The de l'Hospital Theorem

Małgorzata Korolkiewicz Warsaw University Białystok

Summary. List of theorems concerning the de l'Hospital Theorem. We discuss the case when both functions have the zero value at a point and when the quotient of their differentials is convergent at this point.

 $MML\ Identifier: \verb|L_HOSPIT|.$

WWW: http://mizar.org/JFM/Vol4/l_hospit.html

The articles [13], [1], [14], [2], [4], [3], [15], [8], [12], [9], [10], [11], [6], [7], and [5] provide the notation and terminology for this paper.

We adopt the following convention: f, g are partial functions from \mathbb{R} to \mathbb{R} , r, r_1 , r_2 , g_1 , g_2 , x_0 , t are real numbers, and a is a sequence of real numbers.

We now state a number of propositions:

- (1) Suppose that
- (i) f is continuous in x_0 , and
- (ii) for all r_1 , r_2 such that $r_1 < x_0$ and $x_0 < r_2$ there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $x_0 < g_2$ and $g_2 \in \text{dom } f$.

Then f is convergent in x_0 .

- (2) f is right convergent in x_0 and $\lim_{x_0^+} f = t$ if and only if the following conditions are satisfied:
- (i) for every r such that $x_0 < r$ there exists t such that t < r and $x_0 < t$ and $t \in \text{dom } f$, and
- (ii) for every a such that a is convergent and $\lim a = x_0$ and $\operatorname{rng} a \subseteq \operatorname{dom} f \cap]x_0, +\infty[$ holds $f \cdot a$ is convergent and $\lim (f \cdot a) = t$.
- (3) f is left convergent in x_0 and $\lim_{x_0^-} f = t$ if and only if the following conditions are satisfied:
- (i) for every r such that $r < x_0$ there exists t such that r < t and $t < x_0$ and $t \in \text{dom } f$, and
- (ii) for every a such that a is convergent and $\lim a = x_0$ and $\operatorname{rng} a \subseteq \operatorname{dom} f \cap]{-\infty, x_0}[$ holds $f \cdot a$ is convergent and $\lim (f \cdot a) = t$.
- (4) Given a neighbourhood N of x_0 such that $N \setminus \{x_0\} \subseteq \text{dom } f$. Let given r_1 , r_2 . Suppose $r_1 < x_0$ and $x_0 < r_2$. Then there exist g_1 , g_2 such that $r_1 < g_1$ and $g_1 < x_0$ and $g_1 \in \text{dom } f$ and $g_2 < r_2$ and $g_2 \in \text{dom } f$.
- (5) Given a neighbourhood N of x_0 such that

f is differentiable on N and g is differentiable on N and $N \setminus \{x_0\} \subseteq \operatorname{dom}(\frac{f}{g})$ and $N \subseteq \operatorname{dom}(\frac{f'_{\lceil N}}{g'_{\lceil N}})$ and $f(x_0) = 0$ and $g(x_0) = 0$ and

(6) Given a neighbourhood N of x_0 such that

f is differentiable on N and g is differentiable on N and $N \setminus \{x_0\} \subseteq \operatorname{dom}(\frac{f}{g})$ and $N \subseteq \operatorname{dom}(\frac{f'_{|N|}}{g'_{|N|}})$ and $f(x_0) = 0$ and $g(x_0) = 0$ and $\frac{f'_{|N|}}{g'_{|N|}}$ is divergent to $-\infty$ in x_0 . Then $\frac{f}{g}$ is divergent to $-\infty$ in x_0 .

(7) Given r such that

r>0 and f is differentiable on $]x_0,x_0+r[$ and g is differentiable on $]x_0,x_0+r[$ and $]x_0,x_0+r[\subseteq \mathrm{dom}(\frac{f}{g})]$ and $[x_0,x_0+r]\subseteq \mathrm{dom}(\frac{f'_{[1x_0,x_0+r]}}{g'_{[1x_0,x_0+r]}})$ and $f(x_0)=0$ and $g(x_0)=0$ and f is continuous in f and f is continuous in f and f is right convergent in f and there exists f such that f and f and

(8) Given r such that

r>0 and f is differentiable on $]x_0-r,x_0[$ and g is differentiable on $]x_0-r,x_0[$ and $]x_0-r,x_0[\subseteq \mathrm{dom}(\frac{f}{g})]$ and $[x_0-r,x_0]\subseteq \mathrm{dom}(\frac{f'_{\lceil |x_0-r,x_0|}}{g'_{\lceil |x_0-r,x_0|}})]$ and $f(x_0)=0$ and $g(x_0)=0$ and f is continuous in x_0 and g is continuous in x_0 and g is continuous in x_0 and there exists f such that f>0 and $\lim_{x_0-(\frac{f}{g})=\lim_{x_0-(\frac{f'_{\lceil |x_0-r,x_0|}}{g'_{\lceil |x_0-r,x_0|}})}$.

(9) Given a neighbourhood N of x_0 such that

f is differentiable on N and g is differentiable on N and $N \setminus \{x_0\} \subseteq \operatorname{dom}(\frac{f}{g})$ and $N \subseteq \operatorname{dom}(\frac{f'_{|N|}}{g'_{|N|}})$ and $f(x_0) = 0$ and $g(x_0) = 0$ and $\frac{f'_{|N|}}{g'_{|N|}}$ is convergent in x_0 . Then $\frac{f}{g}$ is convergent in x_0 and there exists a neighbourhood N of x_0 such that $\lim_{x_0} \left(\frac{f}{g}\right) = \lim_{x_0} \left(\frac{f'_{|N|}}{g'_{|N|}}\right)$.

(10) Given a neighbourhood N of x_0 such that

f is differentiable on N and g is differentiable on N and $N \setminus \{x_0\} \subseteq \operatorname{dom}(\frac{f}{g})$ and $N \subseteq \operatorname{dom}(\frac{f'_{\uparrow N}}{g'_{\uparrow N}})$ and $f(x_0) = 0$ and $g(x_0) = 0$ and $\frac{f'_{N}}{g'_{\uparrow N}}$ is continuous in x_0 . Then $\frac{f}{g}$ is convergent in x_0 and $\lim_{x_0} (\frac{f}{g}) = \frac{f'(x_0)}{g'(x_0)}$.

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
- [2] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html.
- [3] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_2.html.
- [4] Jarosław Kotowicz. Real sequences and basic operations on them. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/ JFM/Voll/seq_1.html.
- [5] Jarosław Kotowicz. The limit of a real function at a point. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/limfunc3.html.

- [6] Jarosław Kotowicz. The limit of a real function at infinity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/limfuncl.html.
- [7] Jarosław Kotowicz. The one-side limits of a real function at a point. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/limfunc2.html.
- [8] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_1.html.
- [9] Jarosław Kotowicz. Properties of real functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_
- [10] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/fcont_1.html.
- [11] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fdiff_1.html.
- [12] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [15] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.

Received February 20, 1992

Published January 2, 2004