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Summary. List of theorems concerning the de l’Hospital Theorem. We discuss the
case when both functions have the zero value at a point and when the quotient of their differ-
entials is convergent at this point.
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The articles [13], [1], [14], [2], [4], [3], [15], [8], [12], [9], [10], [11], [6], [7], and [5] provide the
notation and terminology for this paper.

We adopt the following convention:f , g are partial functions fromR to R, r, r1, r2, g1, g2, x0, t
are real numbers, anda is a sequence of real numbers.

We now state a number of propositions:

(1) Suppose that

(i) f is continuous inx0, and

(ii) for all r1, r2 such thatr1 < x0 andx0 < r2 there existg1, g2 such thatr1 < g1 andg1 < x0

andg1 ∈ dom f andg2 < r2 andx0 < g2 andg2 ∈ dom f .

Then f is convergent inx0.

(2) f is right convergent inx0 and limx0
+ f = t if and only if the following conditions are

satisfied:

(i) for everyr such thatx0 < r there existst such thatt < r andx0 < t andt ∈ dom f , and

(ii) for every a such thata is convergent and lima = x0 and rnga⊆ dom f ∩ ]x0,+∞[ holds
f ·a is convergent and lim( f ·a) = t.

(3) f is left convergent inx0 and limx0
− f = t if and only if the following conditions are satis-

fied:

(i) for everyr such thatr < x0 there existst such thatr < t andt < x0 andt ∈ dom f , and

(ii) for every a such thata is convergent and lima = x0 and rnga⊆ dom f ∩ ]−∞,x0[ holds
f ·a is convergent and lim( f ·a) = t.

(4) Given a neighbourhoodN of x0 such thatN \ {x0} ⊆ dom f . Let given r1, r2. Suppose
r1 < x0 andx0 < r2. Then there existg1, g2 such thatr1 < g1 andg1 < x0 andg1 ∈ dom f and
g2 < r2 andx0 < g2 andg2 ∈ dom f .

(5) Given a neighbourhoodN of x0 such that
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f is differentiable onN andg is differentiable onN andN\{x0}⊆ dom( f
g) andN⊆ dom(

f ′�N

g′�N
)

and f (x0) = 0 andg(x0) = 0 and
f ′�N

g′�N
is divergent to+∞ in x0. Then f

g is divergent to+∞ in
x0.

(6) Given a neighbourhoodN of x0 such that

f is differentiable onN andg is differentiable onN andN\{x0}⊆ dom( f
g) andN⊆ dom(

f ′�N

g′�N
)

and f (x0) = 0 andg(x0) = 0 and
f ′�N

g′�N
is divergent to−∞ in x0. Then f

g is divergent to−∞ in
x0.

(7) Givenr such that

r > 0 and f is differentiable on]x0,x0 + r[ and g is differentiable on]x0,x0 + r[ and

]x0,x0 + r[ ⊆ dom( f
g) and [x0,x0 + r] ⊆ dom(

f ′�]x0,x0+r[
g′�]x0,x0+r[

) and f (x0) = 0 andg(x0) = 0 and

f is continuous inx0 andg is continuous inx0 and
f ′�]x0,x0+r[
g′�]x0,x0+r[

is right convergent inx0. Then f
g

is right convergent inx0 and there existsr such thatr > 0 and limx0
+( f

g) = limx0
+(

f ′�]x0,x0+r[
g′�]x0,x0+r[

).

(8) Givenr such that

r > 0 andf is differentiable on]x0−r,x0[ andg is differentiable on]x0−r,x0[ and]x0−r,x0[⊆

dom( f
g) and[x0− r,x0]⊆ dom(

f ′�]x0−r,x0[
g′�]x0−r,x0[

) and f (x0) = 0 andg(x0) = 0 and f is continuous in

x0 andg is continuous inx0 and
f ′�]x0−r,x0[
g′�]x0−r,x0[

is left convergent inx0. Then f
g is left convergent in

x0 and there existsr such thatr > 0 and limx0
−( f

g) = limx0
−(

f ′�]x0−r,x0[
g′�]x0−r,x0[

).

(9) Given a neighbourhoodN of x0 such that

f is differentiable onN andg is differentiable onN andN\{x0}⊆ dom( f
g) andN⊆ dom(

f ′�N

g′�N
)

and f (x0) = 0 andg(x0) = 0 and
f ′�N

g′�N
is convergent inx0. Then f

g is convergent inx0 and there

exists a neighbourhoodN of x0 such that limx0(
f
g) = limx0(

f ′�N

g′�N
).

(10) Given a neighbourhoodN of x0 such that

f is differentiable onN andg is differentiable onN andN\{x0}⊆ dom( f
g) andN⊆ dom(

f ′�N

g′�N
)

and f (x0) = 0 andg(x0) = 0 and
f ′�N

g′�N
is continuous inx0. Then f

g is convergent inx0 and

limx0(
f
g) = f ′(x0)

g′(x0) .
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