ity. Let g be a sequence of quadruplesdofif O C DistEstid), then ConsecutiveDelfg, O)
satisfies triangle inequality.

(39) Letd be a distance function o&, L andq be a sequence of quadruplesdf If O C
DistEsti(d), then ConsecutiveDelfg, O) is a distance function of Consecutive@e), L.

Let us consideA, L and letd be a bifunction fromA into L. The functor NextSétl) is defined
by:

(Def. 18) NextSed) = ConsecutiveSé, DistEsti(d)).

Let us consideA, L and letd be a bifunction fromA into L. Note that NextSét) is non empty.
Let us consideA, L, letd be a bifunction fromA into L, and letq be a sequence of quadruples
of d. The functor NextDeltéq) is defined by:

(Def. 19) NextDeltéq) = ConsecutiveDeltay, DistEsti(d)).

Let us consideA, L, letd be a distance function &, L, and letq be a sequence of quadruples
of d. Then NextDeltéqg) is a distance function of NextSel), L.

Let us consideA, L, letd be a distance function &, L, let A; be a non empty set, and ket be
a distance function o, L. We say thatA;,d;) is extension of A,d) if and only if:

(Def. 20) There exists a sequengeof quadruples ofd such thatA; = NextSefd) and d; =
NextDeltgq).

Next we state the proposition

(40) Letd be a distance function &, L, A; be a non empty set, amld be a distance function of
A1, L. SupposdAs,d;) is extension of A;d). Letx, y be elements of anda, b be elements
of L. Supposel(x, y) < allb. Then there exist elemerts, z,, z3 of A; such thatli(x,z) =a
andd;(z, z3) = aanddi(z, z) =bandd;(zs, y) = h.

Let us consideA, L and letd be a distance function &, L. A function is called an extension
sequence ofA, d) if it satisfies the conditions (Def. 21).
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(Def. 21)() domit=N,
(i) it (0) = (A, d), and

(i)  for every natural numben there exists a non empty sat and there exists a distance
functiond’ of A, L and there exists a non empty gatand there exists a distance function
di of Aq, L such tha{Aq,d;) is extension of A',d") and ifn) = (A, d’) and itn+ 1) = (A,
dy).

Next we state two propositions:

(41) Letd be adistance function &, L, Sbe an extension sequenceéfd), andk, | be natural
numbers. Ik <1, then§k); C §1);.

(42) Letd be adistance function &, L, Sbe an extension sequenceéfd), andk, | be natural
numbers. Ik <I, thenSk), C S(1)».

Let us considek. The functody(L) yielding a distance function of the carrierlofL is defined
by:
(Def. 22) For all elementsg, y of L holds if x # y, then (8y(L))(x,y) = xUy and if x =y, then
(Bo(L))(x.y) = Li.

We now state several propositions:
(43) 0o(L) is onto.

(44) LetSbe an extension sequence (tie carrier ofL, dp(L)) andF; be a non empty set.
Supposd, = [J{S(i)1 : i ranges over natural numbérdhen|J{S(i)» : i ranges over natural
numbers is a distance function df, L.

(45) LetSbe an extension sequence(tie carrier ofL, (L)), F1 be a non empty sek, be a
distance function of, L, X, y be elements oF;, anda, b be elements of. Supposd-; =
U{S(i)1 : i ranges over natural numbérandF, = [J{S(i)» : i ranges over natural numbérs
andR(x, y) < alUb. Then there exist elements, z;, z3 of F; such that~(x, z;) = a and

F2(22, 23) = aandRx(z, z2) = bandFx(zs, y) = b.

(46) LetSbe an extension sequence(tie carrier ofL, 8p(L)), F1 be a non empty sek, be a
distance function of, L, f be a homomorphism froiin to EqRelPoséE; ), x, y be elements
of F1, e, & be equivalence relations 6f, and giverx, y. Suppose that

) f=a(R),

(i)  F1=U{S(i)1:iranges over natural numbérs

(i) F=U{S(i)2:iranges over natural numbérs

(iv) e €the carrier of Inf,

(V) e € the carrier of Imf, and

(Vi) (xy)eele.
Then there exists a non empty finite sequefcd# elements of; such that lefs =3+ 2 and
x andy are joint byF, e; ande,.

(47) There exists a non empty sét and there exists a homomorphisin from L to
EgqRelPosé®) such thatf is one-to-one and the type of Ifn< 3.
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