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Summary. In the first section the lattice of subsets of distinct set is introduced. The
join and meet operations are, respectively, union and intersection of sets, and the ordering re-
lation is inclusion. It is shown that this lattice is Boolean, i.e. distributive and complementary.
The second section introduces the poset generated in a distinct lattice by its ordering relation.
Besides, it is proved that posets which have l.u.b.’s and g.l.b.’s for every two elements generate
lattices with the same ordering relations. In the last section the concept of complete lattice
is introduced and discussed. Finally, the fact that the functionf from subsets of distinct set
yielding elements of this set is a infinite union of some complete lattice, iff yields an element
a for singleton{a} and f ( f ◦X) = f (

⊔
X) for every subsetX, is proved. Some concepts and

proofs are based on [8] and [9].

MML Identifier: LATTICE3.

WWW: http://mizar.org/JFM/Vol4/lattice3.html

The articles [11], [7], [14], [10], [4], [5], [3], [18], [1], [12], [2], [15], [17], [16], [6], and [13]
provide the notation and terminology for this paper.

1. BOOLEAN LATTICE OF SUBSETS

Let X be a set. The lattice of subsets ofX yields a strict lattice structure and is defined by the
conditions (Def. 1).

(Def. 1)(i) The carrier of the lattice of subsets ofX = 2X, and

(ii) for all elementsY, Z of 2X holds (the join operation of the lattice of subsets ofX)(Y,
Z) = Y∪Z and (the meet operation of the lattice of subsets ofX)(Y, Z) = Y∩Z.

In the sequelX is a set andx, y are elements of the lattice of subsets ofX.
Let X be a set. One can check that the lattice of subsets ofX is non empty.
One can prove the following two propositions:

(1) xty = x∪y andxuy = x∩y.

(2) xv y iff x⊆ y.

Let us considerX. Observe that the lattice of subsets ofX is lattice-like.
The following propositions are true:

(3) The lattice of subsets ofX is lower-bounded and⊥the lattice of subsets ofX = /0.

(4) The lattice of subsets ofX is upper-bounded and>the lattice of subsets ofX = X.
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Let us considerX. Observe that the lattice of subsets ofX is Boolean and lattice-like.
One can prove the following proposition

(5) For every elementx of the lattice of subsets ofX holdsxc = X \x.

2. CORRESPONDENCE BETWEEN LATTICES AND POSETS

Let L be a lattice. Then LattRel(L) is an order in the carrier ofL.
Let L be a lattice. The functor Poset(L) yields a strict poset and is defined by:

(Def. 2) Poset(L) = 〈the carrier ofL, LattRel(L)〉.

Let L be a lattice. Note that Poset(L) is non empty.
Next we state the proposition

(6) For all latticesL1, L2 such that Poset(L1) = Poset(L2) holds the lattice structure ofL1 = the
lattice structure ofL2.

Let L be a lattice and letp be an element ofL. The functorp� yields an element of Poset(L) and
is defined as follows:

(Def. 3) p� = p.

Let L be a lattice and letp be an element of Poset(L). The functor�p yielding an element ofL
is defined by:

(Def. 4) �p = p.

In the sequelL is a lattice andp, q are elements ofL.
We now state the proposition

(7) pv q iff p� ≤ q�.

Let X be a set and letO be an order inX. ThenO` is an order inX.
Let A be a relational structure. The functorA` yields a strict relational structure and is defined

as follows:

(Def. 5) A` = 〈the carrier ofA, (the internal relation ofA)`〉.

Let A be a poset. Observe thatA` is reflexive, transitive, and antisymmetric.
Let A be a non empty relational structure. Note thatA` is non empty.
In the sequelA denotes a relational structure anda, b denote elements ofA.
Next we state the proposition

(8) (A`)` = the relational structure ofA.

Let A be a relational structure and leta be an element ofA. The functora` yielding an element
of A` is defined by:

(Def. 6) a` = a.

Let A be a relational structure and leta be an element ofA`. The functorxa yields an element
of A and is defined as follows:

(Def. 7) xa = a.

Next we state the proposition

(9) a≤ b iff b` ≤ a`.

Let A be a relational structure, letX be a set, and leta be an element ofA. The predicatea≤ X
is defined by:
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(Def. 8) For every elementb of A such thatb∈ X holdsa≤ b.

We introduceX ≥ a as a synonym ofa≤ X. The predicateX ≤ a is defined as follows:

(Def. 9) For every elementb of A such thatb∈ X holdsb≤ a.

We introducea≥ X as a synonym ofX ≤ a.
Let I1 be a relational structure. We say thatI1 has l.u.b.’s if and only if the condition (Def. 10) is

satisfied.

(Def. 10) Letx, y be elements ofI1. Then there exists an elementzof I1 such thatx≤ zandy≤ zand
for every elementz′ of I1 such thatx≤ z′ andy≤ z′ holdsz≤ z′.

We say thatI1 has g.l.b.’s if and only if the condition (Def. 11) is satisfied.

(Def. 11) Letx, y be elements ofI1. Then there exists an elementzof I1 such thatz≤ x andz≤ y and
for every elementz′ of I1 such thatz′ ≤ x andz′ ≤ y holdsz′ ≤ z.

Let us note that every relational structure which has l.u.b.’s is also non empty and every relational
structure which has g.l.b.’s is also non empty.

One can prove the following propositions:

(10) A has l.u.b.’s iffA` has g.l.b.’s.

(11) For every latticeL holds Poset(L) has l.u.b.’s and g.l.b.’s.

Let I1 be a relational structure. We say thatI1 is complete if and only if:

(Def. 12) For every setX there exists an elementa of I1 such thatX ≤ a and for every elementb of
I1 such thatX ≤ b holdsa≤ b.

Let us note that there exists a poset which is strict, complete, and non empty.
In the sequelA denotes a non empty relational structure.
The following proposition is true

(12) If A is complete, thenA has l.u.b.’s and g.l.b.’s.

Let us note that there exists a poset which is complete, strict, and non empty and has l.u.b.’s and
g.l.b.’s.

Let A be a relational structure. Let us assume thatA is antisymmetric. Leta, b be elements of
A. Let us assume that there exists an elementx of A such thata≤ x andb≤ x and for every element
c of A such thata≤ c andb≤ c holdsx≤ c. The functoratb yielding an element ofA is defined
as follows:

(Def. 13) a ≤ at b and b ≤ at b and for every elementc of A such thata ≤ c and b ≤ c holds
atb≤ c.

Let A be a relational structure. Let us assume thatA is antisymmetric. Leta, b be elements of
A. Let us assume that there exists an elementx of A such thata≥ x andb≥ x and for every element
c of A such thata≥ c andb≥ c holdsx≥ c. The functoraub yields an element ofA and is defined
as follows:

(Def. 14) au b ≤ a and au b ≤ b and for every elementc of A such thatc ≤ a and c ≤ b holds
c≤ aub.

For simplicity, we use the following convention:V denotes an antisymmetric relational structure
with l.u.b.’s,u1, u2, u3 denote elements ofV, N denotes an antisymmetric relational structure with
g.l.b.’s, n1, n2, n3 denote elements ofN, K denotes a reflexive antisymmetric relational structure
with l.u.b.’s and g.l.b.’s, andk1, k2 denote elements ofK.

One can prove the following propositions:

(13) u1tu2 = u2tu1.
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(14) If V is transitive, then(u1tu2)tu3 = u1t (u2tu3).

(15) n1un2 = n2un1.

(16) If N is transitive, then(n1un2)un3 = n1u (n2un3).

Let L be an antisymmetric relational structure with g.l.b.’s and letx, y be elements ofL. Let us
observe that the functorxuy is commutative.

Let L be an antisymmetric relational structure with l.u.b.’s and letx, y be elements ofL. Let us
observe that the functorxty is commutative.

Next we state three propositions:

(17) (k1uk2)tk2 = k2.

(18) k1u (k1tk2) = k1.

(19) For every posetA with l.u.b.’s and g.l.b.’s there exists a strict latticeL such that the relational
structure ofA = Poset(L).

Let A be a relational structure. Let us assume thatA is a poset with l.u.b.’s and g.l.b.’s. The
functorLA yielding a strict lattice is defined by:

(Def. 15) The relational structure ofA = Poset(LA).

The following proposition is true

(20) LattRel(L)` = LattRel(L◦) and Poset(L)` = Poset(L◦).

3. COMPLETE LATTICES

Let L be a non empty lattice structure, letp be an element ofL, and letX be a set. The predicate
pv X is defined as follows:

(Def. 16) For every elementq of L such thatq∈ X holdspv q.

We introduceX w p as a synonym ofpv X. The predicateX v p is defined as follows:

(Def. 17) For every elementq of L such thatq∈ X holdsqv p.

We introducepw X as a synonym ofX v p.
We now state two propositions:

(21) For every latticeL and for all elementsp, q, r of L holdspv {q, r} iff pv qu r.

(22) For every latticeL and for all elementsp, q, r of L holdspw {q, r} iff qt r v p.

Let I1 be a non empty lattice structure. We say thatI1 is complete if and only if:

(Def. 18) For every setX there exists an elementp of I1 such thatX v p and for every elementr of
I1 such thatX v r holdspv r.

We say thatI1 is
⊔

-distributive if and only if the condition (Def. 19) is satisfied.

(Def. 19) Let givenX anda, b, c be elements ofI1. Suppose that

(i) X v a,

(ii) for every elementd of I1 such thatX v d holdsav d,

(iii) {bua′;a′ ranges over elements ofI1: a′ ∈ X} v c, and

(iv) for every elementd of I1 such that{bua′;a′ ranges over elements ofI1: a′ ∈X} v d holds
cv d.

Thenbuav c.
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We say thatI1 is d−e-distributive if and only if the condition (Def. 20) is satisfied.

(Def. 20) Let givenX anda, b, c be elements ofI1. Suppose that

(i) X w a,

(ii) for every elementd of I1 such thatX w d holdsdv a,

(iii) {bta′;a′ ranges over elements ofI1: a′ ∈ X} w c, and

(iv) for every elementd of I1 such that{bta′;a′ ranges over elements ofI1: a′ ∈X} w d holds
dv c.

Thencv bta.

We now state several propositions:

(23) LetB be a Boolean lattice anda be an element ofB. ThenX v a if and only if {bc;b ranges
over elements ofB: b∈ X} w ac.

(24) LetB be a Boolean lattice anda be an element ofB. ThenX w a if and only if {bc;b ranges
over elements ofB: b∈ X} v ac.

(25) The lattice of subsets ofX is complete.

(26) The lattice of subsets ofX is
⊔

-distributive.

(27) The lattice of subsets ofX is d−e-distributive.

One can verify that there exists a lattice which is complete,
⊔

-distributive,d−e-distributive, and
strict.

In the sequelp′ is an element of Poset(L).
One can prove the following propositions:

(28) pv X iff p� ≤ X.

(29) p′ ≤ X iff �p′ v X.

(30) X v p iff X ≤ p�.

(31) X ≤ p′ iff X v �p′.

Let A be a complete non empty poset. Observe thatLA is complete.
Let L be a non empty lattice structure. Let us assume thatL is a complete lattice. LetX be a set.

The functor
⊔

L X yields an element ofL and is defined by:

(Def. 21) X v
⊔

L X and for every elementr of L such thatX v r holds
⊔

L X v r.

Let L be a non empty lattice structure and letX be a set. The functord−eLX yielding an element
of L is defined as follows:

(Def. 22) d−eLX =
⊔

L{p; p ranges over elements ofL: pv X}.

Let L be a non empty lattice structure and letX be a subset ofL. We introduce
⊔

X as a synonym
of

⊔
L X. We introduced−eX as a synonym ofd−eLX.

We use the following convention:C is a complete lattice,a, b, c are elements ofC, andX, Y are
sets.

Next we state a number of propositions:

(32)
⊔

C{aub : b∈ X} v au
⊔

C X.

(33) C is
⊔

-distributive iff for all X, a holdsau
⊔

C X v
⊔

C{aub : b∈ X}.

(34) a = d−eCX iff av X and for everyb such thatbv X holdsbv a.

(35) atd−eCX v d−eC{atb : b∈ X}.
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(36) C is d−e-distributive iff for all X, a holdsd−eC{atb : b∈ X} v atd−eCX.

(37)
⊔

C X = d−eC{a : aw X}.

(38) If a∈ X, thenav
⊔

C X andd−eCX v a.

(40)1 If av X, thenav d−eCX.

(41) If a∈ X andX v a, then
⊔

C X = a.

(42) If a∈ X andav X, thend−eCX = a.

(43)
⊔
{a}= a andd−e{a}= a.

(44) atb =
⊔
{a,b} andaub = d−e{a,b}.

(45) a =
⊔

C{b : bv a} anda = d−eC{c : av c}.

(46) If X ⊆Y, then
⊔

C X v
⊔

CY andd−eCY v d−eCX.

(47)
⊔

C X =
⊔

C{a :
∨

b (av b ∧ b∈ X)} andd−eCX = d−eC{b :
∨

a (av b ∧ a∈ X)}.

(48) If for everya such thata∈ X there existsb such thatav b andb∈Y, then
⊔

C X v
⊔

CY.

(49) If X ⊆ 2the carrier ofC, then
⊔

C
⋃

X =
⊔

C{
⊔

Y;Y ranges over subsets ofC: Y ∈ X}.

(50) C is a lower bound lattice and⊥C =
⊔

C /0.

(51) C is an upper bound lattice and>C =
⊔

C (the carrier ofC).

(52) If C is an implicative lattice, thena⇒ b =
⊔

C{c : aucv b}.

(53) If C is an implicative lattice, thenC is
⊔

-distributive.

(54) Let D be a complete
⊔

-distributive lattice anda be an element ofD. Thenau
⊔

D X =⊔
D{aub1;b1 ranges over elements ofD: b1 ∈ X} and

⊔
D Xua =

⊔
D{b2ua;b2 ranges over

elements ofD: b2 ∈ X}.

(55) Let D be a completed−e-distributive lattice anda be an element ofD. Thenatd−eDX =
d−eD{at b1;b1 ranges over elements ofD: b1 ∈ X} andd−eDX t a = d−eD{b2t a;b2 ranges
over elements ofD: b2 ∈ X}.

In this article we present several logical schemes. The schemeSingleFraenkeldeals with a set
A , a non empty setB, and a unary predicateP , and states that:

{A ;a ranges over elements ofB : P [a]}= {A}
provided the following condition is met:

• There exists an elementa of B such thatP [a].
The schemeFuncFraenkeldeals with a non empty setA , a non empty setB, a unary functorF

yielding an element ofB, a functionC , and a unary predicateP , and states that:
C ◦{F (x);x ranges over elements ofA : P [x]} = {C (F (x));x ranges over elements
of A : P [x]}

provided the following requirement is met:
• B ⊆ domC .

Next we state the proposition

(56) LetD be a non empty set andf be a function from 2D into D. Suppose for every element
a of D holds f ({a}) = a and for every subsetX of 2D holds f ( f ◦X) = f (

⋃
X). Then there

exists a complete strict latticeL such that the carrier ofL = D and for every subsetX of L
holds

⊔
X = f (X).

1 The proposition (39) has been removed.
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