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Summary. The concepts of finite join and finite meet in a lattice are introduced. Some
properties of the finite join are proved. After introducing the concept of dual lattice in view
of dualism we obtain analogous properties of the meet. We prove these properties of binary
operations in a lattice, which are usually included in axioms of the lattice theory. We also
introduce the concept of Heyting lattice (a bounded lattice with relative pseudo-complements).
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The articles[[10],1113],[[14],[18],[14],[16], 151, 18], 2], ([15], [[7], [[11],[12],[[8], and_[1] provide the
notation and terminology for this paper.

For simplicity, we follow the rulesA is a setC is a non empty seB is a subset oA, x is an
element ofA, andf, g are functions fronA into C.

One can prove the following propositions:

(2f] dom(giB)=B.
(SH f B = g|Biiff for every x such thak € B holdsg(x) = f(X).

(6)
(1)
8
9)
(10)

For every seB holds f+-g[B is a function fromA into C.

giB+-f = f.

For all functionsf, g such thag < f holdsf+-g= f.
f+-fIB=f.

If for everyx such that € B holdsg(x) = f(x), thenf+-g|B = f.

In the sequeB denotes a finite subset Af
Next we state four propositions:

(12F giB+-f =f.

(13)
(14)

don{g[B) = B.
If for everyx such thak € B holdsg(x) = f(x), thenf+-g/B = f.

(16f] If f|B=g/B, thenf°B=g°B.

1 The proposition (1) has been removed.

2 The propositions (3) and (4) have been removed.
3 The proposition (11) has been removed.

4 The proposition (15) has been removed.
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Let D be a non empty set and leto’ be binary operations on. We say thab absorbs’ if and
only if:

(Def. 1) For all elements, y of D holdso(x, 0'(x, y)) = x.

We introduceo does not absorb’ as an antonym of absorbsy.
In the sequel denotes a non empty lattice structure.
One can prove the following proposition

(17) Suppose that
(i) the join operation of_ is commutative and associative,
(i) the meet operation df is commutative and associative,
(iii)  the join operation ofL absorbs the meet operationlgfand
(iv) the meet operation df absorbs the join operation bf
ThenL is lattice-like.

Let L be a lattice structure. The functef yields a strict lattice structure and is defined as
follows:

(Def. 2) L° = (the carrier oL, the meet operation df, the join operation oL).

LetL be a non empty lattice structure. Observe ttfais non empty.
We now state two propositions:

(18)(i) The carrier ol = the carrier ofL°,
(i)  the join operation oL = the meet operation df°, and
(iii)  the meet operation of = the join operation oL°.

(19) For every strict non empty lattice structiréolds(L°)° = L.

We adopt the following ruled: denotes a lattice aral b, u, v denote elements df.
The following propositions are true:

(21| 1 for everyv holdsuliv=v, thenu= 1.

(22) If for everyv holds (the join operation df)(u, v) = v, thenu= 1, .
(24f] 1 for everyv holdsurv =v, thenu= T.

(25) If for everyv holds (the meet operation bf(u, v) = v, thenu= T .
(26) The join operation of is idempotent.

(27) LetL be a join-commutative non empty-semi lattice structure. Then the join operation
of L is commutative.

(28) If the join operation ok has a unity, then.| = Lie join operation oL -

(29) LetL be a join-associative non emptysemi lattice structure. Then the join operation of
L is associative.

(30) The meet operation &fis idempotent.

(31) LetL be a meet-commutative non emptysemi lattice structure. Then the meet operation
of L is commutative.

(32) LetL be a meet-associative non emptsemi lattice structure. Then the meet operation of
L is associative.

5 The proposition (20) has been removed.
6 The proposition (23) has been removed.
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LetL be a join-commutative non empty-semi lattice structure. Note that the join operation of
L is commutative.

Let L be a join-associative non emptysemi lattice structure. One can verify that the join
operation ol is associative.

Let L be a meet-commutative non emptysemi lattice structure. Observe that the meet opera-
tion of L is commutative.

LetL be a meet-associative non emptsemi lattice structure. Note that the meet operation of
L is associative.

The following propositions are true:

(33) Ifthe meet operation df has a unity, thefl | = le meet operation d -
(34) The join operation dof is distributive w.r.t. the join operation &f

(35) Supposd is a distributive lattice. Then the join operation lofis distributive w.r.t. the
meet operation of.

(386) If the join operation oL is distributive w.r.t. the meet operationofthenL is distributive.

(87) Supposd is a distributive lattice. Then the meet operatiorLat distributive w.r.t. the
join operation ofL.

(388) Ifthe meet operation df is distributive w.r.t. the join operation a&f, thenL is distributive.
(839) The meet operation &fis distributive w.r.t. the meet operation lof
(40) The join operation df absorbs the meet operationlof

(41) The meet operation @fabsorbs the join operation bf

Let A be a non empty set, Iétbe a lattice, leB be a finite subset o4, and letf be a function
from A into the carrier oL. The functoﬂ_]fB f yielding an element df is defined as follows:

(Def. 3) | I f = (the join operation of)-yg f.
The functor[ 15 f yields an element df and is defined as follows:
(Def. 4) [1Ef = (the meet operation df)-yg f.

For simplicity, we adopt the following rule#A denotes a non empty satdenotes an element
of A, B denotes a finite subset &f and f, g denote functions from into the carrier otL..
One can prove the following propositions:

43)] 1f xe B, thenf(x) C |5 f.

(44) Ifthere existscsuch thak € BanduC f(x), thenuC | |5 f.

(45) If for everyx such thak € B holds f (x) = uandB + 0, then| |5 f = u.

(46) If| |5 f C u, then for every such thak € B holds f (x) C u.

(47) 1f B+ 0and for every such tha € B holds f (x) C u, then| |5 f C u.

(48) If B+ 0 and for every such thai € B holds f (x) C g(x), then |5 f C | 5.
(49) 1fB#£0andf|B=g|B,then| |5 f=|]5g.

(50) 1f B+ 0, thenvLi| |5 f = [ |5((the join operation of )°(v, f)).

LetL be a lattice. One can check thatis lattice-like.
We now state a number of propositions:

" The proposition (42) has been removed.



FINITE JOIN AND FINITE MEET, AND DUAL ... 4

(51) LetL be a latticeB be a finite subset &, f be a function fromA into the carrier oL, and
f/ be a function fromAinto the carrier of °. If f = f/, then |5 f =[5’ and[]5f = LI f'.

(52) For all elements’, b’ of L° such thaia = a andb = b’ holdsamnb=a Lb' andalLb=
anb.

(53) IfaC b, then for all elements’, b/ of L° such thath =& andb = b’ holdsb/ C &'.
(54) For all elementd’, b/ of L° such tha’ C ¥ anda= & andb=b’ holdsh C a.
(55) Ifxe€B,then[5f C f(x).

(56) If there exist such thak € Band f(x) C u, then[]5f C u.

(57) Iffor everyx such thak € B holds f (x) = uandB # 0, then[ |5 f = u.

(58) IfB#£0,thenvr[5f = [5((the meet operation df)°(v, f)).

(59) IfuC [5f, then for every such thak € B holdsu C f(x).

(60) 1fB#£0andf|B=g|B,then[]5f = [5g.

(61) If B+ 0and for every such tha € B holdsu C f(x), thenu C ﬂgf.

(62) 1f B 0and for every such thak € B holds f (x) C g(x), then[ 15 C [5g.
(63) For every latticd holdsL is lower-bounded ifL.° is upper-bounded.

(64) For every latticd holdsL is upper-bounded ifE° is lower-bounded.

(65) L is adistributive lattice iff_° is a distributive lattice.

In the sequel is a lower bound latticef, g are functions fromA into the carrier oL, andu is
an element of..
One can prove the following propositions:

(66) L is aunity w.r.t. the join operation df.

(67) The join operation of has a unity.

(68) LL = Lthe join operation of. -

(69) If f|B=g/B,then |5 f =50

(70)  If for everyx such thak € B holds f (x) C u, then| | f C u.

(71) Iffor everyx such tha € B holds f (x) C g(x), then| |5 f C [ |5 g.

In the sequel denotes an upper bound lattide,g denote functions frord into the carrier of
L, andu denotes an element bf
The following propositions are true:

(72) Ty is aunity w.r.t. the meet operation bf

(73) The meet operation afhas a unity.

(74)  TL = Lihe meet operation df -

(75) If fIB=g[B, then[|5f = [La.

(76) If for everyx such thak € B holdsu C f(x), thenu C [5f.

(77) If for everyx such thai € B holds f (x) C g(x), then[ |5 f C [5g.
(78) For every lower bound lattideholds 1| = T ..
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(79) For every upper bound lattiteholdsT| = 1 -.

A distributive lower bounded lattice is a distributive lower-bounded lattice.

In the sequel denotes a distributive lower bounded lattide g denote functions fror into
the carrier ofL, andu denotes an element bf

One can prove the following propositions:

(80) The meet operation &fis distributive w.r.t. the join operation &f
(81) (The meet operation &f) (u, || f) = [ 5((the meet operation af)°(u, f)).
(82) If for everyx such thak € B holdsg(x) = ur f (x), thenuri| 5 f = |5 g.
(83) unps f = J5((the meet operation df)°(u, f)).
Letl; be a lattice. We say th&i is Heyting if and only if:
(Def. 6 I1 is implicative and lower-bounded.

Let us observe that there exists a lattice which is Heyting.

One can check that every lattice which is Heyting is also implicative and lower-bounded and
every lattice which is implicative and lower-bounded is also Heyting.

A Heyting lattice is a Heyting lattice.

Let us note that there exists a lattice which is Heyting and strict.

Next we state two propositions:

(84) LetL be alower bound lattice. Thenis a Heyting lattice if and only if for all elemenis
zof L there exists an elemenbf L such thakMy C zand for every elementof L such that
XxMvE zholdsvCYy.

(85) For every latticd holdsL is finite iff L° is finite.

Let us note that every lattice which is finite is also lower-bounded and every lattice which is
finite is also upper-bounded.

Let us observe that every lattice which is finite is also bounded.

One can check that every lattice which is distributive and finite is also Heyting.
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