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Summary. The main goal of the work was to introduce the concept of the segmenta-
tion of a simple closed curve into (arbitrary small) arcs. The existence of it has been proved
by Yatsuka Nakamura [21]. The concept of the gap of a segmentation is also introduced. It
is the smallest distance between disjoint segments in the segmentation. For this purpose, the
relationship between segments of an arc [24] and segments on a simple closed curve [21] has
been shown.
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The articles [29], [35], [10], [3], [2], [32], [1], [13], [8], [9], [7], [4], [34], [25], [33], [22], [20],
[28], [15], [26], [27], [18], [6], [12], [30], [19], [14], [16], [17], [23], [5], [24], [21], [11], and [31]
provide the notation and terminology for this paper.

1. PRELIMINARIES

The schemeAndSchemedeals with a non empty setA and two unary predicatesP , Q , and states
that:

{a;a ranges over elements ofA : P [a] ∧ Q [a]} = {a1;a1 ranges over elements of
A : P [a1]}∩{a2;a2 ranges over elements ofA : Q [a2]}

for all values of the parameters.
For simplicity, we adopt the following rules:C is a simple closed curve,p, q are points ofE2

T, i,
j, k, n are natural numbers, ande is a real number.

Next we state the proposition

(1) For all finite non empty subsetsA, B of R holds min(A∪B) = min(minA,minB).

Let T be a non empty topological space. Note that there exists a subset ofT which is compact
and non empty.

The following propositions are true:

(2) Let T be a non empty topological space,f be a continuous real map ofT, andA be a
compact subset ofT. Then f ◦A is compact.

(3) For every compact subsetA of R and for every non empty subsetB of R such thatB⊆ A
holds infB∈ A.

(4) Let A, B be compact non empty subsets ofEn
T, f be a continuous real map of[:En

T, En
T :],

andg be a real map ofEn
T. Suppose that for every pointp of En

T there exists a subsetG of R
such thatG = { f (p, q);q ranges over points ofEn

T: q∈ B} andg(p) = inf G. Then inf( f ◦[:A,
B:]) = inf(g◦A).
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(5) Let A, B be compact non empty subsets ofEn
T, f be a continuous real map of[:En

T, En
T :],

andg be a real map ofEn
T. Suppose that for every pointq of En

T there exists a subsetG of R
such thatG = { f (p, q); p ranges over points ofEn

T: p∈ A} andg(q) = inf G. Then inf( f ◦[:A,
B:]) = inf(g◦B).

(6) If q∈ LowerArc(C) andq 6= Wmin(C), then Emax(C)≤C q.

(7) If q∈ UpperArc(C), thenq≤C Emax(C).

2. THE EUCLIDEAN DISTANCE

Let us considern. The functor EuclDist(n) yielding a real map of[:En
T, En

T :] is defined as follows:

(Def. 1) For all pointsp, q of En
T holds(EuclDist(n))(p, q) = |p−q|.

Let T be a non empty topological space and letf be a real map ofT. Let us observe thatf is
continuous if and only if:

(Def. 2) For every pointp of T and for every neighbourhoodN of f (p) there exists a neighbourhood
V of p such thatf ◦V ⊆ N.

Let us considern. Note that EuclDist(n) is continuous.

3. ON THE DISTANCE BETWEENSUBSETS OF AEUCLIDEAN SPACE

The following proposition is true

(8) For all non empty compact subsetsA, B of En
T such thatA missesB holds distmin(A,B) > 0.

4. ON THE SEGMENTS

Next we state a number of propositions:

(9) If p≤C qandq≤C Emax(C) andp 6= q, then Segment(p,q,C)= Segment(UpperArc(C),Wmin(C),Emax(C), p,q).

(10) If Emax(C)≤C q, then Segment(Emax(C),q,C)= Segment(LowerArc(C),Emax(C),Wmin(C),Emax(C),q).

(11) If Emax(C)≤C q, then Segment(q,Wmin(C),C)= Segment(LowerArc(C),Emax(C),Wmin(C),q,Wmin(C)).

(12) If p≤C qand Emax(C)≤C p, then Segment(p,q,C)= Segment(LowerArc(C),Emax(C),Wmin(C), p,q).

(13) If p≤C Emax(C) and Emax(C)≤C q, then Segment(p,q,C)= RSegment(UpperArc(C),Wmin(C),Emax(C), p)∪
LSegment(LowerArc(C),Emax(C),Wmin(C),q).

(14) If p≤C Emax(C), then Segment(p,Wmin(C),C)= RSegment(UpperArc(C),Wmin(C),Emax(C), p)∪
LSegment(LowerArc(C),Emax(C),Wmin(C),Wmin(C)).

(15) RSegment(UpperArc(C),Wmin(C),Emax(C), p)= Segment(UpperArc(C),Wmin(C),Emax(C), p,Emax(C)).

(16) LSegment(LowerArc(C),Emax(C),Wmin(C), p)= Segment(LowerArc(C),Emax(C),Wmin(C),Emax(C), p).

(17) For every pointp of E2
T such thatp∈C andp 6= Wmin(C) holds Segment(p,Wmin(C),C)

is an arc fromp to Wmin(C).

(18) For all pointsp, q of E2
T such thatp 6= q andp≤C q holds Segment(p,q,C) is an arc from

p to q.

(19) C = Segment(Wmin(C),Wmin(C),C).

(20) For every pointq of E2
T such thatq∈C holds Segment(q,Wmin(C),C) is compact.

(21) For all pointsq1, q2 of E2
T such thatq1 ≤C q2 holds Segment(q1,q2,C) is compact.
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5. THE CONCEPT OF ASEGMENTATION

Let us considerC. A finite sequence of elements ofE2
T is said to be a segmentation ofC if it satisfies

the conditions (Def. 3).

(Def. 3) It1 = Wmin(C) and it is one-to-one and 8≤ len it and rngit⊆C and for every natural num-
ber i such that 1≤ i and i < len it holds iti ≤C it i+1 and for every natural numberi such
that 1≤ i and i + 1 < len it holds Segment(it i , it i+1,C)∩Segment(it i+1, it i+2,C) = {it i+1}
and Segment(it lenit , it1,C) ∩ Segment(it1, it2,C) = {it1} and Segment(it lenit−′1, it lenit ,C) ∩
Segment(it lenit , it1,C) = {it lenit} and Segment(it lenit−′1, it lenit ,C) misses Segment(it1, it2,C)
and for all natural numbersi, j such that 1≤ i andi < j and j < len it andi and j are not ad-
jacent holds Segment(it i , it i+1,C) misses Segment(it j , it j+1,C) and for every natural number
i such that 1< i andi +1 < len it holds Segment(it lenit , it1,C) misses Segment(it i , it i+1,C).

Let us considerC. One can verify that every segmentation ofC is non trivial.
Next we state the proposition

(22) For every segmentationSof C and for everyi such that 1≤ i andi ≤ lenSholdsSi ∈C.

6. THE SEGMENTS OF ASEGMENTATION

Let us considerC, let i be a natural number, and letSbe a segmentation ofC. The functor Segm(S, i)
yields a subset ofE2

T and is defined by:

(Def. 4) Segm(S, i) =
{

Segment(Si ,Si+1,C), if 1 ≤ i andi < lenS,
Segment(SlenS,S1,C), otherwise.

The following proposition is true

(23) For every segmentationSof C such thati ∈ domSholds Segm(S, i)⊆C.

Let us considerC, let S be a segmentation ofC, and let us consideri. Note that Segm(S, i) is
non empty and compact.

The following propositions are true:

(24) For every segmentationSof C and for everyp such thatp∈C there exists a natural number
i such thati ∈ domSandp∈ Segm(S, i).

(25) LetSbe a segmentation ofC and giveni, j. Suppose 1≤ i andi < j and j < lenSandi and
j are not adjacent. Then Segm(S, i) misses Segm(S, j).

(26) For every segmentationS of C and for everyj such that 1< j and j < lenS−′ 1 holds
Segm(S, lenS) misses Segm(S, j).

(27) LetSbe a segmentation ofC and giveni, j. Suppose 1≤ i andi < j and j < lenSandi and
j are adjacent. Then Segm(S, i)∩Segm(S, j) = {Si+1}.

(28) LetSbe a segmentation ofC and giveni, j. Suppose 1≤ i andi < j and j < lenSandi and
j are adjacent. Then Segm(S, i) meets Segm(S, j).

(29) For every segmentationSof C holds Segm(S, lenS)∩Segm(S,1) = {S1}.

(30) For every segmentationSof C holds Segm(S, lenS) meets Segm(S,1).

(31) For every segmentationSof C holds Segm(S, lenS)∩Segm(S, lenS−′ 1) = {SlenS}.

(32) For every segmentationSof C holds Segm(S, lenS) meets Segm(S, lenS−′ 1).



ON THE SEGMENTATION OF A SIMPLE CLOSED CURVE 4

7. THE DIAMETER OF A SEGMENTATION

Let us considern and letC be a subset ofEn
T. The functor ØC yields a real number and is defined

by:

(Def. 5) There exists a subsetW of En such thatW = C and ØC = ØW.

Let us considerC and letSbe a segmentation ofC. The functor ØSyields a real number and is
defined by:

(Def. 6) There exists a non empty finite subsetS1 of R such thatS1 = {ØSegm(S, i) : i ∈ domS}
and ØS= maxS1.

One can prove the following three propositions:

(33) For every segmentationSof C and for everyi holds ØSegm(S, i)≤ØS.

(34) For every segmentationS of C and for every real numbere such that for everyi holds
ØSegm(S, i) < eholds ØS< e.

(35) For every real numberesuch thate> 0 there exists a segmentationSof C such that ØS< e.

8. THE CONCEPT OF THEGAP OF A SEGMENTATION

Let us considerC and letSbe a segmentation ofC. The functor Gap(S) yields a real number and is
defined by the condition (Def. 7).

(Def. 7) There exist non empty finite subsetsS1, S2 of R such thatS1 = {distmin(Segm(S, i),Segm(S, j)) :
1 ≤ i ∧ i < j ∧ j < lenS ∧ i and j are not adjacent} and S2 =
{distmin(Segm(S, lenS),Segm(S,k)) : 1< k ∧ k< lenS−′1} and Gap(S)= min(minS1,minS2).

The following two propositions are true:

(36) Let S be a segmentation ofC. Then there exists a finite non empty subsetF of R such
thatF = {distmin(Segm(S, i),Segm(S, j)) : 1≤ i ∧ i < j ∧ j ≤ lenS ∧ Segm(S, i) misses
Segm(S, j)} and Gap(S) = minF.

(37) For every segmentationSof C holds Gap(S) > 0.
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