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Summary. In this article we formalize the Kuratowski closure-complement result:
there is at most 14 distinct sets that one can produce from a given subsetA of a topological
spaceT by applying closure and complement operators and that all 14 can be obtained from a
suitable subset ofR, namely KuratExSet= {1}∪Q(2,3)∪ (3,4)∪ (4,∞).

The second part of the article deals with the maximal number of distinct sets which may
be obtained from a given subsetA of T by applying closure and interior operators. The subset
KuratExSet ofR is also enough to show that 7 can be achieved.

MML Identifier: KURATO_1.

WWW: http://mizar.org/JFM/Vol15/kurato_1.html

The articles [13], [15], [14], [10], [16], [12], [1], [3], [11], [7], [6], [8], [2], [4], [9], and [5] provide
the notation and terminology for this paper.

1. FOURTEENKURATOWSKI SETS

In this paperT is a non empty topological space andA is a subset ofT.
We now state the proposition

(1) Accc = Ac.

Let us considerT, A. The functor Kurat14Part(A) is defined as follows:

(Def. 1) Kurat14Part(A) = {A,A,Ac,Ac,Acc,Acc,Accc}.

Let us considerT, A. Observe that Kurat14Part(A) is finite.
Let us considerT, A. The functor Kurat14Set(A) yields a family of subsets ofT and is defined

by:

(Def. 2) Kurat14Set(A) = {A,A,Ac,Ac,Acc,Acc,Accc}∪{Ac,Ac,Acc,Acc,Accc,Accc,Acccc}.

Next we state three propositions:

(2) Kurat14Set(A) = Kurat14Part(A)∪Kurat14Part(Ac).

(3) A ∈ Kurat14Set(A) and A ∈ Kurat14Set(A) and Ac ∈ Kurat14Set(A) and Ac ∈
Kurat14Set(A) andAcc∈Kurat14Set(A) andAcc∈Kurat14Set(A) andAccc∈Kurat14Set(A).

(4) Ac ∈ Kurat14Set(A) and Ac ∈ Kurat14Set(A) and Acc ∈ Kurat14Set(A) and Acc ∈
Kurat14Set(A) and Accc ∈ Kurat14Set(A) and Accc ∈ Kurat14Set(A) and Acccc ∈
Kurat14Set(A).
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Let us considerT, A. The functor Kurat14ClosedPart(A) yields a family of subsets ofT and is
defined by:

(Def. 3) Kurat14ClosedPart(A) = {A,Ac,Acc,Ac,Acc,Accc}.

The functor Kurat14OpenPart(A) yields a family of subsets ofT and is defined by:

(Def. 4) Kurat14OpenPart(A) = {Ac,Acc,Accc,Acc,Accc,Acccc}.

Next we state the proposition

(5) Kurat14Set(A) = {A,Ac}∪Kurat14ClosedPart(A)∪Kurat14OpenPart(A).

Let us considerT, A. Observe that Kurat14Set(A) is finite.
Next we state two propositions:

(6) For every subsetQ of T such thatQ∈ Kurat14Set(A) holdsQc ∈ Kurat14Set(A) andQ∈
Kurat14Set(A).

(7) cardKurat14Set(A)≤ 14.

2. SEVEN KURATOWSKI SETS

Let us considerT, A. The functor Kurat7Set(A) yields a family of subsets ofT and is defined by:

(Def. 5) Kurat7Set(A) = {A, IntA,A, IntA, IntA, IntA, Int IntA}.

The following propositions are true:

(8) A∈Kurat7Set(A) and IntA∈Kurat7Set(A) andA∈Kurat7Set(A) and IntA∈Kurat7Set(A)
andIntA∈ Kurat7Set(A) andIntA∈ Kurat7Set(A) and IntIntA∈ Kurat7Set(A).

(9) Kurat7Set(A) = {A}∪{IntA, IntA, Int IntA}∪{A, IntA, IntA}.

Let us considerT, A. One can check that Kurat7Set(A) is finite.
We now state two propositions:

(10) For every subsetQ of T such thatQ∈ Kurat7Set(A) holds IntQ∈ Kurat7Set(A) andQ∈
Kurat7Set(A).

(11) cardKurat7Set(A)≤ 7.

3. THE SET GENERATING EXACTLY FOURTEENKURATOWSKI SETS

The subset KuratExSet ofR1 is defined as follows:

(Def. 6) KuratExSet= {1}∪]2,3[Q∪ ]3,4[∪]4,+∞[.

We now state a number of propositions:

(12) KuratExSet= {1}∪ [2,+∞[.

(13) KuratExSetc =]−∞,1[∪]1,2[.

(14) KuratExSetc =]−∞,2].

(15) KuratExSetcc =]2,+∞[.

(16) KuratExSetcc = [2,+∞[.

(17) KuratExSetccc =]−∞,2[.
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(18) KuratExSetc =]−∞,1[∪]1,2]∪]2,3[IQ∪{3}∪{4}.

(19) KuratExSetc =]−∞,3]∪{4}.

(20) KuratExSetcc = ]3,4[∪]4,+∞[.

(21) KuratExSetcc = [3,+∞[.

(22) KuratExSetccc =]−∞,3[.

(23) KuratExSetccc =]−∞,3].

(24) KuratExSetcccc =]3,+∞[.

4. THE SET GENERATING EXACTLY SEVEN KURATOWSKI SETS

One can prove the following propositions:

(25) IntKuratExSet= ]3,4[∪]4,+∞[.

(26) IntKuratExSet= [3,+∞[.

(27) IntIntKuratExSet=]3,+∞[.

(28) IntKuratExSet=]2,+∞[.

(29) IntKuratExSet= [2,+∞[.

5. THE DIFFERENCEBETWEEN CHOSENKURATOWSKI SETS

We now state a number of propositions:

(30) IntKuratExSet6= IntKuratExSet.

(31) IntKuratExSet6= KuratExSet.

(32) IntKuratExSet6= Int IntKuratExSet.

(33) IntKuratExSet6= IntKuratExSet.

(34) IntKuratExSet6= IntKuratExSet.

(35) IntKuratExSet6= KuratExSet.

(36) IntKuratExSet6= Int IntKuratExSet.

(37) IntKuratExSet6= IntKuratExSet.

(38) IntKuratExSet6= IntKuratExSet.

(39) IntIntKuratExSet6= KuratExSet.

(40) IntKuratExSet6= KuratExSet.

(41) IntKuratExSet6= KuratExSet.

(42) KuratExSet6= KuratExSet.

(43) KuratExSet6= IntKuratExSet.

(44) IntKuratExSet6= Int IntKuratExSet.

(45) IntIntKuratExSet6= IntKuratExSet.

(46) IntKuratExSet6= IntKuratExSet.
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6. FINAL PROOFSFOR SEVEN SETS

The following propositions are true:

(47) IntIntKuratExSet6= IntKuratExSet.

(48) IntKuratExSet, IntKuratExSet, Int IntKuratExSet are mutually different.

(49) KuratExSet,IntKuratExSet,IntKuratExSet are mutually different.

(50) For every setX such thatX ∈ {IntKuratExSet, IntKuratExSet, Int IntKuratExSet} holdsX
is an open non empty subset ofR1.

(51) For every setX such thatX ∈ {KuratExSet, IntKuratExSet, IntKuratExSet} holdsX is a
closed subset ofR1.

(52) For every setX such thatX ∈ {IntKuratExSet, IntKuratExSet, Int IntKuratExSet} holds
X 6= R.

(53) For every setX such thatX ∈ {KuratExSet, IntKuratExSet, IntKuratExSet} holdsX 6= R.

(54) {IntKuratExSet, IntKuratExSet, Int IntKuratExSet}misses{KuratExSet, IntKuratExSet, IntKuratExSet}.

(55) IntKuratExSet, IntKuratExSet, Int IntKuratExSet, KuratExSet,IntKuratExSet,IntKuratExSet
are mutually different.

Let us note that KuratExSet is non closed and non open.
One can prove the following propositions:

(56) {IntKuratExSet, IntKuratExSet, Int IntKuratExSet,KuratExSet, IntKuratExSet, IntKuratExSet}
misses{KuratExSet}.

(57) KuratExSet, IntKuratExSet, IntKuratExSet, Int IntKuratExSet, KuratExSet,IntKuratExSet,
IntKuratExSet are mutually different.

(58) cardKurat7Set(KuratExSet) = 7.

7. FINAL PROOFSFOR FOURTEENSETS

One can check that Kurat14ClosedPart(KuratExSet) has proper subsets and Kurat14OpenPart(KuratExSet)
has proper subsets.

Let us observe that Kurat14Set(KuratExSet) has proper subsets.
One can verify that Kurat14Set(KuratExSet) has non empty elements.
One can prove the following proposition

(59) For every setA with non empty elements and for every setB such thatB⊆ A holdsB has
non empty elements.

One can verify that Kurat14ClosedPart(KuratExSet) has non empty elements and Kurat14OpenPart(KuratExSet)
has non empty elements.

Let us observe that there exists a family of subsets ofR1 which has proper subsets and non
empty elements.

Next we state the proposition

(60) LetF , G be families of subsets ofR1 with proper subsets and non empty elements. IfF is
open andG is closed, thenF missesG.

Let us observe that Kurat14ClosedPart(KuratExSet) is closed and Kurat14OpenPart(KuratExSet)
is open.

Next we state the proposition
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(61) Kurat14ClosedPart(KuratExSet) misses Kurat14OpenPart(KuratExSet).

Let us considerT, A. One can check that Kurat14ClosedPart(A) is finite and Kurat14OpenPart(A)
is finite.

The following three propositions are true:

(62) cardKurat14ClosedPart(KuratExSet) = 6.

(63) cardKurat14OpenPart(KuratExSet) = 6.

(64) {KuratExSet,KuratExSetc} misses Kurat14ClosedPart(KuratExSet).

Let us observe that KuratExSet is non empty.
Next we state three propositions:

(65) KuratExSet6= KuratExSetc.

(66) {KuratExSet,KuratExSetc} misses Kurat14OpenPart(KuratExSet).

(67) cardKurat14Set(KuratExSet) = 14.

8. PROPERTIES OFKURATOWSKI SETS

Let T be a topological structure and letA be a family of subsets ofT. We say thatA is closed for
closure operator if and only if:

(Def. 7) For every subsetP of T such thatP∈ A holdsP∈ A.

We say thatA is closed for interior operator if and only if:

(Def. 8) For every subsetP of T such thatP∈ A holds IntP∈ A.

Let T be a 1-sorted structure and letA be a family of subsets ofT. We say thatA is closed for
complement operator if and only if:

(Def. 9) For every subsetP of T such thatP∈ A holdsPc ∈ A.

Let us considerT, A. One can check the following observations:

∗ Kurat14Set(A) is non empty,

∗ Kurat14Set(A) is closed for closure operator, and

∗ Kurat14Set(A) is closed for complement operator.

Let us considerT, A. One can verify the following observations:

∗ Kurat7Set(A) is non empty,

∗ Kurat7Set(A) is closed for interior operator, and

∗ Kurat7Set(A) is closed for closure operator.

Let us considerT. Note that there exists a family of subsets ofT which is closed for interior
operator, closed for closure operator, and non empty and there exists a family of subsets ofT which
is closed for complement operator, closed for closure operator, and non empty.
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