On the Kuratowski Limit Operators¹

Adam Grabowski University of Białystok

Summary. In the paper we give formal descriptions of the two Kuratowski limit oprators: Li *S* and Ls *S*, where *S* is an arbitrary sequence of subsets of a fixed topological space. In the two last sections we prove basic properties of these lower and upper topological limits, which may be found e.g. in [19]. In the sections 2–4, we present three operators which are associated in some sense with the above mentioned, that is lim inf *F*, lim sup *F*, and limes *F*, where *F* is a sequence of subsets of a fixed 1-sorted structure.

MML Identifier: KURATO_2.
WWW: http://mizar.org/JFM/Vol15/kurato_2.html

The articles [29], [33], [2], [32], [9], [1], [22], [24], [35], [12], [34], [6], [4], [18], [8], [7], [16], [5], [13], [25], [30], [21], [10], [23], [14], [15], [20], [17], [27], [28], [26], [11], [3], and [31] provide the notation and terminology for this paper.

1. PRELIMINARIES

One can prove the following propositions:

- (1) For all sets *X*, *x* and for every subset *A* of *X* such that $x \notin A$ and $x \in X$ holds $x \in A^c$.
- (2) For every function *F* and for every set *i* such that $i \in \text{dom } F$ holds $\bigcap F \subseteq F(i)$.
- (3) Let *T* be a non empty 1-sorted structure and S_1 , S_2 be sequences of subsets of the carrier of *T*. Then $S_1 = S_2$ if and only if for every natural number *n* holds $S_1(n) = S_2(n)$.
- (4) For all sets A, B, C, D such that A meets B and C meets D holds [:A, C:] meets [:B, D:].

Let X be a 1-sorted structure. Observe that every sequence of subsets of the carrier of X is non empty.

Let T be a non empty 1-sorted structure. Note that there exists a sequence of subsets of the carrier of T which is non-empty.

Let T be a non empty 1-sorted structure. A sequence of subsets of T is a sequence of subsets of the carrier of T.

In this article we present several logical schemes. The scheme *LambdaSSeq* deals with a non empty 1-sorted structure \mathcal{A} and a unary functor \mathcal{F} yielding a subset of \mathcal{A} , and states that:

There exists a sequence *f* of subsets of \mathcal{A} such that for every natural number *n* holds $f(n) = \mathcal{F}(n)$

for all values of the parameters.

The scheme *ExTopStrSeq* deals with a non empty topological space \mathcal{A} and a unary functor \mathcal{F} yielding a subset of \mathcal{A} , and states that:

¹This work has been partially supported by the CALCULEMUS grant HPRN-CT-2000-00102.

2

There exists a sequence *S* of subsets of the carrier of \mathcal{A} such that for every natural number *n* holds $S(n) = \mathcal{F}(n)$

for all values of the parameters.

Next we state the proposition

(5) Let X be a non empty 1-sorted structure and F be a sequence of subsets of the carrier of X. Then rng F is a family of subsets of X.

Let *X* be a non empty 1-sorted structure and let *F* be a sequence of subsets of the carrier of *X*. Then $\bigcup F$ is a subset of *X*. Then $\bigcap F$ is a subset of *X*.

2. LOWER AND UPPER LIMIT OF SEQUENCES OF SUBSETS

Let *X* be a non empty set, let *S* be a function from \mathbb{N} into *X*, and let *k* be a natural number. The functor $S \uparrow k$ yields a function from \mathbb{N} into *X* and is defined as follows:

(Def. 2)¹ For every natural number *n* holds $(S \uparrow k)(n) = S(n+k)$.

Let X be a non empty 1-sorted structure and let F be a sequence of subsets of the carrier of X. The functor $\liminf F$ yields a subset of X and is defined as follows:

(Def. 3) There exists a sequence f of subsets of X such that $\liminf F = \bigcup f$ and for every natural number n holds $f(n) = \bigcap (F \uparrow n)$.

The functor $\limsup F$ yields a subset of X and is defined as follows:

(Def. 4) There exists a sequence f of subsets of X such that $\limsup F = \bigcap f$ and for every natural number n holds $f(n) = \bigcup (F \uparrow n)$.

We now state a number of propositions:

- (6) Let X be a non empty 1-sorted structure, F be a sequence of subsets of the carrier of X, and x be a set. Then x ∈ ∩ F if and only if for every natural number z holds x ∈ F(z).
- (7) Let X be a non empty 1-sorted structure, F be a sequence of subsets of the carrier of X, and x be a set. Then $x \in \liminf F$ if and only if there exists a natural number n such that for every natural number k holds $x \in F(n+k)$.
- (8) Let X be a non empty 1-sorted structure, F be a sequence of subsets of the carrier of X, and x be a set. Then $x \in \limsup F$ if and only if for every natural number n there exists a natural number k such that $x \in F(n+k)$.
- (9) For every non empty 1-sorted structure X and for every sequence F of subsets of the carrier of X holds $\liminf F \subseteq \limsup F$.
- (10) For every non empty 1-sorted structure X and for every sequence F of subsets of the carrier of X holds $\bigcap F \subseteq \liminf F$.
- (11) For every non empty 1-sorted structure X and for every sequence F of subsets of the carrier of X holds $\limsup F \subseteq \bigcup F$.
- (12) For every non empty 1-sorted structure X and for every sequence F of subsets of the carrier of X holds $\liminf F = (\limsup \operatorname{Complement} F)^c$.
- (13) Let X be a non empty 1-sorted structure and A, B, C be sequences of subsets of the carrier of X. If for every natural number n holds $C(n) = A(n) \cap B(n)$, then $\liminf C = \liminf A \cap \liminf B$.
- (14) Let X be a non empty 1-sorted structure and A, B, C be sequences of subsets of the carrier of X. If for every natural number n holds $C(n) = A(n) \cup B(n)$, then $\limsup C = \limsup A \cup \limsup B$.

¹ The definition (Def. 1) has been removed.

- (15) Let X be a non empty 1-sorted structure and A, B, C be sequences of subsets of the carrier of X. If for every natural number n holds $C(n) = A(n) \cup B(n)$, then $\liminf A \cup \liminf B \subseteq \liminf C$.
- (16) Let X be a non empty 1-sorted structure and A, B, C be sequences of subsets of the carrier of X. If for every natural number n holds $C(n) = A(n) \cap B(n)$, then $\limsup C \subseteq \limsup A \cap \limsup B$.
- (17) Let X be a non empty 1-sorted structure, A be a sequence of subsets of the carrier of X, and B be a subset of X. If for every natural number n holds A(n) = B, then $\limsup A = B$.
- (18) Let X be a non empty 1-sorted structure, A be a sequence of subsets of the carrier of X, and B be a subset of X. If for every natural number n holds A(n) = B, then $\liminf A = B$.
- (19) Let X be a non empty 1-sorted structure, A, B be sequences of subsets of the carrier of X, and C be a subset of X. If for every natural number n holds B(n) = C A(n), then $C \liminf A \subseteq \limsup B$.
- (20) Let X be a non empty 1-sorted structure, A, B be sequences of subsets of the carrier of X, and C be a subset of X. If for every natural number n holds B(n) = C A(n), then $C \limsup A \subseteq \limsup B$.

3. ASCENDING AND DESCENDING FAMILIES OF SUBSETS

Let T be a non empty 1-sorted structure and let S be a sequence of subsets of T. We say that S is descending if and only if:

(Def. 5) For every natural number *i* holds $S(i+1) \subseteq S(i)$.

We say that *S* is ascending if and only if:

(Def. 6) For every natural number *i* holds $S(i) \subseteq S(i+1)$.

We now state several propositions:

- (21) Let f be a function. Suppose that for every natural number i holds $f(i+1) \subseteq f(i)$. Let i, j be natural numbers. If $i \leq j$, then $f(j) \subseteq f(i)$.
- (22) Let *T* be a non empty 1-sorted structure and *C* be a sequence of subsets of *T*. Suppose *C* is descending. Let *i*, *m* be natural numbers. If $i \ge m$, then $C(i) \subseteq C(m)$.
- (23) Let *T* be a non empty 1-sorted structure and *C* be a sequence of subsets of *T*. Suppose *C* is ascending. Let *i*, *m* be natural numbers. If $i \ge m$, then $C(m) \subseteq C(i)$.
- (24) Let *T* be a non empty 1-sorted structure, *F* be a sequence of subsets of *T*, and *x* be a set. Suppose *F* is descending and there exists a natural number *k* such that for every natural number *n* such that n > k holds $x \in F(n)$. Then $x \in \bigcap F$.
- (25) Let T be a non empty 1-sorted structure and F be a sequence of subsets of T. If F is descending, then $\liminf F = \bigcap F$.
- (26) Let T be a non empty 1-sorted structure and F be a sequence of subsets of T. If F is ascending, then $\limsup F = \bigcup F$.

4. CONSTANT AND CONVERGENT SEQUENCES

Let T be a non empty 1-sorted structure and let S be a sequence of subsets of T. We say that S is convergent if and only if:

(Def. 7) $\limsup S = \liminf S$.

Next we state the proposition

(27) Let T be a non empty 1-sorted structure and S be a sequence of subsets of T. If S is constant, then the value of S is a subset of T.

Let T be a non empty 1-sorted structure and let S be a sequence of subsets of T. Let us observe that S is constant if and only if:

(Def. 8) There exists a subset A of T such that for every natural number n holds S(n) = A.

Let T be a non empty 1-sorted structure. Note that every sequence of subsets of T which is constant is also convergent, ascending, and descending.

Let T be a non empty 1-sorted structure. Note that there exists a sequence of subsets of T which is constant and non empty.

Let T be a non empty 1-sorted structure and let S be a convergent sequence of subsets of T. The functor limes S yields a subset of T and is defined by:

(Def. 9) limes $S = \limsup S$ and limes $S = \liminf S$.

One can prove the following proposition

(28) Let X be a non empty 1-sorted structure, F be a convergent sequence of subsets of X, and x be a set. Then $x \in \text{limes } F$ if and only if there exists a natural number n such that for every natural number k holds $x \in F(n+k)$.

5. TOPOLOGICAL LEMMAS

In the sequel *n* is a natural number.

Let f be a finite sequence of elements of the carrier of \mathcal{E}^2_T . Note that $\mathcal{L}(f)$ is closed. One can prove the following propositions:

- (29) Let *r* be a real number, *M* be a non empty Reflexive metric structure, and *x* be an element of *M*. If 0 < r, then $x \in \text{Ball}(x, r)$.
- (30) For every point x of \mathcal{E}^n and for every real number r holds Ball(x,r) is an open subset of \mathcal{E}^n_{T} .
- (31) For all points p, q of \mathcal{E}_{T}^{n} and for all points p', q' of \mathcal{E}^{n} such that p = p' and q = q' holds $\rho(p',q') = |p-q|$.
- (32) Let p be a point of \mathcal{E}^n , x, p' be points of \mathcal{E}^n_T , and r be a real number. If p = p' and $x \in \text{Ball}(p,r)$, then |x p'| < r.
- (33) Let p be a point of \mathcal{E}^n , x, p' be points of \mathcal{E}^n_T , and r be a real number. If p = p' and |x p'| < r, then $x \in \text{Ball}(p, r)$.
- (34) Let *n* be a natural number, *r* be a point of \mathcal{E}_{T}^{n} , and *X* be a subset of \mathcal{E}_{T}^{n} . Suppose $r \in \overline{X}$. Then there exists a sequence s_{1} in \mathcal{E}_{T}^{n} such that $\operatorname{rng} s_{1} \subseteq X$ and s_{1} is convergent and $\lim s_{1} = r$.

Let *M* be a non empty metric space. Note that M_{top} is first-countable. Let *n* be a natural number. Observe that \mathcal{E}_T^n is first-countable. One can prove the following propositions:

- (35) Let *p* be a point of \mathcal{E}^n , *q* be a point of \mathcal{E}^n_T , and *r* be a real number. If p = q and r > 0, then Ball(p, r) is a neighbourhood of *q*.
- (36) Let *A* be a subset of \mathcal{E}_{T}^{n} , *p* be a point of \mathcal{E}_{T}^{n} , and *p'* be a point of \mathcal{E}^{n} . Suppose p = p'. Then $p \in \overline{A}$ if and only if for every real number *r* such that r > 0 holds Ball(p', r) meets *A*.
- (37) Let x, y be points of \mathcal{E}_{T}^{n} and x' be a point of \mathcal{E}^{n} . If x' = x and $x \neq y$, then there exists a real number r such that $y \notin \text{Ball}(x', r)$.

- (38) Let *S* be a subset of \mathcal{E}_{T}^{n} . Then *S* is non Bounded if and only if for every real number *r* such that r > 0 there exist points *x*, *y* of \mathcal{E}^{n} such that $x \in S$ and $y \in S$ and $\rho(x, y) > r$.
- (39) For all real numbers *a*, *b* and for all points *x*, *y* of \mathcal{E}^n such that Ball(x,a) meets Ball(y,b) holds $\rho(x,y) < a+b$.
- (40) Let *a*, *b*, *c* be real numbers and *x*, *y*, *z* be points of \mathcal{E}^n . If Ball(*x*,*a*) meets Ball(*z*,*c*) and Ball(*z*,*c*) meets Ball(*y*,*b*), then $\rho(x,y) < a+b+2 \cdot c$.
- (41) Let X, Y be non empty topological spaces, x be a point of X, y be a point of Y, and V be a subset of [:X, Y:]. Then V is a neighbourhood of $[:\{x\}, \{y\}:]$ if and only if V is a neighbourhood of $\langle x, y \rangle$.

Now we present two schemes. The scheme TSubsetEx deals with a non empty topological structure \mathcal{A} and a unary predicate \mathcal{P} , and states that:

There exists a subset *X* of \mathcal{A} such that for every point *x* of \mathcal{A} holds $x \in X$ iff $\mathcal{P}[x]$ for all values of the parameters.

The scheme *TSubsetUniq* deals with a topological structure \mathcal{A} and a unary predicate \mathcal{P} , and states that:

Let A_1, A_2 be subsets of \mathcal{A} . Suppose for every point *x* of \mathcal{A} holds $x \in A_1$ iff $\mathcal{P}[x]$ and for every point *x* of \mathcal{A} holds $x \in A_2$ iff $\mathcal{P}[x]$. Then $A_1 = A_2$

for all values of the parameters.

Let T be a non empty topological structure, let S be a sequence of subsets of the carrier of T, and let i be a natural number. Then S(i) is a subset of T.

We now state two propositions:

- (42) Let T be a non empty 1-sorted structure, S be a sequence of subsets of the carrier of T, and R be a sequence of naturals. Then $S \cdot R$ is a sequence of subsets of T.
- (43) $id_{\mathbb{N}}$ is an increasing sequence of naturals.

Let us observe that $id_{\mathbb{N}}$ is real-yielding.

6. SUBSEQUENCES

Let T be a non empty 1-sorted structure and let S be a sequence of subsets of the carrier of T. A sequence of subsets of T is said to be a subsequence of S if:

(Def. 10) There exists an increasing sequence N_1 of naturals such that it = $S \cdot N_1$.

We now state several propositions:

- (44) For every non empty 1-sorted structure T holds every sequence S of subsets of the carrier of T is a subsequence of S.
- (45) Let *T* be a non empty 1-sorted structure, *S* be a sequence of subsets of *T*, and *S*₁ be a subsequence of *S*. Then rng $S_1 \subseteq$ rng *S*.
- (46) Let T be a non empty 1-sorted structure, S_1 be a sequence of subsets of the carrier of T, and S_2 be a subsequence of S_1 . Then every subsequence of S_2 is a subsequence of S_1 .
- (47) Let *T* be a non empty 1-sorted structure, *F*, *G* be sequences of subsets of the carrier of *T*, and *A* be a subset of *T*. Suppose *G* is a subsequence of *F* and for every natural number *i* holds F(i) = A. Then G = F.
- (48) Let *T* be a non empty 1-sorted structure, *A* be a constant sequence of subsets of *T*, and *B* be a subsequence of *A*. Then A = B.
- (49) Let *T* be a non empty 1-sorted structure, *S* be a sequence of subsets of the carrier of *T*, *R* be a subsequence of *S*, and *n* be a natural number. Then there exists a natural number *m* such that $m \ge n$ and R(n) = S(m).

Let T be a non empty 1-sorted structure and let X be a constant sequence of subsets of T. Observe that every subsequence of X is constant.

The scheme *SubSeqChoice* deals with a non empty topological space \mathcal{A} , a sequence \mathcal{B} of subsets of the carrier of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

There exists a subsequence S_1 of \mathcal{B} such that for every natural number *n* holds $\mathcal{P}[S_1(n)]$

provided the parameters meet the following condition:

• For every natural number *n* there exists a natural number *m* such that $n \leq m$ and $\mathcal{P}[\mathcal{B}(m)]$.

7. THE LOWER TOPOLOGICAL LIMIT

Let T be a non empty topological space and let S be a sequence of subsets of the carrier of T. The functor Li S yielding a subset of T is defined by the condition (Def. 11).

(Def. 11) Let p be a point of T. Then $p \in \text{Li } S$ if and only if for every neighbourhood G of p there exists a natural number k such that for every natural number m such that m > k holds S(m) meets G.

One can prove the following propositions:

- (50) Let *S* be a sequence of subsets of the carrier of \mathcal{E}_{T}^{n} , *p* be a point of \mathcal{E}_{T}^{n} , and *p'* be a point of \mathcal{E}^{n} . Suppose p = p'. Then $p \in \text{Li } S$ if and only if for every real number *r* such that r > 0 there exists a natural number *k* such that for every natural number *m* such that m > k holds S(m) meets Ball(p', r).
- (51) For every non empty topological space T and for every sequence S of subsets of the carrier of T holds $\overline{\text{Li }S} = \text{Li }S$.
- (52) For every non empty topological space T and for every sequence S of subsets of the carrier of T holds Li S is closed.
- (53) Let *T* be a non empty topological space and *R*, *S* be sequences of subsets of the carrier of *T*. If *R* is a subsequence of *S*, then Li $S \subseteq$ Li *R*.
- (54) Let *T* be a non empty topological space and *A*, *B* be sequences of subsets of the carrier of *T*. If for every natural number *i* holds $A(i) \subseteq B(i)$, then Li $A \subseteq$ Li *B*.
- (55) Let *T* be a non empty topological space and *A*, *B*, *C* be sequences of subsets of the carrier of *T*. If for every natural number *i* holds $C(i) = A(i) \cup B(i)$, then Li $A \cup$ Li $B \subseteq$ Li *C*.
- (56) Let *T* be a non empty topological space and *A*, *B*, *C* be sequences of subsets of the carrier of *T*. If for every natural number *i* holds $C(i) = A(i) \cap B(i)$, then Li $C \subseteq$ Li $A \cap$ Li *B*.
- (57) Let *T* be a non empty topological space and *F*, *G* be sequences of subsets of the carrier of *T*. If for every natural number *i* holds $G(i) = \overline{F(i)}$, then Li G = Li F.
- (58) Let S be a sequence of subsets of the carrier of \mathcal{E}_{T}^{n} and p be a point of \mathcal{E}_{T}^{n} . Given a sequence s in \mathcal{E}_{T}^{n} such that s is convergent and for every natural number x holds $s(x) \in S(x)$ and $p = \lim s$. Then $p \in \text{Li } S$.
- (59) Let *T* be a non empty topological space, *P* be a subset of *T*, and *s* be a sequence of subsets of the carrier of *T*. If for every natural number *i* holds $s(i) \subseteq P$, then Li $s \subseteq \overline{P}$.
- (60) Let T be a non empty topological space, F be a sequence of subsets of the carrier of T, and A be a subset of T. If for every natural number i holds F(i) = A, then Li $F = \overline{A}$.
- (61) Let T be a non empty topological space, F be a sequence of subsets of the carrier of T, and A be a closed subset of T. If for every natural number i holds F(i) = A, then Li F = A.

- (62) Let *S* be a sequence of subsets of the carrier of \mathcal{E}_{T}^{n} and *P* be a subset of \mathcal{E}_{T}^{n} . Suppose *P* is Bounded and for every natural number *i* holds $S(i) \subseteq P$. Then Li *S* is Bounded.
- (63) Let *S* be a sequence of subsets of the carrier of \mathcal{E}_{T}^{2} and *P* be a subset of \mathcal{E}_{T}^{2} . Suppose *P* is Bounded and for every natural number *i* holds $S(i) \subseteq P$ and for every natural number *i* holds S(i) is compact. Then Li *S* is compact.
- (64) Let *A*, *B* be sequences of subsets of the carrier of \mathcal{E}_{T}^{n} and *C* be a sequence of subsets of the carrier of $[:\mathcal{E}_{T}^{n}, \mathcal{E}_{T}^{n}:]$. If for every natural number *i* holds C(i) = [:A(i), B(i):], then [:LiA, LiB:] = LiC.
- (65) For every sequence *S* of subsets of \mathcal{E}_{T}^{2} holds $\liminf S \subseteq \operatorname{Li} S$.
- (66) For every simple closed curve *C* and for every natural number *i* holds $Fr((UBD \widetilde{\mathcal{L}}(Cage(C, i)))^c) = \widetilde{\mathcal{L}}(Cage(C, i)).$

8. The Upper Topological Limit

Let T be a non empty topological space and let S be a sequence of subsets of the carrier of T. The functor Ls S yields a subset of T and is defined as follows:

(Def. 12) For every set x holds $x \in Ls S$ iff there exists a subsequence A of S such that $x \in Li A$.

We now state a number of propositions:

- (67) Let *N* be a natural number, *F* be a sequence of \mathcal{E}_{T}^{N} , *x* be a point of \mathcal{E}_{T}^{N} , and *x'* be a point of \mathcal{E}^{N} . Suppose x = x'. Then *x* is a cluster point of *F* if and only if for every real number *r* and for every natural number *n* such that r > 0 there exists a natural number *m* such that $n \le m$ and $F(m) \in \text{Ball}(x', r)$.
- (68) For every non empty topological space T and for every sequence A of subsets of the carrier of T holds $\text{Li} A \subseteq \text{Ls} A$.
- (69) Let *A*, *B*, *C* be sequences of subsets of the carrier of \mathcal{E}_{T}^{2} . Suppose for every natural number *i* holds $A(i) \subseteq B(i)$ and *C* is a subsequence of *A*. Then there exists a subsequence *D* of *B* such that for every natural number *i* holds $C(i) \subseteq D(i)$.
- (70) Let *A*, *B*, *C* be sequences of subsets of the carrier of \mathcal{E}_{T}^{2} . Suppose for every natural number *i* holds $A(i) \subseteq B(i)$ and *C* is a subsequence of *B*. Then there exists a subsequence *D* of *A* such that for every natural number *i* holds $D(i) \subseteq C(i)$.
- (71) Let *A*, *B* be sequences of subsets of the carrier of \mathcal{E}_{T}^{2} . If for every natural number *i* holds $A(i) \subseteq B(i)$, then Ls $A \subseteq$ Ls *B*.
- (72) Let *A*, *B*, *C* be sequences of subsets of the carrier of \mathcal{E}_{T}^{2} . If for every natural number *i* holds $C(i) = A(i) \cup B(i)$, then Ls $A \cup Ls B \subseteq Ls C$.
- (73) Let *A*, *B*, *C* be sequences of subsets of the carrier of \mathcal{E}_{T}^{2} . If for every natural number *i* holds $C(i) = A(i) \cap B(i)$, then Ls $C \subseteq Ls A \cap Ls B$.
- (74) Let *A*, *B* be sequences of subsets of the carrier of \mathcal{E}_T^2 and *C*, *C*₁ be sequences of subsets of the carrier of $[:\mathcal{E}_T^2, \mathcal{E}_T^2]$. Suppose for every natural number *i* holds C(i) = [:A(i), B(i):] and *C*₁ is a subsequence of *C*. Then there exist sequences *A*₁, *B*₁ of subsets of the carrier of \mathcal{E}_T^2 such that *A*₁ is a subsequence of *A* and *B*₁ is a subsequence of *B* and for every natural number *i* holds $C_1(i) = [:A_1(i), B_1(i):]$.
- (75) Let *A*, *B* be sequences of subsets of the carrier of \mathcal{E}_{T}^{2} and *C* be a sequence of subsets of the carrier of $[:\mathcal{E}_{T}^{2}, \mathcal{E}_{T}^{2}:]$. If for every natural number *i* holds C(i) = [:A(i), B(i):], then Ls $C \subseteq [:Ls A, Ls B:]$.

- (76) Let T be a non empty topological space, F be a sequence of subsets of the carrier of T, and A be a subset of T. If for every natural number i holds F(i) = A, then Li F = Ls F.
- (77) Let *F* be a sequence of subsets of the carrier of \mathcal{E}_{T}^{2} and *A* be a subset of \mathcal{E}_{T}^{2} . If for every natural number *i* holds F(i) = A, then Ls $F = \overline{A}$.
- (78) Let *F*, *G* be sequences of subsets of the carrier of \mathcal{E}_{T}^{2} . If for every natural number *i* holds $G(i) = \overline{F(i)}$, then Ls G = Ls F.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [3] Grzegorz Bancerek. Cartesian product of functions. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/ funct_6.html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [5] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/ pcomps_1.html.
- [6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [7] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [8] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [9] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [10] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in £². Journal of Formalized Mathematics, 9, 1997. http: //mizar.org/JFM/Vol9/pscomp_1.html.
- [11] Czesław Byliński and Mariusz Żynel. Cages the external approximation of Jordan's curve. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Voll1/jordan9.html.
- [12] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/compts_1.html.
- [13] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [14] Agata Darmochwał and Yatsuka Nakamura. The topological space Z²_T. Arcs, line segments and special polygonal arcs. *Journal of Formalized Mathematics*, 3, 1991. http://mizar.org/JFM/Vol3/topreal1.html.
- [15] Agata Darmochwał and Yatsuka Nakamura. The topological space E_T². Simple closed curves. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreal2.html.
- [16] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar. org/JFM/Vol2/metric_1.html.
- [17] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/seqm_3.html.
- [18] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/seq_1.html.
- [19] Kazimierz Kuratowski. Topology, volume I. PWN Polish Scientific Publishers, Academic Press, Warsaw, New York and London, 1966.
- [20] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Voll1/jordan2c.html.
- [21] Andrzej Nędzusiak. σ-fields and probability. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/prob_1. html.
- [22] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/setfam_1.html.
- [23] Beata Padlewska. Locally connected spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/connsp_ 2.html.
- [24] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/pre_topc.html.
- [25] Jan Popiołek. Real normed space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/normsp_1.html.

- [26] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in \mathcal{Z}_{T}^{N} . Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/toprns_1.html.
- [27] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Journal of Formalized Mathematics, 10, 1998. http://mizar. org/JFM/Vol10/frechet.html.
- [28] Bartłomiej Skorulski. The sequential closure operator in sequential and Frechet spaces. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/frechet2.html.
- [29] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [30] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/ Vol3/borsuk_1.html.
- [31] Andrzej Trybulec. Moore-Smith convergence. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_ 6.html.
- [32] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.
- [33] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [34] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.
- [35] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Journal of Formalized Mathematics, 1, 1989. http: //mizar.org/JFM/Voll/tops_1.html.

Received August 12, 2003

Published January 2, 2004