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Summary. Theorem (5) states that if an iterate of a function has a unique fixpoint then
it is also the fixpoint of the function. It has been included here in response to P. Andrews claim
that such a proof in set theory takes thousands of lines when one starts with the axioms. While
probably true, such a claim is misleading about the usefulness of proof-checking systems
based on set theory.

Next, we prove the existence of the least and the greatest fixpoints for⊆-monotone func-
tions from a powerset to a powerset of a set. SchemeKnasteris the Knaster theorem about the
existence of fixpoints, cf. [13]. Theorem (11) is the Banach decomposition theorem which is
then used to prove the Schröder-Bernstein theorem (12) (we followed Paulson’s development
of these theorems in Isabelle [15]). It is interesting to note that the last theorem when stated in
Mizar in terms of cardinals becomes trivial to prove as in the Mizar development of cardinals
the≤ relation is synonymous with⊆.

Section 3 introduces the notion of the lattice of a lattice subset provided the subset has
lubs and glbs.

The main theorem of Section 4 is the Tarski theorem (43) that every monotone function
f over a complete latticeL has a complete lattice of fixpoints. As the consequence of this
theorem we get the existence of the least fixpoint equal tof β(⊥L) for some ordinalβ with
cardinality not bigger than the cardinality of the carrier ofL, cf. [13], and analogously the
existence of the greatest fixpoint equal tof β(>L).

Section 5 connects the fixpoint properties of monotone functions over complete lattices
with the fixpoints of⊆-monotone functions over the lattice of subsets of a set (Boolean lattice).

MML Identifier: KNASTER.

WWW: http://mizar.org/JFM/Vol8/knaster.html

The articles [17], [11], [19], [20], [22], [21], [8], [10], [9], [16], [14], [12], [2], [3], [1], [6], [23],
[4], [5], [18], and [7] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paperf , g, h denote functions.
One can prove the following two propositions:

(1) If f is one-to-one andg is one-to-one and rngf misses rngg, then f+·g is one-to-one.

(3)1 Supposeh= f ∪g and domf misses domg. Thenh is one-to-one if and only if the follow-
ing conditions are satisfied:

(i) f is one-to-one,

1This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368.
1 The proposition (2) has been removed.

1 c© Association of Mizar Users
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(ii) g is one-to-one, and

(iii) rng f misses rngg.

2. FIXPOINTS IN GENERAL

Let x be a set and letf be a function. We say thatx is a fixpoint of f if and only if:

(Def. 1) x∈ dom f andx = f (x).

Let A be a non empty set, leta be an element ofA, and let f be a function fromA into A. Let us
observe thata is a fixpoint of f if and only if:

(Def. 2) a = f (a).

For simplicity, we adopt the following convention:x, y, X are sets,A is a non empty set,n is a
natural number, andf is a function fromX into X.

We now state two propositions:

(4) If x is a fixpoint of f n, then f (x) is a fixpoint of f n.

(5) If there existsn such thatx is a fixpoint of f n and for everyy such thaty is a fixpoint of f n

holdsx = y, thenx is a fixpoint of f .

Let A, B be non empty sets and letf be a function fromA into B. Let us observe thatf is
⊆-monotone if and only if:

(Def. 3) For all elementsx, y of A such thatx⊆ y holds f (x)⊆ f (y).

Let A be a set and letB be a non empty set. Observe that there exists a function fromA into B
which is⊆-monotone.

Let X be a set and letf be a⊆-monotone function from 2X into 2X. The functor lfp(X, f )
yielding a subset ofX is defined by:

(Def. 4) lfp(X, f ) =
⋂
{h;h ranges over subsets ofX: f (h)⊆ h}.

The functor gfp(X, f ) yields a subset ofX and is defined as follows:

(Def. 5) gfp(X, f ) =
⋃
{h;h ranges over subsets ofX: h⊆ f (h)}.

In the sequelf denotes a⊆-monotone function from 2X into 2X andSdenotes a subset ofX.
The following propositions are true:

(6) lfp(X, f ) is a fixpoint of f .

(7) gfp(X, f ) is a fixpoint of f .

(8) If f (S)⊆ S, then lfp(X, f )⊆ S.

(9) If S⊆ f (S), thenS⊆ gfp(X, f ).

(10) If S is a fixpoint of f , then lfp(X, f )⊆ SandS⊆ gfp(X, f ).

The schemeKnasterdeals with a setA and a unary functorF yielding a set, and states that:
There exists a setD such thatF (D) = D andD⊆ A

provided the parameters meet the following conditions:
• For all setsX, Y such thatX ⊆Y holdsF (X)⊆ F (Y), and
• F (A)⊆ A .

In the sequelX, Y are non empty sets,f is a function fromX into Y, andg is a function fromY
into X.

The following four propositions are true:
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(11) There exist setsX1, X2, Y1, Y2 such thatX1 missesX2 andY1 missesY2 andX1∪X2 = X and
Y1∪Y2 = Y and f ◦X1 = Y1 andg◦Y2 = X2.

(12) If f is one-to-one andg is one-to-one, then there exists a function fromX into Y which is
bijective.

(13) If there existsf which is bijective, thenX ≈Y.

(14) If f is one-to-one andg is one-to-one, thenX ≈Y.

3. THE LATTICE OF LATTICE SUBSET

Let L be a non empty lattice structure, letf be a unary operation onL, and letx be an element ofL.
Then f (x) is an element ofL.

Let L be a lattice, letf be a function from the carrier ofL into the carrier ofL, letx be an element
of L, and letO be an ordinal number. The functorf O

t (x) is defined by the condition (Def. 6).

(Def. 6) There exists a transfinite sequenceL0 such that

(i) f O
t (x) = lastL0,

(ii) domL0 = succO,

(iii) L0( /0) = x,

(iv) for every ordinal numberC such that succC∈ succO holdsL0(succC) = f (L0(C)), and

(v) for every ordinal numberC such thatC∈ succO andC 6= /0 andC is a limit ordinal number
holdsL0(C) =

⊔
L rng(L0�C).

The functorf O
u (x) is defined by the condition (Def. 7).

(Def. 7) There exists a transfinite sequenceL0 such that

(i) f O
u (x) = lastL0,

(ii) domL0 = succO,

(iii) L0( /0) = x,

(iv) for every ordinal numberC such that succC∈ succO holdsL0(succC) = f (L0(C)), and

(v) for every ordinal numberC such thatC∈ succO andC 6= /0 andC is a limit ordinal number
holdsL0(C) = d−eL rng(L0�C).

For simplicity, we adopt the following rules:L denotes a lattice,f denotes a function from the
carrier ofL into the carrier ofL, x denotes an element ofL, O, O1, O2 denote ordinal numbers, and
T denotes a transfinite sequence.

We now state several propositions:

(16)2 f /0
t(x) = x.

(17) f /0
u(x) = x.

(18) f succO
t (x) = f ( f O

t (x)).

(19) f succO
u (x) = f ( f O

u (x)).

(20) SupposeO 6= /0 and O is a limit ordinal number and domT = O and for every ordinal
numberA such thatA∈O holdsT(A) = f A

t (x). Then f O
t (x) =

⊔
L rngT.

(21) SupposeO 6= /0 and O is a limit ordinal number and domT = O and for every ordinal
numberA such thatA∈O holdsT(A) = f A

u (x). Then f O
u (x) = d−eL rngT.

(22) f n(x) = f n
t(x).

2 The proposition (15) has been removed.
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(23) f n(x) = f n
u(x).

Let L be a lattice, letf be a unary operation on the carrier ofL, let a be an element ofL, and let
O be an ordinal number. Thenf O

t (a) is an element ofL.
Let L be a lattice, letf be a unary operation on the carrier ofL, let a be an element ofL, and let

O be an ordinal number. Thenf O
u (a) is an element ofL.

Let L be a non empty lattice structure and letP be a subset ofL. We say thatP has l.u.b.’s if and
only if the condition (Def. 8) is satisfied.

(Def. 8) Letx, y be elements ofL. Supposex ∈ P andy ∈ P. Then there exists an elementz of L
such thatz∈ P andxv z andyv z and for every elementz′ of L such thatz′ ∈ P andxv z′

andyv z′ holdszv z′.

We say thatP has g.l.b.’s if and only if the condition (Def. 9) is satisfied.

(Def. 9) Letx, y be elements ofL. Supposex ∈ P andy ∈ P. Then there exists an elementz of L
such thatz∈ P andzv x andzv y and for every elementz′ of L such thatz′ ∈ P andz′ v x
andz′ v y holdsz′ v z.

Let L be a lattice. Note that there exists a subset ofL which is non empty and has l.u.b.’s and
g.l.b.’s.

Let L be a lattice and letP be a non empty subset ofL with l.u.b.’s and g.l.b.’s. The functorLP

yielding a strict lattice is defined by the conditions (Def. 10).

(Def. 10)(i) The carrier ofLP = P, and

(ii) for all elementsx, y of LP there exist elementsx′, y′ of L such thatx = x′ andy = y′ and
xv y iff x′ v y′.

4. COMPLETE LATTICES

Let us mention that every lattice which is complete is also bounded.
In the sequelL is a complete lattice,f is a monotone unary operation onL, anda, b are elements

of L.
We now state a number of propositions:

(24) There existsa which is a fixpoint off .

(25) For everya such thatav f (a) and for everyO holdsav f O
t (a).

(26) For everya such thatf (a)v a and for everyO holds f O
u (a)v a.

(27) For everya such thatav f (a) and for allO1, O2 such thatO1⊆O2 holds f O1
t (a)v f O2

t (a).

(28) For everya such thatf (a)v a and for allO1, O2 such thatO1⊆O2 holds f O2
u (a)v f O1

u (a).

(29) For everya such thatav f (a) and for allO1, O2 such thatO1 ⊂ O2 and f O2
t (a) is not a

fixpoint of f holds f O1
t (a) 6= f O2

t (a).

(30) For everya such thatf (a) v a and for allO1, O2 such thatO1 ⊂ O2 and f O2
u (a) is not a

fixpoint of f holds f O1
u (a) 6= f O2

u (a).

(31) If a v f (a) and f O1
t (a) is a fixpoint of f , then for everyO2 such thatO1 ⊆ O2 holds

f O1
t (a) = f O2

t (a).

(32) If f (a) v a and f O1
u (a) is a fixpoint of f , then for everyO2 such thatO1 ⊆ O2 holds

f O1
u (a) = f O2

u (a).

(33) For everya such thatav f (a) there existsO such thatO ≤ the carrier ofL and f O
t (a) is a

fixpoint of f .
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(34) For everya such thatf (a)v a there existsO such thatO ≤ the carrier ofL and f O
u (a) is a

fixpoint of f .

(35) Let givena, b. Supposea is a fixpoint of f andb is a fixpoint of f . Then there existsO such

thatO≤ the carrier ofL and f O
t (atb) is a fixpoint of f andav f O

t (atb) andbv f O
t (atb).

(36) Let givena, b. Supposea is a fixpoint of f andb is a fixpoint of f . Then there existsO such

that O≤ the carrier ofL and f O
u (aub) is a fixpoint of f and f O

u (aub)v a and f O
u (aub)v b.

(37) If av f (a) andav b andb is a fixpoint of f , then for everyO2 holds f O2
t (a)v b.

(38) If f (a)v a andbv a andb is a fixpoint of f , then for everyO2 holdsbv f O2
u (a).

Let L be a complete lattice and letf be a unary operation onL. Let us assume thatf is monotone.
The functor FixPoints( f ) yields a strict lattice and is defined as follows:

(Def. 11) There exists a non empty subsetP of L with l.u.b.’s and g.l.b.’s such thatP = {x;x ranges
over elements ofL: x is a fixpoint of f} and FixPoints( f ) = LP.

The following propositions are true:

(39) The carrier of FixPoints( f ) = {x;x ranges over elements ofL: x is a fixpoint of f}.

(40) The carrier of FixPoints( f )⊆ the carrier ofL.

(41) a∈ the carrier of FixPoints( f ) iff a is a fixpoint of f .

(42) For all elementsx, y of FixPoints( f ) and for alla, b such thatx = a andy = b holdsxv y
iff av b.

(43) FixPoints( f ) is complete.

Let us considerL, f . The functor lfp( f ) yielding an element ofL is defined by:

(Def. 12) lfp( f ) = f (the carrier ofL)+
t (⊥L).

The functor gfp( f ) yielding an element ofL is defined by:

(Def. 13) gfp( f ) = f (the carrier ofL)+
u (>L).

One can prove the following propositions:

(44) lfp( f ) is a fixpoint of f and there existsO such thatO ≤ the carrier ofL and f O
t (⊥L) =

lfp( f ).

(45) gfp( f ) is a fixpoint of f and there existsO such thatO ≤ the carrier ofL and f O
u (>L) =

gfp( f ).

(46) If a is a fixpoint of f , then lfp( f )v a andav gfp( f ).

(47) If f (a)v a, then lfp( f )v a.

(48) If av f (a), thenav gfp( f ).

5. BOOLEAN LATTICES

In the sequelf denotes a monotone unary operation on the lattice of subsets ofA.
Let A be a set. Observe that the lattice of subsets ofA is complete.
Next we state three propositions:

(49) Let f be a unary operation on the lattice of subsets ofA. Then f is monotone if and only if
f is⊆-monotone.

(50) There exists a⊆-monotone functiong from 2A into 2A such that lfp(A,g) = lfp( f ).

(51) There exists a⊆-monotone functiong from 2A into 2A such that gfp(A,g) = gfp( f ).



FIXPOINTS IN COMPLETE LATTICES 6

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/card_1.html.

[2] Grzegorz Bancerek. The ordinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/ordinal1.
html.

[3] Grzegorz Bancerek. Sequences of ordinal numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
ordinal2.html.

[4] Grzegorz Bancerek. Complete lattices.Journal of Formalized Mathematics, 4, 1992.http://mizar.org/JFM/Vol4/lattice3.html.

[5] Grzegorz Bancerek. Quantales.Journal of Formalized Mathematics, 6, 1994.http://mizar.org/JFM/Vol6/quantal1.html.

[6] Grzegorz Bancerek. Continuous, stable, and linear maps of coherence spaces.Journal of Formalized Mathematics, 7, 1995. http:
//mizar.org/JFM/Vol7/cohsp_1.html.

[7] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions.Journal of Formalized Mathematics, 8, 1996.http:
//mizar.org/JFM/Vol8/funct_7.html.
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