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Summary. The main goal of the work was to introduce the concept of the segmenta-
tion of a simple closed curve into (arbitrary small) arcs. The existence of it has been proved
by Yatsuka Nakamura [21]. The concept of the gap of a segmentation is also introduced. It
is the smallest distance between disjoint segments in the segmentation. For this purpose, the
relationship between segments of an arc [24] and segments on a simple closed durve [21] has
been shown.

MML Identifier: JORDAN_A.

WWW: http://mizar.org/JFM/Voll5/jordan_a.html
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[28], [15], [26], [27], [1€], [6], [12], [301, [19], [14], [16], [17], [23], 5], [24], [21], [11], and [31]
provide the notation and terminology for this paper.

1. PRELIMINARIES

The scheméndSchemeeals with a non empty set and two unary predicateB, Q, and states
that:
{a;aranges over elements of : P[a] A QJa]} = {ai1;a1 ranges over elements of
A Pla1]} N{ap;a ranges over elements gf: Q[ap]}
for all values of the parameters.
For simplicity, we adopt the following rule€ is a simple closed curve, g are points ofE%, i,
j, k, nare natural numbers, ards a real number.
Next we state the proposition

(1) For all finite non empty subsefs B of R holds mir{AUB) = min(minA, minB).

Let T be a non empty topological space. Note that there exists a subEetleich is compact
and non empty.
The following propositions are true:

(2) LetT be a non empty topological spackbe a continuous real map df, andA be a
compact subset of. Thenf°Ais compact.

(3) For every compact subsatof R and for every non empty subdgtof R such thaB C A
holds infB € A.

(4) LetA, B be compact non empty subsets@}, f be a continuous real map of£], £71,
andg be a real map ofy. Suppose that for every poiptof ] there exists a subs€tof R
such thaG = { f(p, q); q ranges over points af7: q € B} andg(p) = infG. Then inf f°[ A,
B]) =inf(g°A).
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(5) LetA, B be compact non empty subsets®@f, f be a continuous real map pfEY, £7 1,
andg be a real map of}. Suppose that for every poigtof 7 there exists a subsétof R
such thaG = { f(p, q); pranges over points ¢f: p € A} andg(q) = infG. Then inf f°[ A,
B1) =inf(g°B).

(6) If g€ LowerArc(C) andq # Win(C), then Enax(C) <c q.
(7) If g€ UpperArdC), theng <c Emax(C).

2. THE EUCLIDEAN DISTANCE

Let us considen. The functor EucIDign) yielding a real map of £, 7 ] is defined as follows:
(Def. 1) For all pointsp, g of £7 holds(EuclDistn))(p, q) = |p—q|.

Let T be a non empty topological space andfidie a real map of . Let us observe that is
continuous if and only if;

(Def. 2) Forevery poinp of T and for every neighbourhodd of f(p) there exists a neighbourhood
V of psuch thatf°v C N.

Let us considen. Note that EuclDigin) is continuous.

3. ON THE DISTANCE BETWEENSUBSETS OF AEUCLIDEAN SPACE
The following proposition is true

(8) Forall non empty compact subsétsB of 7 such thatA missesB holds disfin(A, B) > 0.

4. ON THE SEGMENTS
Next we state a number of propositions:
(9) If p<cgandqg<c Emax(C) andp# q, then Segmeiip,q,C) = SegmentUpperArqC), Wmin(C), Emax(C), p, d).
(10) If Emax(C) <c g, then SegmefiEmnax(C),q,C) = SegmentLowerArc(C), Emax(C), Wmin(C), Emax(C), 0).
(11) IfEmax(C) <c g, then Segmerif, Wmin(C),C) = SegmentLowerArc(C), Emax(C), Wmin(C), d, Wmin(C)).
(12) If p<cgand Enax(C) <c p, then Segmeifp, q,C) = SegmentowerArc(C), Emax(C), Wmin(C), p,q)-

(13) If p<c Emax(C) and Enax(C) <c q, then Segmeiip, q,C) = RSegmer{UpperArqC), Wnmin(C), Emax(C), p) U
LSegmentLowerArc(C), Emax(C), Wmin(C), q).

(14) If p<c Emax(C), then Segmerip, Wnmin(C),C) = RSegmer®JpperArdC), Win(C), Emax(C), p) U
LSGgmerﬂLOWGrArC(C), Emax(c)anin(C) ) Wmin(C))-

(15) RSegmeritypperArqC), Wmin(C), Emax(C), p) = SegmentUpperArdC), Wmin(C), Emax(C), P, Emax(C))-
(16) LSegmer{LowerArc(C), Emax(C), Wmin(C), p) = SegmentLowerArc(C), Emax(C), Wnin(C), Emax(C), p)-

(17) For every poinp of £2 such thatp € C and p # Wmin(C) holds Segmettip, Win(C),C)
is an arc fromp to Winin(C).

(18) For all pointsp, g of £2 such thatp # g and p <c q holds Segmeiip,q,C) is an arc from
ptoa.

(19) C=SegmentWmin(C), Wnin(C),C).
(20) For every poing of £2 such that] € C holds Segmefitl, Wrin(C),C) is compact.
(21) For all pointgys, g of Z% such thaty; <c g2 holds Segmerig, g2, C) is compact.
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5. THE CONCEPT OF ASEGMENTATION

Let us conside€. A finite sequence of elementsﬁf? is said to be a segmentation@ff it satisfies
the conditions (Def. 3).

(Def. 3) It1 = Wmin(C) and it is one-to-one and$8 lenit and rngitC C and for every natural num-
beri such that 1< i andi < lenit holds it <¢ itj;1 and for every natural numbérsuch
that 1<i andi+ 1 < lenit holds Segmefit;,itj;1,C) N Segmen(t;;1,iti;2,C) = {iti11}
and Segmeffitienit,it1,C) N Segments,it2,C) = {it1} and Segmefiteni_r1, itienit,C) N
Segmen(itienit,it1,C) = {itienit} and Segmefitienit_r1, itienit,C) Misses Segmefit,ity,C)
and for all natural numbeiis j such that i< i andi < j andj < lenit andi and | are not ad-
jacent holds Segmefit;, itj1,C) misses Segmetit;,itj,1,C) and for every natural number
i such that < i andi + 1 < lenit holds Segmefit|enit, it1,C) misses Segmefit;, iti1,C).

Let us conside€. One can verify that every segmentatiorCois non trivial.
Next we state the proposition

(22) For every segmentatidof C and for every such that K< i andi <lenSholdsS € C.

6. THE SEGMENTS OF ASEGMENTATION

Let us consideC€, leti be a natural number, and Bbe a segmentation &f. The functor Segrf§,i)
yields a subset UE% and is defined by:

| SegmentS,S.1,C), if 1 <iandi <lenS
(Def. 4)  SegmiS,i) _{ Segmen(Sens, S1,C), otherwise.

The following proposition is true
(23) For every segmentatidof C such that € domSholds Segr(S;i) CC.

Let us consideC, let Sbe a segmentation &, and let us consider Note that Segrf8 i) is
non empty and compact.
The following propositions are true:

(24) For every segmentati@of C and for everyp such thatp € C there exists a natural number
i such thai € domSandp € Segn{Sii).

(25) LetSbe a segmentation @ and given, j. Suppose X i andi < j andj < lenSandi and
j are not adjacent. Then Se¢®i) misses Segis, j).

(26) For every segmentatiod®of C and for everyj such that 1< j and j < lenS—'1 holds
Segn{S, lenS) misses Segls, j).

(27) LetSbe a segmentation € and given, j. Suppose X i andi < j andj < lenSandi and
j are adjacent. Then Se@8i) NSegnS, j) = {S1}-

(28) LetSbe a segmentation @ and given, j. Suppose K i andi < j andj < lenSandi and
j are adjacent. Then Sed8i) meets Segi(s, j).

(29) For every segmentatidof C holds Segr(iS,lenS) N Segni{S, 1) = {S;}.

(30) For every segmentaticdof C holds Segr(iS lenS) meets Segiis,1).

(31) For every segmentatidof C holds Segr(iS lenS) N Segn{S,lenS—'1) = {Sens}-
(32) For every segmentatid®of C holds Segn(S lenS) meets Segif§,lenS—'1).
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7. THE DIAMETER OF A SEGMENTATION

Let us considen and letC be a subset of. The functor & yields a real number and is defined
by:

(Def. 5) There exists a subsat of £" such thaWw = C and @C = @W.

Let us conside€ and letSbe a segmentation &. The functor @yields a real number and is
defined by:

(Def. 6) There exists a non empty finite subSebf R such thatS; = {@SegntS)i) : i € domS}
and @&5= maxs;.

One can prove the following three propositions:

(33) For every segmentatidof C and for everyi holds @ SegrS,i) < @S.

(34) For every segmentatidd of C and for every real number such that for every holds
@SegniS,i) < eholds &B< e

(35) For every real numbersuch thae > 0 there exists a segmentatiSiof C such that @< e.

8. THE CONCEPT OF THEGAP OF A SEGMENTATION

Let us conside€ and letSbe a segmentation @. The functor Gaff5) yields a real number and is
defined by the condition (Def. 7).

(Def. 7) There exist non empty finite subs&tsS, of R such thag; = {distyin(Segn{S,i), Segnts, j)) :
1<i A i<j A j<lenS A i and j are not adjaceft and S =
{distnin(Segn{S lenS),Segn{Sk)) : 1 <k A k< lenS—'1} and GagS) = min(minS;, minS,).

The following two propositions are true:

(86) LetSbe a segmentation @. Then there exists a finite non empty subBedf R such
thatF = {distmin(SegnSi),SegmS j)): 1<i Ai< ] A j<lenS A Segni{S i) misses
SegntS j)} and Gags) = minF.

(37) For every segmentatiddof C holds Gags) > 0.
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