## On the Lattice of Subgroups of a Group

Janusz Ganczarski Warsaw University Białystok

MML Identifier: LATSUBGR.

WWW: http://mizar.org/JFM/Vol7/latsubgr.html

The articles [10], [5], [17], [2], [18], [9], [4], [3], [19], [11], [8], [13], [15], [12], [14], [16], [1], [7], and [6] provide the notation and terminology for this paper.

The following propositions are true:

- (1) Let G be a group and  $H_1$ ,  $H_2$  be subgroups of G. Then the carrier of  $H_1 \cap H_2 =$  (the carrier of  $H_1) \cap$  (the carrier of  $H_2$ ).
- (2) For every group G and for every set h holds  $h \in \operatorname{SubGr} G$  iff there exists a strict subgroup H of G such that h = H.
- (3) Let G be a group, A be a subset of G, and H be a strict subgroup of G. If A = the carrier of H, then gr(A) = H.
- (4) Let G be a group,  $H_1$ ,  $H_2$  be subgroups of G, and A be a subset of G. If A = (the carrier of  $H_1$ )  $\cup$  (the carrier of  $H_2$ ), then  $H_1 \sqcup H_2 = \operatorname{gr}(A)$ .
- (5) For every group G and for all subgroups  $H_1$ ,  $H_2$  of G and for every element g of G such that  $g \in H_1$  or  $g \in H_2$  holds  $g \in H_1 \sqcup H_2$ .
- (6) Let  $G_1$ ,  $G_2$  be groups, f be a homomorphism from  $G_1$  to  $G_2$ , and  $H_1$  be a subgroup of  $G_1$ . Then there exists a strict subgroup  $H_2$  of  $G_2$  such that the carrier of  $H_2 = f^{\circ}$  (the carrier of  $H_1$ ).
- (7) Let  $G_1$ ,  $G_2$  be groups, f be a homomorphism from  $G_1$  to  $G_2$ , and  $H_2$  be a subgroup of  $G_2$ . Then there exists a strict subgroup  $H_1$  of  $G_1$  such that the carrier of  $H_1 = f^{-1}$  (the carrier of  $H_2$ ).
- (10)<sup>1</sup> Let  $G_1$ ,  $G_2$  be groups, f be a homomorphism from  $G_1$  to  $G_2$ ,  $H_1$ ,  $H_2$  be subgroups of  $G_1$ , and  $H_3$ ,  $H_4$  be subgroups of  $G_2$ . Suppose the carrier of  $H_3 = f^{\circ}$  (the carrier of  $H_1$ ) and the carrier of  $H_4 = f^{\circ}$  (the carrier of  $H_2$ ). If  $H_1$  is a subgroup of  $H_2$ , then  $H_3$  is a subgroup of  $H_4$ .
- (11) Let  $G_1$ ,  $G_2$  be groups, f be a homomorphism from  $G_1$  to  $G_2$ ,  $H_1$ ,  $H_2$  be subgroups of  $G_2$ , and  $H_3$ ,  $H_4$  be subgroups of  $G_1$ . Suppose the carrier of  $H_3 = f^{-1}$  (the carrier of  $H_1$ ) and the carrier of  $H_4 = f^{-1}$  (the carrier of  $H_2$ ). If  $H_1$  is a subgroup of  $H_2$ , then  $H_3$  is a subgroup of  $H_4$ .
- (12) Let  $G_1$ ,  $G_2$  be groups, f be a function from the carrier of  $G_1$  into the carrier of  $G_2$ , and A be a subset of  $G_1$ . Then  $f^{\circ}A \subseteq f^{\circ}$  (the carrier of gr(A)).

1

© Association of Mizar Users

<sup>&</sup>lt;sup>1</sup> The propositions (8) and (9) have been removed.

- (13) Let  $G_1$ ,  $G_2$  be groups,  $H_1$ ,  $H_2$  be subgroups of  $G_1$ , f be a function from the carrier of  $G_1$  into the carrier of  $G_2$ , and A be a subset of  $G_1$ . Suppose A = (the carrier of  $H_1$ )  $\cup$  (the carrier of  $H_2$ ). Then  $f^{\circ}$  (the carrier of  $H_1 \cup H_2$ ) =  $f^{\circ}$  (the carrier of  $G_1$ ).
- (14) For every group G and for every subset A of G such that  $A = \{1_G\}$  holds  $gr(A) = \{1\}_G$ .

Let G be a group. The functor  $\overline{G}$  yielding a function from SubGrG into  $2^{\text{the carrier of }G}$  is defined as follows:

(Def. 1) For every strict subgroup H of G holds  $\overline{G}(H)$  = the carrier of H.

One can prove the following propositions:

- (18)<sup>2</sup> Let *G* be a group, *H* be a strict subgroup of *G*, and *x* be an element of *G*. Then  $x \in \overline{G}(H)$  if and only if  $x \in H$ .
- (19) For every group G and for every strict subgroup H of G holds  $1_G \in \overline{G}(H)$ .
- (20) For every group G and for every strict subgroup H of G holds  $\overline{G}(H) \neq \emptyset$ .
- (21) Let G be a group, H be a strict subgroup of G, and  $g_1$ ,  $g_2$  be elements of G. If  $g_1 \in \overline{G}(H)$  and  $g_2 \in \overline{G}(H)$ , then  $g_1 \cdot g_2 \in \overline{G}(H)$ .
- (22) For every group G and for every strict subgroup H of G and for every element g of G such that  $g \in \overline{G}(H)$  holds  $g^{-1} \in \overline{G}(H)$ .
- (23) For every group G and for all strict subgroups  $H_1$ ,  $H_2$  of G holds the carrier of  $H_1 \cap H_2 = \overline{G}(H_1) \cap \overline{G}(H_2)$ .
- (24) For every group G and for all strict subgroups  $H_1$ ,  $H_2$  of G holds  $\overline{G}(H_1 \cap H_2) = \overline{G}(H_1) \cap \overline{G}(H_2)$ .

Let G be a group and let F be a non empty subset of SubGrG. The functor  $\bigcap F$  yields a strict subgroup of G and is defined as follows:

(Def. 2) The carrier of  $\bigcap F = \bigcap (\overline{G}^{\circ} F)$ .

We now state several propositions:

- (25) For every group G and for every non empty subset F of SubGrG such that  $\{1\}_G \in F$  holds  $\bigcap F = \{1\}_G$ .
- (26) For every group G and for every element h of SubGrG and for every non empty subset F of SubGrG such that  $F = \{h\}$  holds  $\bigcap F = h$ .
- (27) Let G be a group,  $H_1$ ,  $H_2$  be subgroups of G, and  $h_1$ ,  $h_2$  be elements of  $\mathbb{L}_G$ . If  $h_1 = H_1$  and  $h_2 = H_2$ , then  $h_1 \sqcup h_2 = H_1 \sqcup H_2$ .
- (28) Let G be a group,  $H_1$ ,  $H_2$  be subgroups of G, and  $h_1$ ,  $h_2$  be elements of  $\mathbb{L}_G$ . If  $h_1 = H_1$  and  $h_2 = H_2$ , then  $h_1 \sqcap h_2 = H_1 \cap H_2$ .
- (29) Let G be a group, p be an element of  $\mathbb{L}_G$ , and H be a subgroup of G. If p = H, then H is a strict subgroup of G.
- (30) Let G be a group,  $H_1$ ,  $H_2$  be subgroups of G, and p, q be elements of  $\mathbb{L}_G$ . Suppose  $p = H_1$  and  $q = H_2$ . Then  $p \sqsubseteq q$  if and only if the carrier of  $H_1 \subseteq$  the carrier of  $H_2$ .
- (31) Let G be a group,  $H_1$ ,  $H_2$  be subgroups of G, and p, q be elements of  $\mathbb{L}_G$ . If  $p = H_1$  and  $q = H_2$ , then  $p \sqsubseteq q$  iff  $H_1$  is a subgroup of  $H_2$ .
- (32) For every group G holds  $\mathbb{L}_G$  is complete.

<sup>&</sup>lt;sup>2</sup> The propositions (15)–(17) have been removed.

- Let  $G_1$ ,  $G_2$  be groups and let f be a function from the carrier of  $G_1$  into the carrier of  $G_2$ . The functor FuncLatt(f) yielding a function from the carrier of  $\mathbb{L}_{(G_1)}$  into the carrier of  $\mathbb{L}_{(G_2)}$  is defined as follows:
- (Def. 3) For every strict subgroup H of  $G_1$  and for every subset A of  $G_2$  such that  $A = f^{\circ}$  (the carrier of H) holds (FuncLatt(f))(H) = gr(A).

One can prove the following propositions:

- (33) For every group *G* holds FuncLatt( $id_{the \ carrier \ of \ G}$ ) =  $id_{the \ carrier \ of \ \mathbb{L}_G}$ .
- (34) For all groups  $G_1$ ,  $G_2$  and for every homomorphism f from  $G_1$  to  $G_2$  such that f is one-to-one holds FuncLatt(f) is one-to-one.
- (35) For all groups  $G_1$ ,  $G_2$  and for every homomorphism f from  $G_1$  to  $G_2$  holds  $(\operatorname{FuncLatt}(f))(\{\mathbf{1}\}_{(G_1)})=\{\mathbf{1}\}_{(G_2)}$ .
- (36) Let  $G_1$ ,  $G_2$  be groups and f be a homomorphism from  $G_1$  to  $G_2$ . Suppose f is one-to-one. Then FuncLatt(f) is a lower homomorphism between  $\mathbb{L}_{(G_1)}$  and  $\mathbb{L}_{(G_2)}$ .
- (37) Let  $G_1$ ,  $G_2$  be groups and f be a homomorphism from  $G_1$  to  $G_2$ . Then FuncLatt(f) is an upper homomorphism between  $\mathbb{L}_{(G_1)}$  and  $\mathbb{L}_{(G_2)}$ .
- (38) Let  $G_1$ ,  $G_2$  be groups and f be a homomorphism from  $G_1$  to  $G_2$ . If f is one-to-one, then FuncLatt(f) is a homomorphism from  $\mathbb{L}_{(G_1)}$  to  $\mathbb{L}_{(G_2)}$ .

## REFERENCES

- [1] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct\_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct\_ 2.html.
- [4] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc\_1.html.
- [6] Andrzej Iwaniuk. On the lattice of subspaces of a vector space. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/vectsp\_8.html.
- [7] Jolanta Kamieńska and Jarosław Stanisław Walijewski. Homomorphisms of lattices, finite join and finite meet. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/lattice4.html.
- [8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp\_1.html.
- [9] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam\_1.html.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [11] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect\_1.html.
- [12] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/group\_3.html.
- [13] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group\_1.html.
- [14] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group\_4.html.
- [15] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group\_2.html.
- [16] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/group\_6.html.
- [17] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset\_1.html.

- [18] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat\_1.html.
- [19] Stanisław Żukowski. Introduction to lattice theory. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/lattices.html.

Received May 23, 1995

Published January 2, 2004