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Summary. Theorem (5) states that if an iterate of a function has a unique fixpoint then
itis also the fixpoint of the function. It has been included here in response to P. Andrews claim
that such a proof in set theory takes thousands of lines when one starts with the axioms. While
probably true, such a claim is misleading about the usefulness of proof-checking systems
based on set theory.

Next, we prove the existence of the least and the greatest fixpointsfoonotone func-
tions from a powerset to a powerset of a set. Schikmasteris the Knaster theorem about the
existence of fixpoints, cf[ [13]. Theorem (11) is the Banach decomposition theorem which is
then used to prove the Sclter-Bernstein theorem (12) (we followed Paulson’s development
of these theorems in Isabelle [15]). It is interesting to note that the last theorem when stated in
Mizar in terms of cardinals becomes trivial to prove as in the Mizar development of cardinals
the < relation is synonymous witx.

Section 3 introduces the notion of the lattice of a lattice subset provided the subset has
lubs and glbs.

The main theorem of Section 4 is the Tarski theorem (43) that every monotone function
f over a complete lattice has a complete lattice of fixpoints. As the consequence of this
theorem we get the existence of the least fixpoint equdﬁ(oLL) for some ordinaP with
cardinality not bigger than the cardinality of the carrierLofcf. [13], and analogously the
existence of the greatest fixpoint equalffe( T ).

Section 5 connects the fixpoint properties of monotone functions over complete lattices
with the fixpoints ofC-monotone functions over the lattice of subsets of a set (Boolean lattice).

MML Identifier: KNASTER.

WWW: http://mizar.org/JFM/Vol8/knaster.html

The articles|[1F7],[[11],[[19],[120],[122] [121],18], 110] [{9] [[16] . [14]/ 112] [ 12] [ 13] [11] [16].[[23],
[4], [5], [18], and [7] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paperf, g, h denote functions.
One can prove the following two propositions:

(1) If f is one-to-one and is one-to-one and rnfymisses rng, then f+-g is one-to-one.

(3H Supposér = f Ug and domf misses dorg. Thenhis one-to-one if and only if the follow-
ing conditions are satisfied:

(i) fisone-to-one,

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.
1 The proposition (2) has been removed.
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(i) gis one-to-one, and
(i)  rng f misses rng.

2. HXPOINTS IN GENERAL

Letx be a set and let be a function. We say thatis a fixpoint of f if and only if:

(Def. 1) xedomf andx= f(x).

Let Abe a non empty set, latbe an element o4, and letf be a function fronA into A. Let us
observe thah is a fixpoint of f if and only if:

(Def.2) a=f(a).

For simplicity, we adopt the following conventior; y, X are setsA is a non empty setyis a
natural number, anfl is a function fromX into X.
We now state two propositions:

(4) If xis afixpoint of f", thenf(x) is a fixpoint of f".

(5) Ifthere exist31such thai is a fixpoint of f" and for everyy such that is a fixpoint of f"
holdsx =y, thenx is a fixpoint of .

Let A, B be non empty sets and Iétbe a function fromA into B. Let us observe that is
C-monotone if and only if:

(Def. 3) For all elements, y of A such tha C y holds f(x) C f(y).

Let Abe a set and |eB be a hon empty set. Observe that there exists a function Aémo B

which is C-monotone.
Let X be a set and lef be aC-monotone function from?2into 2X. The functor IfgX, f)

yielding a subset oX is defined by:
(Def. 4) Ifp(X, f) =N{h;hranges over subsets ¥f f(h) C h}.

The functor gfgX, f) yields a subset ok and is defined as follows:
(Def. 5) gfp(X, f) =U{h;hranges over subsets ¥f h C f(h)}.

In the sequef denotes a -monotone function from’®2into 2X andSdenotes a subset f.
The following propositions are true:

(6) Ifp(X, f)is afixpoint of f.
(7) gofp(X, f) is a fixpoint of f.
(8) Iff(S CSthenlfpX,f)CS
(9) If SC f(S), thenSC gfp(X, f).
(10) If Sis a fixpoint of f, then Ifp(X, f) C SandSC gfp(X, f).

The schem&nasterdeals with a sefd and a unary functoff yielding a set, and states that:
There exists a sé@ such thatf (D) =D andD C 4
provided the parameters meet the following conditions:
e Forall setsX, Y such thaX CY holds# (X) C F(Y), and
e F(A)C A.
In the sequek, Y are non empty setd, is a function fromX into Y, andg is a function fromy
into X.
The following four propositions are true:
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(11) There exist set&s, X2, Y1, Y2 such thaiX; missesX; andY; missesy; andX; UX; = X and
YUY, =Y andf°X; =VY; andg°Y2 = Xo.

(12) If f is one-to-one ang is one-to-one, then there exists a function fr&nmto Y which is
bijective.
(13) If there existd which is bijective, therX ~ Y.

(14) If f is one-to-one and is one-to-one, theX = Y.

3. THE LATTICE OF LATTICE SUBSET

Let L be a non empty lattice structure, liebe a unary operation dn and letx be an element df.
Thenf(x) is an element of.
LetL be alattice, leff be a function from the carrier &finto the carrier oL, letx be an element
of L, and letO be an ordinal number. The functé?(x) is defined by the condition (Def. 6).
(Def. 6) There exists a transfinite sequehgeuch that
(i) f9(x) =lastLo,
(i) domLg = sucaO,
(i) Lo(0)=x,
(iv) for every ordinal numbe€ such that sud€ € sucdO holdsLg(sucdC) = f(Lo(C)), and
(v) for every ordinal numbeC such thatC € sucdO andC # 0 andC is a limit ordinal number
holdsLo(C) = ||, rng(Lo[C).
The functorf?(x) is defined by the condition (Def. 7).

(Def. 7) There exists a transfinite sequehgeuch that
(i) f9(x) = lastLo,
(i) domLg = sucaO,
(ii))  Lo(0) =x,
(iv) for every ordinal numbe€ such that sud€ € sucdO holdsLg(sucdC) = f(Lo(C)), and
(v) for every ordinal numbeC such thatC € sucdO andC # 0 andC is a limit ordinal number
holdsLo(C) = [ ].rng(Lo[C).

For simplicity, we adopt the following ruled: denotes a latticef denotes a function from the
carrier ofL into the carrier oL, x denotes an element af O, O;, O, denote ordinal numbers, and
T denotes a transfinite sequence.

We now state several propositions:

6] f2(x) =x.
17) f2x) =x
(18)  3%°0(x) = F(fI(x)).
(19) 5°°0(x) = F(fO(x)).

(20) Suppose # 0 and O is a limit ordinal number and dof = O and for every ordinal
numberA such thai € O holdsT (A) = f4(x). ThenfQ(x) = | ], rngT.

(21) Suppose # 0 and O is a limit ordinal number and dofm = O and for every ordinal
numberA such thath € O holdsT (A) = f4(x). ThenfQ(x) = [LrngT.

(22) f"(x) = f1(x).

2 The proposition (15) has been removed.
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(23) f"(x) = fA(x).

LetL be a lattice, leff be a unary operation on the carrierlgfieta be an element df, and let
O be an ordinal number. Theif(a) is an element of..

LetL be a lattice, leff be a unary operation on the carrierlgfiet a be an element df, and let
O be an ordinal number. Theif(a) is an element of..

LetL be a non empty lattice structure andiebe a subset df. We say thaP has l.u.b.s if and
only if the condition (Def. 8) is satisfied.

(Def. 8) Letx, y be elements of. Supposex € P andy € P. Then there exists an elemenof L
such thatz € P andx C zandy C z and for every elemerd of L such thatZ € P andxC Z
andy C Z holdszC Z.

We say thaP has g.1.b.'s if and only if the condition (Def. 9) is satisfied.

(Def. 9) Letx, y be elements of. Supposex € P andy € P. Then there exists an elemenof L
such thatz € P andzC x andz C y and for every elemerd of L such thatZ € P andZ C x
andZ CyholdsZ C z

Let L be a lattice. Note that there exists a subsdt afhich is non empty and has l.u.b.s and
g.l.b’s.

LetL be a lattice and I&® be a non empty subset bfwith l.u.b.'s and g.l.b.'s. The functdip
yielding a strict lattice is defined by the conditions (Def. 10).

(Def. 10)()) The carrier olLp =P, and

(i) for all elementsx, y of Lp there exist elements, y of L such thaix = X' andy =y and
XCyiff X Cy.

4, COMPLETE LATTICES

Let us mention that every lattice which is complete is also bounded.

In the sequel is a complete latticef is a monotone unary operation bpanda, b are elements
of L.

We now state a number of propositions:

(24) There exists which is a fixpoint off.

(25) For everyasuch that C f(a) and for everyO holdsa C f9(a).

(26) For everya such thatf (a) C aand for everyO holds f9(a) C a.

(27) ForevenasuchthaaC f(a) and for allOy, O, such thaD; C O, holds 2 (a) C £52(a).
(28) For everysuch thatf (a) C aand for allO;, O, such thaD; C O, holdsf,gz(a) C fgl(a).

(29) For everya such thaa C f(a) and for allO;, O, such thatO; C O, and fSZ(a) is not a
fixpoint of f holds % (a) # £32(a).

(30) For everya such thatf (a) C a and for allO;, O such thatO; ¢ O, and fﬁZ(a) is not a
fixpoint of f holds f$(a) # f32(a).

(31) IfacC f(a) and ffl(a) is a fixpoint of f, then for everyO, such thatO; C O, holds
i(a) = £5(a).

(32) If f(adCTaand fmol(a) is a fixpoint of f, then for everyO, such thatO; C O, holds
i (a) = f92(a).

(33) ForeveryasuchthaaC f(a) there exist® such thatO < the carrier ol and fQ(a)isa
fixpoint of f.
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(34) Foreveryasuch thatf (a) C athere exist® such thatO < the carrier ol and fQ(a)isa
fixpoint of f.

(35) Letgivena, b. Supposais a fixpoint off andb is a fixpoint of f. Then there exist® such
thatO < the carrier ofL andf?(aLib) is a fixpoint of f andaC f9(aLb) andbC f9(aub).

(36) Letgivena, b. Supposais a fixpoint off andbis a fixpoint of f. Then there exist® such
thatO < the carrier ofL andfQ(amb) is a fixpoint of f andf(arb) C aandf(arb) C b.

(37) IfaC f(a) andaC bandbis a fixpoint of f, then for everyO, holdsfuoz(a) Ch.
(38) If f(a) CaandbC aandbis a fixpoint of f, then for everyO, holdsb C fﬁz(a).

LetL be a complete lattice and |étbe a unary operation dn Let us assume thdtis monotone.
The functor FixPointsf) yields a strict lattice and is defined as follows:

(Def. 11) There exists a non empty subBedf L with l.u.b.’s and g.l.b.'s such th& = {x;x ranges
over elements of: xis a fixpoint of f } and FixPoint§f) = Lp.

The following propositions are true:
(39) The carrier of FixPointd ) = {x; x ranges over elements bf x is a fixpoint of f }.
(40) The carrier of FixPointd) C the carrier ofL.
(41) ae the carrier of FixPointsf) iff ais a fixpoint of f.

(42) For all elements, y of FixPointg f) and for alla, b such thatk = aandy = b holdsxC y
iff aC b.

(43) FixPointgf) is complete.
Let us considet, f. The functor If f) yielding an element df is defined by:
(Def. 12) Ifp(f) = £ MM (1),
The functor gfg f) yielding an element of is defined by:
(Def. 13) gf(f) = f§" oot (7).

One can prove the following propositions:

>+

)+

(44) Ifp(f) is a fixpoint of f and there exist® such thatO < the carrier ol and fO(L) =
Ifp(f).

(45) dofp(f) is a fixpoint of f and there exist® such thatO < the carrier ol and fO(TL) =
gfp(f).

(46) Ifais afixpoint of f, then Ifp(f) C aanda C gfp(f).
(47) Iff(a)Ca, thenlfp(f)Ca.
(48) Ifac f(a),thenaC gfp(f).

5. BOOLEAN LATTICES

In the sequef denotes a monotone unary operation on the lattice of subséts of
Let A be a set. Observe that the lattice of subset isfcomplete.
Next we state three propositions:

(49) Letf be a unary operation on the lattice of subset8.0fhenf is monotone if and only if
f is C-monotone.

(50) There exists &-monotone functiorg from 2* into 2* such that IfgA, g) = Ifp(f).
(51) There exists &-monotone functiom from 2* into 2* such that gfpA, g) = gfp(f).
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