Homomorphisms of Lattices, Finite Join and Finite Meet

Jolanta Kamieńska Warsaw University Białystok

Jarosław Stanisław Walijewski Warsaw University Białystok

MML Identifier: LATTICE4.

WWW: http://mizar.org/JFM/Vol5/lattice4.html

The articles [11], [6], [14], [8], [15], [1], [4], [5], [13], [16], [12], [2], [9], [10], [7], and [3] provide the notation and terminology for this paper.

1. Preliminaries

In this paper x, X, X1, Y, Z are sets.

One can prove the following three propositions:

- (1) If $\bigcup Y \subseteq Z$ and $X \in Y$, then $X \subseteq Z$.
- $(2) \quad \bigcup (X \cap Y) = \bigcup X \cap \bigcup Y.$
- (3) Let given X. Suppose that
- (i) $X \neq \emptyset$, and
- (ii) for every Z such that $Z \neq \emptyset$ and $Z \subseteq X$ and Z is \subseteq -linear there exists Y such that $Y \in X$ and for every X_1 such that $X_1 \in Z$ holds $X_1 \subseteq Y$.

Then there exists *Y* such that $Y \in X$ and for every *Z* such that $Z \in X$ and $Z \neq Y$ holds $Y \nsubseteq Z$.

2. LATTICE THEORY

We adopt the following rules: L is a lattice, F, H are filters of L, and p, q, r are elements of L. We now state three propositions:

- (4) [L] is prime.
- (5) $F \subseteq [F \cup H)$ and $H \subseteq [F \cup H)$.
- (6) If $p \in [[q) \cup F)$, then there exists r such that $r \in F$ and $q \cap r \sqsubseteq p$.

We follow the rules: L_1 , L_2 denote lattices, a_1 , b_1 denote elements of L_1 , and a_2 denotes an element of L_2 .

Let us consider L_1 , L_2 . A function from the carrier of L_1 into the carrier of L_2 is said to be a homomorphism from L_1 to L_2 if:

(Def. 1)
$$It(a_1 \sqcup b_1) = it(a_1) \sqcup it(b_1)$$
 and $it(a_1 \sqcap b_1) = it(a_1) \sqcap it(b_1)$.

In the sequel f denotes a homomorphism from L_1 to L_2 . We now state the proposition

(7) If
$$a_1 \sqsubseteq b_1$$
, then $f(a_1) \sqsubseteq f(b_1)$.

Let us consider L_1 , L_2 and let f be a function from the carrier of L_1 into the carrier of L_2 . We say that f is monomorphism if and only if:

(Def. 2) f is one-to-one.

We say that f is epimorphism if and only if:

(Def. 3) $\operatorname{rng} f = \operatorname{the carrier of } L_2$.

The following propositions are true:

- (8) If f is monomorphism, then $a_1 \sqsubseteq b_1$ iff $f(a_1) \sqsubseteq f(b_1)$.
- (9) Let f be a function from the carrier of L_1 into the carrier of L_2 . If f is epimorphism, then for every a_2 there exists a_1 such that $a_2 = f(a_1)$.

Let us consider L_1, L_2, f . We say that f is isomorphism if and only if:

(Def. 4) f is monomorphism and epimorphism.

Let us consider L_1 , L_2 . Let us observe that L_1 and L_2 are isomorphic if and only if:

(Def. 5) There exists f which is isomorphism.

Let us consider L_1, L_2, f . We say that f preserves implication if and only if:

(Def. 6)
$$f(a_1 \Rightarrow b_1) = f(a_1) \Rightarrow f(b_1)$$
.

We say that f preserves top if and only if:

(Def. 7)
$$f(\top_{(L_1)}) = \top_{(L_2)}$$
.

We say that f preserves bottom if and only if:

(Def. 8)
$$f(\perp_{(L_1)}) = \perp_{(L_2)}$$
.

We say that f preserves complement if and only if:

(Def. 9)
$$f(a_1^c) = f(a_1)^c$$
.

Let us consider L. A subset of L is called a closed subset of L if:

(Def. 10) If $p \in \text{it}$ and $q \in \text{it}$, then $p \sqcap q \in \text{it}$ and $p \sqcup q \in \text{it}$.

One can prove the following proposition

(10) The carrier of L is a closed subset of L.

Let us consider L. One can verify that there exists a closed subset of L which is non empty. One can prove the following proposition

(11) Every filter of L is a closed subset of L.

In the sequel B denotes a finite subset of the carrier of L.

Let us consider L, B. The functor \bigsqcup_{B}^{f} yields an element of L and is defined as follows:

(Def. 12)¹
$$\bigsqcup_{B}^{f} = \bigsqcup_{B}^{f} (id_{L}).$$

The functor \bigcap_{B}^{f} yields an element of L and is defined as follows:

¹ The definition (Def. 11) has been removed.

(Def. 13) $\bigcap_{B}^{f} = \bigcap_{B}^{f} (id_{L}).$

One can prove the following propositions:

- $(14)^2$ $\bigcap_{B}^{f} =$ (the meet operation of L)- $\sum_{B} id_{L}$.
- (15) $\bigsqcup_{B}^{f} = \text{(the join operation of } L\text{)-}\sum_{B} \mathrm{id}_{L}.$
- (16) $\bigsqcup_{\{p\}}^{f} = p$.
- (17) $\prod_{\{p\}}^{\mathbf{f}} = p$.

3. DISTRIBUTIVE LATTICES

In the sequel D_1 denotes a distributive lattice and f denotes a homomorphism from D_1 to L_2 . One can prove the following proposition

(18) If f is epimorphism, then L_2 is distributive.

4. LOWER-BOUNDED LATTICES

We use the following convention: ℓ_1 denotes a lower-bounded lattice, B, B_1 , B_2 denote finite subsets of the carrier of ℓ_1 , and b denotes an element of ℓ_1 .

One can prove the following proposition

(19) Let f be a homomorphism from ℓ_1 to L_2 . If f is epimorphism, then L_2 is lower-bounded and f preserves bottom.

In the sequel f denotes a unary operation on the carrier of ℓ_1 . One can prove the following propositions:

- (20) $\bigsqcup_{B\cup\{b\}}^{\mathrm{f}} f = \bigsqcup_{B}^{\mathrm{f}} f \sqcup f(b).$
- (21) $\bigsqcup_{B\cup\{b\}}^{\mathrm{f}} = \bigsqcup_{B}^{\mathrm{f}} \sqcup b.$
- $(22) \quad \bigsqcup_{(B_1)}^{\mathbf{f}} \sqcup \bigsqcup_{(B_2)}^{\mathbf{f}} = \bigsqcup_{B_1 \cup B_2}^{\mathbf{f}}.$
- (23) $\bigsqcup_{\emptyset_{\text{the carrier of }\ell_1}}^f = \bot_{(\ell_1)}.$
- (24) For every closed subset A of ℓ_1 such that $\perp_{(\ell_1)} \in A$ and for every B such that $B \subseteq A$ holds $\bigsqcup_B^f \in A$.

5. UPPER-BOUNDED LATTICES

We use the following convention: ℓ_2 is an upper-bounded lattice, B, B_1 , B_2 are finite subsets of the carrier of ℓ_2 , and b is an element of ℓ_2 .

Next we state two propositions:

(25) For every homomorphism f from ℓ_2 to L_2 such that f is epimorphism holds L_2 is upper-bounded and f preserves top.

$$(26) \quad \bigcap_{\emptyset_{\text{the carrier of }\ell_2}}^f = \top_{(\ell_2)}.$$

In the sequel f, g are unary operations on the carrier of ℓ_2 . We now state several propositions:

(27)
$$\bigcap_{B \cup \{b\}}^{\mathbf{f}} f = \bigcap_{B}^{\mathbf{f}} f \cap f(b).$$

² The propositions (12) and (13) have been removed.

$$(28) \quad \bigcap_{B \cup \{b\}}^{f} = \bigcap_{B}^{f} \cap b.$$

(29)
$$\bigcap_{f \circ B}^{f} g = \bigcap_{B}^{f} (g \cdot f).$$

$$(30) \quad \bigcap_{(B_1)}^{\mathbf{f}} \sqcap \bigcap_{(B_2)}^{\mathbf{f}} = \bigcap_{B_1 \cup B_2}^{\mathbf{f}}.$$

(31) For every closed subset F of ℓ_2 such that $\top_{(\ell_2)} \in F$ and for every B such that $B \subseteq F$ holds $\bigcap_{B}^{f} \in F$.

6. DISTRIBUTIVE UPPER-BOUNDED LATTICES

In the sequel D_1 is a distributive upper-bounded lattice, B is a finite subset of the carrier of D_1 , and p is an element of D_1 .

Next we state the proposition

(32)
$$\bigcap_{B}^{f} \sqcup p = \bigcap_{(\text{(the join operation of } D_{1})^{\circ}(\mathrm{id}_{(D_{1})}, p))^{\circ}B}.$$

7. IMPLICATIVE LATTICES

For simplicity, we use the following convention: C_1 denotes a complemented lattice, I_1 denotes an implicative lattice, f denotes a homomorphism from I_1 to C_1 , and i, j, k denote elements of I_1 .

The following three propositions are true:

(33)
$$f(i) \sqcap f(i \Rightarrow j) \sqsubseteq f(j)$$
.

- (34) If f is monomorphism, then if $f(i) \sqcap f(k) \sqsubseteq f(j)$, then $f(k) \sqsubseteq f(i \Rightarrow j)$.
- (35) If f is isomorphism, then C_1 is implicative and f preserves implication.

8. BOOLEAN LATTICES

For simplicity, we adopt the following rules: B_3 denotes a Boolean lattice, f denotes a homomorphism from B_3 to C_1 , A denotes a non empty subset of B_3 , a, b, c, p, q denote elements of B_3 , and B, B_0 denote finite subsets of the carrier of B_3 .

We now state three propositions:

(36)
$$(\top_{(B_3)})^c = \bot_{(B_3)}$$
.

(37)
$$(\perp_{(B_3)})^c = \top_{(B_3)}$$
.

(38) If f is epimorphism, then C_1 is Boolean and f preserves complement.

Let us consider B_3 . A non empty subset of B_3 is said to be a field of subsets of B_3 if:

(Def. 14) If $a \in \text{it}$ and $b \in \text{it}$, then $a \cap b \in \text{it}$ and $a^c \in \text{it}$.

In the sequel F is a field of subsets of B_3 .

The following propositions are true:

- (39) If $a \in F$ and $b \in F$, then $a \sqcup b \in F$.
- (40) If $a \in F$ and $b \in F$, then $a \Rightarrow b \in F$.
- (41) The carrier of B_3 is a field of subsets of B_3 .
- (42) F is a closed subset of B_3 .

Let us consider B_3 , A. The field by A yields a field of subsets of B_3 and is defined as follows:

(Def. 15) $A \subseteq$ the field by A and for every F such that $A \subseteq F$ holds the field by $A \subseteq F$.

Let us consider B_3 , A. The functor SetImp(A) yields a subset of B_3 and is defined by:

(Def. 16) SetImp(A) = { $a \Rightarrow b : a \in A \land b \in A$ }.

Let us consider B_3 , A. Note that SetImp(A) is non empty. One can prove the following two propositions:

- (43) $x \in \text{SetImp}(A)$ iff there exist p, q such that $x = p \Rightarrow q$ and $p \in A$ and $q \in A$.
- (44) $c \in \text{SetImp}(A)$ iff there exist p, q such that $c = p^c \sqcup q$ and $p \in A$ and $q \in A$.

Let us consider B_3 . The functor comp B_3 yields a function from the carrier of B_3 into the carrier of B_3 and is defined by:

(Def. 17)
$$(\text{comp } B_3)(a) = a^c$$
.

One can prove the following propositions:

- $(45) \quad \bigsqcup_{B \cup \{b\}}^{\mathbf{f}} \operatorname{comp} B_3 = \bigsqcup_{B}^{\mathbf{f}} \operatorname{comp} B_3 \sqcup b^{\mathbf{c}}.$
- $(46) \quad \left(\bigsqcup_{B}^{f}\right)^{c} = \bigcap_{B}^{f} \operatorname{comp} B_{3}.$
- $(47) \quad \bigcap_{B \cup \{b\}}^{\mathrm{f}} \mathrm{comp} B_3 = \bigcap_{B}^{\mathrm{f}} \mathrm{comp} B_3 \cap b^{\mathrm{c}}.$
- $(48) \quad \left(\bigcap_{B}^{f} \right)^{c} = \bigsqcup_{B}^{f} \operatorname{comp} B_{3}.$
- (49) Let A_1 be a non empty closed subset of B_3 . Suppose $\bot_{(B_3)} \in A_1$ and $\top_{(B_3)} \in A_1$. Let given B. If $B \subseteq \text{SetImp}(A_1)$, then there exists B_0 such that $B_0 \subseteq \text{SetImp}(A_1)$ and $\bigsqcup_{B}^f \text{comp} B_3 = \bigcap_{(B_0)}^f B_1$.
- (50) For every non empty closed subset A_1 of B_3 such that $\bot_{(B_3)} \in A_1$ and $\top_{(B_3)} \in A_1$ holds $\{\bigcap_{B}^f : B \subseteq \text{SetImp}(A_1)\} = \text{the field by } A_1.$

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [2] Grzegorz Bancerek. Filters part I. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/filter_0.html.
- [3] Grzegorz Bancerek. Filters part II. Quotient lattices modulo filters and direct product of two lattices. *Journal of Formalized Mathematics*, 3, 1991. http://mizar.org/JFM/Vol3/filter_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc 1.html.
- [7] Michał Muzalewski. Categories of groups. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/grcat_1. html.
- [8] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [9] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/funcop_1.html.
- [10] Andrzej Trybulec. Semilattice operations on finite subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/setwiseo.html.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [12] Andrzej Trybulec. Finite join and finite meet, and dual lattices. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/lattice2.html.
- [13] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finsub_1.html.
- [14] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

- [15] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [16] Stanisław Żukowski. Introduction to lattice theory. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/lattices.html.

Received July 14, 1993

Published January 2, 2004