Fixpoints in Complete Lattices¹ Piotr Rudnicki University of Alberta Edmonton Andrzej Trybulec Warsaw University Białystok **Summary.** Theorem (5) states that if an iterate of a function has a unique fixpoint then it is also the fixpoint of the function. It has been included here in response to P. Andrews claim that such a proof in set theory takes thousands of lines when one starts with the axioms. While probably true, such a claim is misleading about the usefulness of proof-checking systems based on set theory. Next, we prove the existence of the least and the greatest fixpoints for \subseteq -monotone functions from a powerset to a powerset of a set. Scheme *Knaster* is the Knaster theorem about the existence of fixpoints, cf. [13]. Theorem (11) is the Banach decomposition theorem which is then used to prove the Schröder-Bernstein theorem (12) (we followed Paulson's development of these theorems in Isabelle [15]). It is interesting to note that the last theorem when stated in Mizar in terms of cardinals becomes trivial to prove as in the Mizar development of cardinals the \leq relation is synonymous with \subseteq . Section 3 introduces the notion of the lattice of a lattice subset provided the subset has lubs and glbs. The main theorem of Section 4 is the Tarski theorem (43) that every monotone function f over a complete lattice L has a complete lattice of fixpoints. As the consequence of this theorem we get the existence of the least fixpoint equal to $f^{\beta}(\bot_L)$ for some ordinal β with cardinality not bigger than the cardinality of the carrier of L, cf. [13], and analogously the existence of the greatest fixpoint equal to $f^{\beta}(\top_L)$. Section 5 connects the fixpoint properties of monotone functions over complete lattices with the fixpoints of \subseteq -monotone functions over the lattice of subsets of a set (Boolean lattice). MML Identifier: KNASTER. WWW: http://mizar.org/JFM/Vol8/knaster.html The articles [17], [11], [19], [20], [22], [21], [8], [10], [9], [16], [14], [12], [2], [3], [1], [6], [23], [4], [5], [18], and [7] provide the notation and terminology for this paper. ## 1. PRELIMINARIES In this paper f, g, h denote functions. One can prove the following two propositions: - (1) If f is one-to-one and g is one-to-one and rng f misses rng g, then f+g is one-to-one. - (3) Suppose $h = f \cup g$ and dom f misses dom g. Then h is one-to-one if and only if the following conditions are satisfied: - (i) f is one-to-one, ¹This work was partially supported by NSERC Grant OGP9207 and NATO CRG 951368. ¹ The proposition (2) has been removed. - (ii) g is one-to-one, and - (iii) $\operatorname{rng} f$ misses $\operatorname{rng} g$. #### 2. FIXPOINTS IN GENERAL Let x be a set and let f be a function. We say that x is a fixpoint of f if and only if: (Def. 1) $$x \in \text{dom } f \text{ and } x = f(x)$$. Let A be a non empty set, let a be an element of A, and let f be a function from A into A. Let us observe that a is a fixpoint of f if and only if: (Def. 2) $$a = f(a)$$. For simplicity, we adopt the following convention: x, y, X are sets, A is a non empty set, n is a natural number, and f is a function from X into X. We now state two propositions: - (4) If x is a fixpoint of f^n , then f(x) is a fixpoint of f^n . - (5) If there exists n such that x is a fixpoint of f^n and for every y such that y is a fixpoint of f^n holds x = y, then x is a fixpoint of f. Let A, B be non empty sets and let f be a function from A into B. Let us observe that f is \subseteq -monotone if and only if: (Def. 3) For all elements x, y of A such that $x \subseteq y$ holds $f(x) \subseteq f(y)$. Let *A* be a set and let *B* be a non empty set. Observe that there exists a function from *A* into *B* which is \subseteq -monotone. Let X be a set and let f be a \subseteq -monotone function from 2^X into 2^X . The functor lfp(X, f) yielding a subset of X is defined by: (Def. 4) $lfp(X, f) = \bigcap \{h; h \text{ ranges over subsets of } X: f(h) \subseteq h\}.$ The functor gfp(X, f) yields a subset of X and is defined as follows: (Def. 5) $gfp(X, f) = \bigcup \{h; h \text{ ranges over subsets of } X: h \subseteq f(h) \}.$ In the sequel f denotes a \subseteq -monotone function from 2^X into 2^X and S denotes a subset of X. The following propositions are true: - (6) lfp(X, f) is a fixpoint of f. - (7) gfp(X, f) is a fixpoint of f. - (8) If $f(S) \subseteq S$, then $lfp(X, f) \subseteq S$. - (9) If $S \subseteq f(S)$, then $S \subseteq gfp(X, f)$. - (10) If S is a fixpoint of f, then $lfp(X, f) \subseteq S$ and $S \subseteq gfp(X, f)$. The scheme *Knaster* deals with a set \mathcal{A} and a unary functor \mathcal{F} yielding a set, and states that: There exists a set D such that $\mathcal{F}(D) = D$ and $D \subseteq \mathcal{A}$ provided the parameters meet the following conditions: - For all sets X, Y such that $X \subseteq Y$ holds $\mathcal{F}(X) \subseteq \mathcal{F}(Y)$, and - $\mathcal{F}(\mathcal{A}) \subseteq \mathcal{A}$. In the sequel X, Y are non empty sets, f is a function from X into Y, and g is a function from Y into X. The following four propositions are true: - (11) There exist sets X_1 , X_2 , Y_1 , Y_2 such that X_1 misses X_2 and Y_1 misses Y_2 and $X_1 \cup X_2 = X$ and $Y_1 \cup Y_2 = Y$ and $f^{\circ}X_1 = Y_1$ and $g^{\circ}Y_2 = X_2$. - (12) If f is one-to-one and g is one-to-one, then there exists a function from X into Y which is bijective. - (13) If there exists f which is bijective, then $X \approx Y$. - (14) If f is one-to-one and g is one-to-one, then $X \approx Y$. ## 3. The lattice of lattice subset Let L be a non empty lattice structure, let f be a unary operation on L, and let x be an element of L. Then f(x) is an element of L. Let *L* be a lattice, let *f* be a function from the carrier of *L* into the carrier of *L*, let *x* be an element of *L*, and let *O* be an ordinal number. The functor $f_{\perp}^{O}(x)$ is defined by the condition (Def. 6). - (Def. 6) There exists a transfinite sequence L_0 such that - (i) $f_{\perp}^{O}(x) = \operatorname{last} L_{0}$, - (ii) $dom L_0 = succ O$, - (iii) $L_0(\emptyset) = x$, - (iv) for every ordinal number C such that $\operatorname{succ} C \in \operatorname{succ} O$ holds $L_0(\operatorname{succ} C) = f(L_0(C))$, and - (v) for every ordinal number C such that $C \in \operatorname{succ} O$ and $C \neq \emptyset$ and C is a limit ordinal number holds $L_0(C) = \bigsqcup_L \operatorname{rng}(L_0 \upharpoonright C)$. The functor $f_{\square}^{O}(x)$ is defined by the condition (Def. 7). - (Def. 7) There exists a transfinite sequence L_0 such that - (i) $f_{\square}^{O}(x) = \operatorname{last} L_{0}$, - (ii) $dom L_0 = succ O$, - (iii) $L_0(\emptyset) = x$, - (iv) for every ordinal number C such that $\operatorname{succ} C \in \operatorname{succ} O$ holds $L_0(\operatorname{succ} C) = f(L_0(C))$, and - (v) for every ordinal number C such that $C \in \operatorname{succ} O$ and $C \neq \emptyset$ and C is a limit ordinal number holds $L_0(C) = \bigcap_L \operatorname{rng}(L_0 \upharpoonright C)$. For simplicity, we adopt the following rules: L denotes a lattice, f denotes a function from the carrier of L into the carrier of L, x denotes an element of x, y, y, y, y denote ordinal numbers, and y denotes a transfinite sequence. We now state several propositions: - $(16)^2$ $f_{\perp \perp}^{(0)}(x) = x$. - (17) $f_{\Box}^{\emptyset}(x) = x$. - (18) $f_{\perp}^{\operatorname{succ} O}(x) = f(f_{\perp}^{O}(x)).$ - $(19) \quad f_{\square}^{\operatorname{succ} O}(x) = f(f_{\square}^{O}(x)).$ - (20) Suppose $O \neq \emptyset$ and O is a limit ordinal number and dom T = O and for every ordinal number A such that $A \in O$ holds $T(A) = f_{||}^A(x)$. Then $f_{||}^O(x) = \bigsqcup_L \text{rng } T$. - (21) Suppose $O \neq \emptyset$ and O is a limit ordinal number and $\operatorname{dom} T = O$ and for every ordinal number A such that $A \in O$ holds $T(A) = f_{\sqcap}^A(x)$. Then $f_{\sqcap}^O(x) = \bigcap_L \operatorname{rng} T$. - (22) $f^n(x) = f_{\perp}^n(x)$. ² The proposition (15) has been removed. (23) $f^n(x) = f_{\square}^n(x)$. Let L be a lattice, let f be a unary operation on the carrier of L, let a be an element of L, and let O be an ordinal number. Then $f_{\perp}^O(a)$ is an element of L. Let L be a lattice, let f be a unary operation on the carrier of L, let a be an element of L, and let O be an ordinal number. Then $f_{\square}^{O}(a)$ is an element of L. Let *L* be a non empty lattice structure and let *P* be a subset of *L*. We say that *P* has l.u.b.'s if and only if the condition (Def. 8) is satisfied. (Def. 8) Let x, y be elements of L. Suppose $x \in P$ and $y \in P$. Then there exists an element z of L such that $z \in P$ and $x \sqsubseteq z$ and $y \sqsubseteq z$ and for every element z' of L such that $z' \in P$ and $x \sqsubseteq z'$ and $y \sqsubseteq z'$ holds $z \sqsubseteq z'$. We say that P has g.l.b.'s if and only if the condition (Def. 9) is satisfied. (Def. 9) Let x, y be elements of L. Suppose $x \in P$ and $y \in P$. Then there exists an element z of L such that $z \in P$ and $z \sqsubseteq x$ and $z \sqsubseteq y$ and for every element z' of L such that $z' \in P$ and $z' \sqsubseteq x$ and $z' \sqsubseteq y$ holds $z' \sqsubseteq z$. Let L be a lattice. Note that there exists a subset of L which is non empty and has l.u.b.'s and g.l.b.'s. Let *L* be a lattice and let *P* be a non empty subset of *L* with l.u.b.'s and g.l.b.'s. The functor \mathbb{L}_P yielding a strict lattice is defined by the conditions (Def. 10). - (Def. 10)(i) The carrier of $\mathbb{L}_P = P$, and - (ii) for all elements x, y of \mathbb{L}_P there exist elements x', y' of L such that x = x' and y = y' and $x \sqsubseteq y$ iff $x' \sqsubseteq y'$. ## 4. Complete lattices Let us mention that every lattice which is complete is also bounded. In the sequel L is a complete lattice, f is a monotone unary operation on L, and a, b are elements of L. We now state a number of propositions: - (24) There exists a which is a fixpoint of f. - (25) For every a such that $a \sqsubseteq f(a)$ and for every O holds $a \sqsubseteq f_{\perp}^{O}(a)$. - (26) For every a such that $f(a) \sqsubseteq a$ and for every O holds $f_{\square}^{O}(a) \sqsubseteq a$. - (27) For every a such that $a \sqsubseteq f(a)$ and for all O_1 , O_2 such that $O_1 \subseteq O_2$ holds $f_{\perp \perp}^{O_1}(a) \sqsubseteq f_{\perp \perp}^{O_2}(a)$. - (28) For every a such that $f(a) \sqsubseteq a$ and for all O_1 , O_2 such that $O_1 \subseteq O_2$ holds $f_{\square}^{O_2}(a) \sqsubseteq f_{\square}^{O_1}(a)$. - (29) For every a such that $a \sqsubseteq f(a)$ and for all O_1 , O_2 such that $O_1 \subset O_2$ and $f_{\sqcup}^{O_2}(a)$ is not a fixpoint of f holds $f_{\sqcup}^{O_1}(a) \neq f_{\sqcup}^{O_2}(a)$. - (30) For every a such that $f(a) \sqsubseteq a$ and for all O_1 , O_2 such that $O_1 \subset O_2$ and $f_{\sqcap}^{O_2}(a)$ is not a fixpoint of f holds $f_{\sqcap}^{O_1}(a) \neq f_{\sqcap}^{O_2}(a)$. - (31) If $a \sqsubseteq f(a)$ and $f_{\sqcup}^{O_1}(a)$ is a fixpoint of f, then for every O_2 such that $O_1 \subseteq O_2$ holds $f_{\sqcup}^{O_1}(a) = f_{\sqcup}^{O_2}(a)$. - (32) If $f(a) \sqsubseteq a$ and $f_{\sqcap}^{O_1}(a)$ is a fixpoint of f, then for every O_2 such that $O_1 \subseteq O_2$ holds $f_{\sqcap}^{O_1}(a) = f_{\sqcap}^{O_2}(a)$. - (33) For every a such that $a \sqsubseteq f(a)$ there exists O such that $\overline{O} \leq \overline{\text{the carrier of } L}$ and $f_{\sqcup}^{O}(a)$ is a fixpoint of f. - (34) For every a such that $f(a) \sqsubseteq a$ there exists O such that $\overline{O} \leq \overline{\text{the carrier of } L}$ and $f_{\sqcap}^{O}(a)$ is a fixpoint of f. - (35) Let given a, b. Suppose a is a fixpoint of f and b is a fixpoint of f. Then there exists O such that $\overline{\overline{O}} \le \overline{\text{the carrier of } L}$ and $f_{\sqcup}^O(a \sqcup b)$ is a fixpoint of f and $a \sqsubseteq f_{\sqcup}^O(a \sqcup b)$ and $b \sqsubseteq f_{\sqcup}^O(a \sqcup b)$. - (36) Let given a, b. Suppose a is a fixpoint of f and b is a fixpoint of f. Then there exists O such that $\overline{O} \leq \overline{\text{the carrier of } L}$ and $f_{\square}^{O}(a \square b)$ is a fixpoint of f and $f_{\square}^{O}(a \square b) \sqsubseteq a$ and $f_{\square}^{O}(a \square b) \sqsubseteq b$. - (37) If $a \sqsubseteq f(a)$ and $a \sqsubseteq b$ and b is a fixpoint of f, then for every O_2 holds $f_{\sqcup}^{O_2}(a) \sqsubseteq b$. - (38) If $f(a) \sqsubseteq a$ and $b \sqsubseteq a$ and b is a fixpoint of f, then for every O_2 holds $b \sqsubseteq f_{\sqcap}^{O_2}(a)$. Let L be a complete lattice and let f be a unary operation on L. Let us assume that f is monotone. The functor FixPoints(f) yields a strict lattice and is defined as follows: (Def. 11) There exists a non empty subset P of L with l.u.b.'s and g.l.b.'s such that $P = \{x; x \text{ ranges over elements of } L: x \text{ is a fixpoint of } f\}$ and $FixPoints(f) = \mathbb{L}_P$. The following propositions are true: - (39) The carrier of FixPoints $(f) = \{x; x \text{ ranges over elements of } L: x \text{ is a fixpoint of } f\}.$ - (40) The carrier of FixPoints $(f) \subseteq$ the carrier of L. - (41) $a \in \text{the carrier of FixPoints}(f) \text{ iff } a \text{ is a fixpoint of } f$. - (42) For all elements x, y of FixPoints(f) and for all a, b such that x = a and y = b holds $x \sqsubseteq y$ iff $a \sqsubseteq b$. - (43) FixPoints(f) is complete. Let us consider L, f. The functor lfp(f) yielding an element of L is defined by: (Def. 12) $$\operatorname{lfp}(f) = f_{\perp \perp}^{\text{(the carrier of } L)^+}(\perp_L).$$ The functor gfp(f) yielding an element of L is defined by: (Def. 13) $$\operatorname{gfp}(f) = f_{\sqcap}^{\text{(the carrier of } L)^+}(\top_L).$$ One can prove the following propositions: - (44) If p(f) is a fixpoint of f and there exists O such that $\overline{O} \leq \overline{\text{the carrier of } L}$ and $f_{\sqcup}^{O}(\bot_{L}) = \text{If } p(f)$. - (45) gfp(f) is a fixpoint of f and there exists O such that $\overline{\overline{O}} \leq \overline{\text{the carrier of } L}$ and $f_{\sqcap}^{O}(\top_{L}) = \text{gfp}(f)$. - (46) If a is a fixpoint of f, then $lfp(f) \sqsubseteq a$ and $a \sqsubseteq gfp(f)$. - (47) If $f(a) \sqsubseteq a$, then $lfp(f) \sqsubseteq a$. - (48) If $a \sqsubseteq f(a)$, then $a \sqsubseteq gfp(f)$. # 5. BOOLEAN LATTICES In the sequel f denotes a monotone unary operation on the lattice of subsets of A. Let *A* be a set. Observe that the lattice of subsets of *A* is complete. Next we state three propositions: - (49) Let f be a unary operation on the lattice of subsets of A. Then f is monotone if and only if f is \subseteq -monotone. - (50) There exists a \subseteq -monotone function g from 2^A into 2^A such that lfp(A,g) = lfp(f). - (51) There exists a \subseteq -monotone function g from 2^A into 2^A such that gfp(A,g) = gfp(f). #### REFERENCES - [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html. - [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html. - [3] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html. - [4] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html. - [5] Grzegorz Bancerek. Quantales. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/quantall.html. - [6] Grzegorz Bancerek. Continuous, stable, and linear maps of coherence spaces. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/cohsp_1.html. - [7] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/funct_7.html. - [8] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html. - [9] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ - [10] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html. - [11] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_1.html. - [12] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html. - [13] J.-L. Lassez, V. L. Nguyen, and E. A Sonenberg. Fixed point theorems and semantics: a folk tale. *Information Processing Letters*, 14(3):112–116, 1982. - [14] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html. - [15] Lawrence C. Paulson. Set theory for verification: II, induction and recursion. Journal of Automated Reasoning, 15(2):167–215, 1995. - [16] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funcop_1.html. - [17] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - [18] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html. - [19] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. - [20] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html. - [21] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset 1.html. - [22] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html. - [23] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/lattices.html. Received September 16, 1996 Published January 2, 2004