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The de I'Hospital Theorem
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Summary. List of theorems concerning the de I'Hospital Theorem. We discuss the
case when both functions have the zero value at a point and when the quotient of their differ-
entials is convergent at this point.

MML Identifier: L_HOSPIT.

WWW: http://mizar.org/JFM/Vold/1_hospit.html

The articles([1B],[[1],[[14],[12],14], 3], [15],8], [12],[18],[10],111],[16],[[¥], and 5] provide the
notation and terminology for this paper.

We adopt the following conventiorf:, g are partial functions fronR to R, r, rq, r2, g1, g2, Xo, t
are real numbers, aralis a sequence of real numbers.

We now state a number of propositions:

(1) Suppose that
(i) fiscontinuous inkg, and

(i) forall rq, ro such thatr < Xp andxg < ro there exisgs, gz such thar; < g; andg: < Xg
andg; € domf andgy < ry andxg < g andg, € domf.

Thenf is convergent inxg.

(2) f is right convergent ing and lim+ f =t if and only if the following conditions are
satisfied:

(i) for everyr such thaig < r there exists such that < r andxg <t andt € domf, and

(i) for every a such thata is convergent and lira= xg and rnga C domf N |xp, +oo[ holds
f -ais convergent and liff - a) =t.

(3) fisleft convergenting and lim, - f =t if and only if the following conditions are satis-
fied:

(i) foreveryr such thar < xg there exists such that <t andt < Xy andt € domf, and

(i) for every a such thata is convergent and lira= xg and rnga C domf N]—oo, xp[ holds
f -ais convergent and liff - a) =t.

(4) Given a neighbourhool of xg such thatN \ {xo} C domf. Let givenry, ro. Suppose
ri < Xp andxp < rp. Then there exis);, g such that; < g; andg; < xp andg; € domf and
02 < rz andxg < g2 andgp € domf.

(5) Given a neighbourhodd of xg such that
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f is differentiable orN andg is differentiable oriN andN\ {xo} C don‘(i) andN C dom(fI—N)

andf(xp) = 0andg(xp) =0 and— is divergent tot-co in Xg. Then is divergent tot-o in
X0-

(6) Given a neighbourhodd of xg such that
f is differentiable orN andgis differentiable oriN andN\ {xo} C don‘(i) andN C dom(f[—N)

andf(xp) = 0 andg(xp) =0 and'—N is divergent to—co in Xo. Then is divergent to—o in
X0-

(7) Givenr such that
r > 0 and f is differentiable onxp,%o + r[ and g is differentiable on]xg,%o + r[ and

f
X0, %0 + 1 € dom(%) and [xo, %0 + 1] € dom(w) and f(xp) = 0 andg(x) = 0 and
+[

f is continuous inkg andg is continuous inkg and Mhoxgerl is right convergent irxo. Then—
]XO Xg+|

!
is right convergent irxg and there exists such thar > 0 and Iim(0+(é) = lim,+ (M
Iipxgxg-+l

(8) Givenr such that
r > 0 andf is differentiable or}xo—r Xo[ andg s differentiable onlxg —r,Xo[ and]xo —r, o[ C

dom(—) and[xg—r,%o] C dom( %0l) and f (o) = 0 andg(xo) = 0 andf is continuous in
1o

Xo andg is continuous irnkg and (g-rl is left convergent ino. Then is left convergent in
TJXo ol

f/
Xo and there exists such thar > 0 and Iirn((f(é) = lim, - (g,”xo ol
ool

(9) Given a neighbourhoadd of xg such that
f is differentiable oN andgis differentiable orN andN\ {xo} C dom(g) andN C dom(;;fT:)
andf (Xp) =0 andg(xp) =0 and;fT: is convergent ixg. Then1 is convergent ixg and there
exists a neighbourhodd of xg such that Iingo( f )= |Imx0(§—)
(10) Given a neighbourhodd of xg such that
f is differentiable oN andgis differentiable oN andN\ {xo} C don‘(é) andN C dom(;fT:)
and f(xp) = 0 andg(xp) =0 and;[—: is continuous inXg. Thené is convergent inxg and

. f/
imso(5) = gt

=
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