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The articles|[11],[[6],[[14],[8],[[15],[1],[[4],[15], 18], [[15],[[12],[12],[[9],[[10],[17], anc.I3] provide
the notation and terminology for this paper.

1. PRELIMINARIES

In this pape, X, Xg,Y, Z are sets.
One can prove the following three propositions:

(1) KUY CczandX eY,thenX C Z.
2) UXay)=UXnuyy.

(3) LetgivenX. Suppose that
(i) X#0,and

(i) foreveryZ suchthaf = 0 andZ C X andZ is C-linear there exist¥ such thaly € X and
for everyX; such thafX; € Z holdsX; C Y.

Then there exist¥ such thaly € X and for everyZ such thaZ € X andZ #Y holdsY ¢ Z.

2. LATTICE THEORY

We adopt the following ruled: is a lattice,F, H are filters ofL, andp, q, r are elements df.
We now state three propositions:

(4) [L)is prime.
(5) FC[FUH)andH C [FUH).
(6) If pe[[q)UF), then there existssuch that € F andqrr C p.

We follow the rules:L4, L, denote latticesay, b; denote elements df;, anda, denotes an
element ofL,.

Let us considet 1, Lo. A function from the carrier of 1 into the carrier ol is said to be a
homomorphism front; to Ly if:

(Def. 1) It(agUby) =it(ag) Uit(by) and itag Mby) =it(ag) Mit(by).
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http://mizar.org/JFM/Vol5/lattice4.html

HOMOMORPHISMS OF LATTICES ... 2

In the sequeF denotes a homomorphism from to L.
We now state the proposition

(7) Ifag C by, thenf(ag) C f(by).

Let us considet 1, L, and letf be a function from the carrier af; into the carrier ol,. We
say thatf is monomorphism if and only if:

(Def. 2) f is one-to-one.
We say thaff is epimorphism if and only if:
(Def. 3) rngf = the carrier ofL,.
The following propositions are true:
(8) If fis monomorphism, theay C by iff f(ag) C f(bs).

(9) Letf be afunction from the carrier df; into the carrier ol,. If f is epimorphism, then
for everya, there existay such thaty, = f(az).

Let us considek, Ly, f. We say thaff is isomorphism if and only if:
(Def. 4) f is monomorphism and epimorphism.
Let us considets, Lo. Let us observe thdt; andL, are isomorphic if and only if:
(Def. 5) There exist$ which is isomorphism.
Let us considets, Lo, f. We say thatf preserves implication if and only if:
(Def. 6) f(ag=by) = f(aq) = f(b1).
We say thaff preserves top if and only if:
(Def. 7) 1(Twy) = Twy-
We say thatf preserves bottom if and only if:
(Def. 8) f(Lwy)=Lwy-
We say thatf preserves complement if and only if:
(Def. 9) f(a1f) = f(a1)"
Let us considet. A subset ol is called a closed subset bfif:
(Def. 10) Ifpeitandqeit, thenprgeitandpuqeit.
One can prove the following proposition

(10) The carrier of_ is a closed subset &f

Let us considet.. One can verify that there exists a closed subsétwhich is non empty.
One can prove the following proposition

(11) Every filter ofL is a closed subset &f

In the sequeB denotes a finite subset of the carrietof
Let us consideL, B. The funct0|1_|{3 yields an element df and is defined as follows:

(Def. 12f| | = LUf(idy).

The functor[ 1§ yields an element df and is defined as follows:

1 The definition (Def. 11) has been removed.
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(Def. 13) [ = [Th(idy).
One can prove the following propositions:
(14F] 75 = (the meet operation df)- 3 gidy .
(15) L& = (the join operation of.)- S gidy .
f o
(16) |_|{p} =p.
foo_
(17) ﬂ{p} =p

3. DISTRIBUTIVE LATTICES

In the sequeD; denotes a distributive lattice arfddenotes a homomorphism froy to L.
One can prove the following proposition

(18) If f is epimorphism, theh; is distributive.

4. LOWER-BOUNDED LATTICES

We use the following conventiof; denotes a lower-bounded lattid;,B1, B, denote finite subsets
of the carrier of/1, andb denotes an element 6.
One can prove the following proposition

(19) Letf be a homomorphism fromy to Ly. If f is epimorphism, theih, is lower-bounded
andf preserves bottom.

In the sequef denotes a unary operation on the carrief,of
One can prove the following propositions:

(20) Uy f=LIEfUf(b).
(22) Ulg, Ulle, = Lib,ue,

f _
(23) I—lwthe carrier of(q - J_(él) :

(24) For every closed subsatof ¢, such thatl ,,) € A and for everyB such thaB C A holds
L5 eA

5. UPPERBOUNDED LATTICES

We use the following conventiorf; is an upper-bounded latticB, B;, B, are finite subsets of the
carrier of¢,, andb is an element of>.
Next we state two propositions:

(25) For every homomorphisrh from ¢, to L such thatf is epimorphism holdss is upper-
bounded and preserves top.

f —
(26) ﬂo{he carrier of(p - TMZ)

In the sequef, g are unary operations on the carrier/ef
We now state several propositions:

@7) Moy f=EFN1(b).

2 The propositions (12) and (13) have been removed.
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28) Moy =IT61b.
(29) [Thopg="Ta(g- ).
(30) ﬂ{sl) M ﬂf(sz) = [,
(31) For every closed subsétof ¢, such thafT ., € F and for everyB such thaB C F holds
Mk eF.
6. DISTRIBUTIVE UPPERBOUNDED LATTICES

In the sequeD; is a distributive upper-bounded lattid®js a finite subset of the carrier 8f;, and
pis an element oD;.
Next we state the proposition

f _rf
(32) HB Up= ﬂ((the join operation oDl)"(id(Dl).p))"B‘

7. IMPLICATIVE LATTICES

For simplicity, we use the following conventio®; denotes a complemented lattite denotes an
implicative lattice,f denotes a homomorphism fromto Cy, andi, j, k denote elements d¢f.
The following three propositions are true:

(33) f(i)nf(i=j)Cf(j.
(34) If f is monomorphism, then if(i)M f(k) C f(j), thenf(k) C f(i = ).

(35) If f isisomorphism, the@; is implicative andf preserves implication.

8. BOOLEAN LATTICES

For simplicity, we adopt the following ruled; denotes a Boolean latticé,denotes a homomor-
phism fromB3 to Cy, A denotes a non empty subsetB¥, a, b, ¢, p, q denote elements d3, and
B, By denote finite subsets of the carrier®.

We now state three propositions:

(36) (T (Bs))" = Ly
(B7) (Lgy)°*=Tgy):
(38) If f is epimorphism, the@; is Boolean and preserves complement.
Let us consideB3. A non empty subset @3 is said to be a field of subsets Bf if:
(Def. 14) Ifaeitandbeit, thenanbeitanda® € it.

In the sequeF is a field of subsets d8s.
The following propositions are true:

(39) IfaceF andbe F thenallbeF.
(40) IfaeF andbeF thena=beF.
(41) The carrier 0Bgz is a field of subsets d3.

(42) F is aclosed subset @f3.

Let us consideBs, A. The field byA yields a field of subsets &3 and is defined as follows:

(Def. 15) A C the field byA and for everyF such thatA C F holds the field byA C F.
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Let us consideBs, A. The functor Setim@®) yields a subset dB3 and is defined by:

(Def. 16) SetimpA) ={a=Db:acA A be A}

Let us consideBs, A. Note that SetimfA) is non empty.
One can prove the following two propositions:

(43) x e SetimA) iff there existp, g such thak= p=-qandp € Aandqg € A.

(44) ce SetimfA) iff there existp, g such that = p°Ligandp € Aandq € A.

Let us consideBs. The functor compBs yields a function from the carrier &j; into the carrier

of B3 and is defined by:

(Def. 17) (compBg)(a) = a°.

One can prove the following propositions:

(45)  Luqp) COMPB3 = |5 compB3 LIbC.
(46) (UUp)°=TscompBs.
(47) ﬂ{au{b} compBs = []5 compB3 b°.

48) ([Mh)° = LIscompBs.
(49) LetAq be anonempty closed subseBaf Supposel g,) € A andT (g,) € A1. Let givenB.

If B C SetimA1), then there existBy such thaBy C SetimgAg) and|_|{3 compBz = HEBO)'

(50) For every non empty closed subgegtof Bz such thatl g,) € A1 and T (g;) € A1 holds

(1

(2]

(4]

(3]

6]

[7]

8l
[0l

[10]

[11]

[12]

[13]

[14]

{[E : BC SetimgAy)} = the field byA;.
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