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Summary. The concepts of finite join and finite meet in a lattice are introduced. Some
properties of the finite join are proved. After introducing the concept of dual lattice in view
of dualism we obtain analogous properties of the meet. We prove these properties of binary
operations in a lattice, which are usually included in axioms of the lattice theory. We also
introduce the concept of Heyting lattice (a bounded lattice with relative pseudo-complements).
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The articles [10], [13], [14], [3], [4], [6], [5], [8], [2], [15], [7], [11], [12], [9], and [1] provide the
notation and terminology for this paper.

For simplicity, we follow the rules:A is a set,C is a non empty set,B is a subset ofA, x is an
element ofA, and f , g are functions fromA into C.

One can prove the following propositions:

(2)1 dom(g�B) = B.

(5)2 f �B = g�B iff for every x such thatx∈ B holdsg(x) = f (x).

(6) For every setB holds f+·g�B is a function fromA into C.

(7) g�B+· f = f .

(8) For all functionsf , g such thatg≤ f holds f+·g = f .

(9) f+· f �B = f .

(10) If for everyx such thatx∈ B holdsg(x) = f (x), then f+·g�B = f .

In the sequelB denotes a finite subset ofA.
Next we state four propositions:

(12)3 g�B+· f = f .

(13) dom(g�B) = B.

(14) If for everyx such thatx∈ B holdsg(x) = f (x), then f+·g�B = f .

(16)4 If f �B = g�B, then f ◦B = g◦B.

1 The proposition (1) has been removed.
2 The propositions (3) and (4) have been removed.
3 The proposition (11) has been removed.
4 The proposition (15) has been removed.
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Let D be a non empty set and leto, o′ be binary operations onD. We say thato absorbso′ if and
only if:

(Def. 1) For all elementsx, y of D holdso(x, o′(x, y)) = x.

We introduceo does not absorbo′ as an antonym ofo absorbso′.
In the sequelL denotes a non empty lattice structure.
One can prove the following proposition

(17) Suppose that

(i) the join operation ofL is commutative and associative,

(ii) the meet operation ofL is commutative and associative,

(iii) the join operation ofL absorbs the meet operation ofL, and

(iv) the meet operation ofL absorbs the join operation ofL.

ThenL is lattice-like.

Let L be a lattice structure. The functorL◦ yields a strict lattice structure and is defined as
follows:

(Def. 2) L◦ = 〈the carrier ofL, the meet operation ofL, the join operation ofL〉.

Let L be a non empty lattice structure. Observe thatL◦ is non empty.
We now state two propositions:

(18)(i) The carrier ofL = the carrier ofL◦,

(ii) the join operation ofL = the meet operation ofL◦, and

(iii) the meet operation ofL = the join operation ofL◦.

(19) For every strict non empty lattice structureL holds(L◦)◦ = L.

We adopt the following rules:L denotes a lattice anda, b, u, v denote elements ofL.
The following propositions are true:

(21)5 If for everyv holdsutv = v, thenu =⊥L.

(22) If for everyv holds (the join operation ofL)(u, v) = v, thenu =⊥L.

(24)6 If for everyv holdsuuv = v, thenu =>L.

(25) If for everyv holds (the meet operation ofL)(u, v) = v, thenu =>L.

(26) The join operation ofL is idempotent.

(27) LetL be a join-commutative non emptyt-semi lattice structure. Then the join operation
of L is commutative.

(28) If the join operation ofL has a unity, then⊥L = 1the join operation ofL .

(29) LetL be a join-associative non emptyt-semi lattice structure. Then the join operation of
L is associative.

(30) The meet operation ofL is idempotent.

(31) LetL be a meet-commutative non emptyu-semi lattice structure. Then the meet operation
of L is commutative.

(32) LetL be a meet-associative non emptyu-semi lattice structure. Then the meet operation of
L is associative.

5 The proposition (20) has been removed.
6 The proposition (23) has been removed.
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Let L be a join-commutative non emptyt-semi lattice structure. Note that the join operation of
L is commutative.

Let L be a join-associative non emptyt-semi lattice structure. One can verify that the join
operation ofL is associative.

Let L be a meet-commutative non emptyu-semi lattice structure. Observe that the meet opera-
tion of L is commutative.

Let L be a meet-associative non emptyu-semi lattice structure. Note that the meet operation of
L is associative.

The following propositions are true:

(33) If the meet operation ofL has a unity, then>L = 1the meet operation ofL .

(34) The join operation ofL is distributive w.r.t. the join operation ofL.

(35) SupposeL is a distributive lattice. Then the join operation ofL is distributive w.r.t. the
meet operation ofL.

(36) If the join operation ofL is distributive w.r.t. the meet operation ofL, thenL is distributive.

(37) SupposeL is a distributive lattice. Then the meet operation ofL is distributive w.r.t. the
join operation ofL.

(38) If the meet operation ofL is distributive w.r.t. the join operation ofL, thenL is distributive.

(39) The meet operation ofL is distributive w.r.t. the meet operation ofL.

(40) The join operation ofL absorbs the meet operation ofL.

(41) The meet operation ofL absorbs the join operation ofL.

Let A be a non empty set, letL be a lattice, letB be a finite subset ofA, and let f be a function
from A into the carrier ofL. The functor

⊔f
B f yielding an element ofL is defined as follows:

(Def. 3)
⊔f

B f = (the join operation ofL)-∑B f .

The functord−efB f yields an element ofL and is defined as follows:

(Def. 4) d−efB f = (the meet operation ofL)-∑B f .

For simplicity, we adopt the following rules:A denotes a non empty set,x denotes an element
of A, B denotes a finite subset ofA, and f , g denote functions fromA into the carrier ofL.

One can prove the following propositions:

(43)7 If x∈ B, then f (x)v
⊔f

B f .

(44) If there existsx such thatx∈ B anduv f (x), thenuv
⊔f

B f .

(45) If for everyx such thatx∈ B holds f (x) = u andB 6= /0, then
⊔f

B f = u.

(46) If
⊔f

B f v u, then for everyx such thatx∈ B holds f (x)v u.

(47) If B 6= /0 and for everyx such thatx∈ B holds f (x)v u, then
⊔f

B f v u.

(48) If B 6= /0 and for everyx such thatx∈ B holds f (x)v g(x), then
⊔f

B f v
⊔f

Bg.

(49) If B 6= /0 and f �B = g�B, then
⊔f

B f =
⊔f

Bg.

(50) If B 6= /0, thenvt
⊔f

B f =
⊔f

B((the join operation ofL)◦(v, f )).

Let L be a lattice. One can check thatL◦ is lattice-like.
We now state a number of propositions:

7 The proposition (42) has been removed.
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(51) LetL be a lattice,B be a finite subset ofA, f be a function fromA into the carrier ofL, and
f ′ be a function fromA into the carrier ofL◦. If f = f ′, then

⊔f
B f = d−efB f ′ andd−efB f =

⊔f
B f ′.

(52) For all elementsa′, b′ of L◦ such thata = a′ andb = b′ holdsaub = a′ tb′ andatb =
a′ub′.

(53) If av b, then for all elementsa′, b′ of L◦ such thata = a′ andb = b′ holdsb′ v a′.

(54) For all elementsa′, b′ of L◦ such thata′ v b′ anda = a′ andb = b′ holdsbv a.

(55) If x∈ B, thend−efB f v f (x).

(56) If there existsx such thatx∈ B and f (x)v u, thend−efB f v u.

(57) If for everyx such thatx∈ B holds f (x) = u andB 6= /0, thend−efB f = u.

(58) If B 6= /0, thenvud−efB f = d−efB((the meet operation ofL)◦(v, f )).

(59) If uv d−efB f , then for everyx such thatx∈ B holdsuv f (x).

(60) If B 6= /0 and f �B = g�B, thend−efB f = d−efBg.

(61) If B 6= /0 and for everyx such thatx∈ B holdsuv f (x), thenuv d−efB f .

(62) If B 6= /0 and for everyx such thatx∈ B holds f (x)v g(x), thend−efB f v d−efBg.

(63) For every latticeL holdsL is lower-bounded iffL◦ is upper-bounded.

(64) For every latticeL holdsL is upper-bounded iffL◦ is lower-bounded.

(65) L is a distributive lattice iffL◦ is a distributive lattice.

In the sequelL is a lower bound lattice,f , g are functions fromA into the carrier ofL, andu is
an element ofL.

One can prove the following propositions:

(66) ⊥L is a unity w.r.t. the join operation ofL.

(67) The join operation ofL has a unity.

(68) ⊥L = 1the join operation ofL .

(69) If f �B = g�B, then
⊔f

B f =
⊔f

Bg.

(70) If for everyx such thatx∈ B holds f (x)v u, then
⊔f

B f v u.

(71) If for everyx such thatx∈ B holds f (x)v g(x), then
⊔f

B f v
⊔f

Bg.

In the sequelL denotes an upper bound lattice,f , g denote functions fromA into the carrier of
L, andu denotes an element ofL.

The following propositions are true:

(72) >L is a unity w.r.t. the meet operation ofL.

(73) The meet operation ofL has a unity.

(74) >L = 1the meet operation ofL .

(75) If f �B = g�B, thend−efB f = d−efBg.

(76) If for everyx such thatx∈ B holdsuv f (x), thenuv d−efB f .

(77) If for everyx such thatx∈ B holds f (x)v g(x), thend−efB f v d−efBg.

(78) For every lower bound latticeL holds⊥L =>L◦ .
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(79) For every upper bound latticeL holds>L =⊥L◦ .

A distributive lower bounded lattice is a distributive lower-bounded lattice.
In the sequelL denotes a distributive lower bounded lattice,f , g denote functions fromA into

the carrier ofL, andu denotes an element ofL.
One can prove the following propositions:

(80) The meet operation ofL is distributive w.r.t. the join operation ofL.

(81) (The meet operation ofL)(u,
⊔f

B f ) =
⊔f

B((the meet operation ofL)◦(u, f )).

(82) If for everyx such thatx∈ B holdsg(x) = uu f (x), thenuu
⊔f

B f =
⊔f

Bg.

(83) uu
⊔f

B f =
⊔f

B((the meet operation ofL)◦(u, f )).

Let I1 be a lattice. We say thatI1 is Heyting if and only if:

(Def. 6)8 I1 is implicative and lower-bounded.

Let us observe that there exists a lattice which is Heyting.
One can check that every lattice which is Heyting is also implicative and lower-bounded and

every lattice which is implicative and lower-bounded is also Heyting.
A Heyting lattice is a Heyting lattice.
Let us note that there exists a lattice which is Heyting and strict.
Next we state two propositions:

(84) LetL be a lower bound lattice. ThenL is a Heyting lattice if and only if for all elementsx,
zof L there exists an elementy of L such thatxuyv zand for every elementv of L such that
xuvv z holdsvv y.

(85) For every latticeL holdsL is finite iff L◦ is finite.

Let us note that every lattice which is finite is also lower-bounded and every lattice which is
finite is also upper-bounded.

Let us observe that every lattice which is finite is also bounded.
One can check that every lattice which is distributive and finite is also Heyting.
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