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The articles [11], [6], [14], [8], [15], [1], [4], [5], [13], [16], [12], [2], [9], [10], [7], and [3] provide
the notation and terminology for this paper.

1. PRELIMINARIES

In this paperx, X, X1, Y, Z are sets.
One can prove the following three propositions:

(1) If
⋃

Y ⊆ Z andX ∈Y, thenX ⊆ Z.

(2)
⋃

(X eY) =
⋃

X∩
⋃

Y.

(3) Let givenX. Suppose that

(i) X 6= /0, and

(ii) for everyZ such thatZ 6= /0 andZ⊆ X andZ is⊆-linear there existsY such thatY ∈ X and
for everyX1 such thatX1 ∈ Z holdsX1 ⊆Y.

Then there existsY such thatY ∈ X and for everyZ such thatZ ∈ X andZ 6= Y holdsY 6⊆ Z.

2. LATTICE THEORY

We adopt the following rules:L is a lattice,F , H are filters ofL, andp, q, r are elements ofL.
We now state three propositions:

(4) [L) is prime.

(5) F ⊆ [F ∪H) andH ⊆ [F ∪H).

(6) If p∈ [[q)∪F), then there existsr such thatr ∈ F andqu r v p.

We follow the rules:L1, L2 denote lattices,a1, b1 denote elements ofL1, anda2 denotes an
element ofL2.

Let us considerL1, L2. A function from the carrier ofL1 into the carrier ofL2 is said to be a
homomorphism fromL1 to L2 if:

(Def. 1) It(a1tb1) = it(a1)t it(b1) and it(a1ub1) = it(a1)u it(b1).

1 c© Association of Mizar Users
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In the sequelf denotes a homomorphism fromL1 to L2.
We now state the proposition

(7) If a1 v b1, then f (a1)v f (b1).

Let us considerL1, L2 and let f be a function from the carrier ofL1 into the carrier ofL2. We
say thatf is monomorphism if and only if:

(Def. 2) f is one-to-one.

We say thatf is epimorphism if and only if:

(Def. 3) rngf = the carrier ofL2.

The following propositions are true:

(8) If f is monomorphism, thena1 v b1 iff f (a1)v f (b1).

(9) Let f be a function from the carrier ofL1 into the carrier ofL2. If f is epimorphism, then
for everya2 there existsa1 such thata2 = f (a1).

Let us considerL1, L2, f . We say thatf is isomorphism if and only if:

(Def. 4) f is monomorphism and epimorphism.

Let us considerL1, L2. Let us observe thatL1 andL2 are isomorphic if and only if:

(Def. 5) There existsf which is isomorphism.

Let us considerL1, L2, f . We say thatf preserves implication if and only if:

(Def. 6) f (a1 ⇒ b1) = f (a1)⇒ f (b1).

We say thatf preserves top if and only if:

(Def. 7) f (>(L1)) =>(L2).

We say thatf preserves bottom if and only if:

(Def. 8) f (⊥(L1)) =⊥(L2).

We say thatf preserves complement if and only if:

(Def. 9) f (a1
c) = f (a1)c.

Let us considerL. A subset ofL is called a closed subset ofL if:

(Def. 10) If p∈ it andq∈ it, thenpuq∈ it and ptq∈ it.

One can prove the following proposition

(10) The carrier ofL is a closed subset ofL.

Let us considerL. One can verify that there exists a closed subset ofL which is non empty.
One can prove the following proposition

(11) Every filter ofL is a closed subset ofL.

In the sequelB denotes a finite subset of the carrier ofL.
Let us considerL, B. The functor

⊔f
B yields an element ofL and is defined as follows:

(Def. 12)1
⊔f

B =
⊔f

B(idL).

The functord−efB yields an element ofL and is defined as follows:

1 The definition (Def. 11) has been removed.
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(Def. 13) d−efB = d−efB(idL).

One can prove the following propositions:

(14)2 d−efB = (the meet operation ofL)-∑B idL.

(15)
⊔f

B = (the join operation ofL)-∑B idL.

(16)
⊔f
{p} = p.

(17) d−ef{p} = p.

3. DISTRIBUTIVE LATTICES

In the sequelD1 denotes a distributive lattice andf denotes a homomorphism fromD1 to L2.
One can prove the following proposition

(18) If f is epimorphism, thenL2 is distributive.

4. LOWER-BOUNDED LATTICES

We use the following convention:`1 denotes a lower-bounded lattice,B, B1, B2 denote finite subsets
of the carrier of̀ 1, andb denotes an element of`1.

One can prove the following proposition

(19) Let f be a homomorphism from̀1 to L2. If f is epimorphism, thenL2 is lower-bounded
and f preserves bottom.

In the sequelf denotes a unary operation on the carrier of`1.
One can prove the following propositions:

(20)
⊔f

B∪{b} f =
⊔f

B f t f (b).

(21)
⊔f

B∪{b} =
⊔f

Btb.

(22)
⊔f

(B1)t
⊔f

(B2) =
⊔f

B1∪B2
.

(23)
⊔f

/0the carrier of`1
=⊥(`1).

(24) For every closed subsetA of `1 such that⊥(`1) ∈ A and for everyB such thatB⊆ A holds⊔f
B ∈ A.

5. UPPER-BOUNDED LATTICES

We use the following convention:̀2 is an upper-bounded lattice,B, B1, B2 are finite subsets of the
carrier of`2, andb is an element of̀2.

Next we state two propositions:

(25) For every homomorphismf from `2 to L2 such thatf is epimorphism holdsL2 is upper-
bounded andf preserves top.

(26) d−ef/0the carrier of`2
=>(`2).

In the sequelf , g are unary operations on the carrier of`2.
We now state several propositions:

(27) d−efB∪{b} f = d−efB f u f (b).

2 The propositions (12) and (13) have been removed.



HOMOMORPHISMS OF LATTICES, . . . 4

(28) d−efB∪{b} = d−efBub.

(29) d−eff ◦Bg = d−efB(g· f ).

(30) d−ef(B1)ud
−ef(B2) = d−efB1∪B2

.

(31) For every closed subsetF of `2 such that>(`2) ∈ F and for everyB such thatB⊆ F holds
d−efB ∈ F.

6. DISTRIBUTIVE UPPER-BOUNDED LATTICES

In the sequelD1 is a distributive upper-bounded lattice,B is a finite subset of the carrier ofD1, and
p is an element ofD1.

Next we state the proposition

(32) d−efBt p = d−ef((the join operation ofD1)◦(id(D1),p))◦B.

7. IMPLICATIVE LATTICES

For simplicity, we use the following convention:C1 denotes a complemented lattice,I1 denotes an
implicative lattice,f denotes a homomorphism fromI1 to C1, andi, j, k denote elements ofI1.

The following three propositions are true:

(33) f (i)u f (i ⇒ j)v f ( j).

(34) If f is monomorphism, then iff (i)u f (k)v f ( j), then f (k)v f (i ⇒ j).

(35) If f is isomorphism, thenC1 is implicative andf preserves implication.

8. BOOLEAN LATTICES

For simplicity, we adopt the following rules:B3 denotes a Boolean lattice,f denotes a homomor-
phism fromB3 to C1, A denotes a non empty subset ofB3, a, b, c, p, q denote elements ofB3, and
B, B0 denote finite subsets of the carrier ofB3.

We now state three propositions:

(36) (>(B3))c =⊥(B3).

(37) (⊥(B3))c =>(B3).

(38) If f is epimorphism, thenC1 is Boolean andf preserves complement.

Let us considerB3. A non empty subset ofB3 is said to be a field of subsets ofB3 if:

(Def. 14) If a∈ it andb∈ it, thenaub∈ it andac ∈ it.

In the sequelF is a field of subsets ofB3.
The following propositions are true:

(39) If a∈ F andb∈ F, thenatb∈ F.

(40) If a∈ F andb∈ F, thena⇒ b∈ F.

(41) The carrier ofB3 is a field of subsets ofB3.

(42) F is a closed subset ofB3.

Let us considerB3, A. The field byA yields a field of subsets ofB3 and is defined as follows:

(Def. 15) A⊆ the field byA and for everyF such thatA⊆ F holds the field byA⊆ F.
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Let us considerB3, A. The functor SetImp(A) yields a subset ofB3 and is defined by:

(Def. 16) SetImp(A) = {a⇒ b : a∈ A ∧ b∈ A}.

Let us considerB3, A. Note that SetImp(A) is non empty.
One can prove the following two propositions:

(43) x∈ SetImp(A) iff there existp, q such thatx = p⇒ q andp∈ A andq∈ A.

(44) c∈ SetImp(A) iff there existp, q such thatc = pctq andp∈ A andq∈ A.

Let us considerB3. The functor compB3 yields a function from the carrier ofB3 into the carrier
of B3 and is defined by:

(Def. 17) (compB3)(a) = ac.

One can prove the following propositions:

(45)
⊔f

B∪{b} compB3 =
⊔f

BcompB3tbc.

(46) (
⊔f

B)c = d−efBcompB3.

(47) d−efB∪{b} compB3 = d−efBcompB3ubc.

(48) (d−efB)c =
⊔f

BcompB3.

(49) LetA1 be a non empty closed subset ofB3. Suppose⊥(B3) ∈A1 and>(B3) ∈A1. Let givenB.

If B⊆ SetImp(A1), then there existsB0 such thatB0⊆ SetImp(A1) and
⊔f

BcompB3 = d−ef(B0).

(50) For every non empty closed subsetA1 of B3 such that⊥(B3) ∈ A1 and>(B3) ∈ A1 holds
{d−efB : B⊆ SetImp(A1)}= the field byA1.
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[6] Czesław Bylínski. Some basic properties of sets.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
zfmisc_1.html.

[7] Michał Muzalewski. Categories of groups.Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/grcat_1.
html.

[8] Beata Padlewska. Families of sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/setfam_1.html.

[9] Andrzej Trybulec. Binary operations applied to functions.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/funcop_1.html.

[10] Andrzej Trybulec. Semilattice operations on finite subsets.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/setwiseo.html.

[11] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[12] Andrzej Trybulec. Finite join and finite meet, and dual lattices.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/
Vol2/lattice2.html.

[13] Andrzej Trybulec and Agata Darmochwał. Boolean domains.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/
Vol1/finsub_1.html.

[14] Zinaida Trybulec. Properties of subsets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html.

http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol2/filter_0.html
http://mizar.org/JFM/Vol3/filter_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol3/grcat_1.html
http://mizar.org/JFM/Vol3/grcat_1.html
http://mizar.org/JFM/Vol1/setfam_1.html
http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Vol1/setwiseo.html
http://mizar.org/JFM/Vol1/setwiseo.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol2/lattice2.html
http://mizar.org/JFM/Vol2/lattice2.html
http://mizar.org/JFM/Vol1/finsub_1.html
http://mizar.org/JFM/Vol1/finsub_1.html
http://mizar.org/JFM/Vol1/subset_1.html


HOMOMORPHISMS OF LATTICES, . . . 6

[15] Edmund Woronowicz. Relations and their basic properties.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/relat_1.html.

[16] StanisławŻukowski. Introduction to lattice theory.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
lattices.html.

Received July 14, 1993

Published January 2, 2004

http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/lattices.html
http://mizar.org/JFM/Vol1/lattices.html

	homomorphisms of lattices, … By jolanta kamienska et al.

