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Summary. At the beginning, the concept of the segment of the simple closed curve
in 2-dimensional Euclidean space is defined. Some properties of segments are shown in the
succeeding theorems. At the end, the existence of the function which can divide the simple
closed curve into segments is shown. We can make the diameter of segments as small as we
want.
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The articles [19], [22], [20], [1], [23], [17], [2], [3], [4], [21], [10], [11], [12], [14], [15], [18], [7],
[6], [8], [5], [13], [16], and [9] provide the notation and terminology for this paper.

1. DEFINITION OF THE SEGMENT AND ITS PROPERTY

In this paperp, p1, q denote points ofE2
T.

The following three propositions are true:

(1) Let P be a compact non empty subset ofE2
T. SupposeP is a simple closed curve. Then

Wmin(P) ∈ LowerArc(P) and Emax(P) ∈ LowerArc(P) and Wmin(P) ∈ UpperArc(P) and
Emax(P) ∈ UpperArc(P).

(2) For every compact non empty subsetP of E2
T and for everyq such thatP is a simple closed

curve andq≤P Wmin(P) holdsq = Wmin(P).

(3) For every compact non empty subsetP of E2
T and for everyq such thatP is a simple closed

curve andq∈ P holds Wmin(P)≤P q.

Let P be a compact non empty subset ofE2
T and letq1, q2 be points ofE2

T. The functor
Segment(q1,q2,P) yields a subset ofE2

T and is defined as follows:

(Def. 1) Segment(q1,q2,P) =
{
{p : q1 ≤P p ∧ p≤P q2}, if q2 6= Wmin(P),
{p1 : q1 ≤P p1 ∨ q1 ∈ P ∧ p1 = Wmin(P)}, otherwise.

One can prove the following propositions:

(4) For every compact non empty subsetP of E2
T such thatP is a simple closed curve

holds Segment(Wmin(P),Emax(P),P) = UpperArc(P) and Segment(Emax(P),Wmin(P),P) =
LowerArc(P).
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(5) Let P be a compact non empty subset ofE2
T andq1, q2 be points ofE2

T. If P is a simple
closed curve andq1 ≤P q2, thenq1 ∈ P andq2 ∈ P.

(6) Let P be a compact non empty subset ofE2
T andq1, q2 be points ofE2

T. If P is a simple
closed curve andq1 ≤P q2, thenq1 ∈ Segment(q1,q2,P) andq2 ∈ Segment(q1,q2,P).

(7) Let P be a compact non empty subset ofE2
T andq1 be a point ofE2

T. If q1 ∈ P andP is a
simple closed curve, thenq1 ∈ Segment(q1,Wmin(P),P).

(8) LetP be a compact non empty subset ofE2
T andq be a point ofE2

T. If P is a simple closed
curve andq∈ P andq 6= Wmin(P), then Segment(q,q,P) = {q}.

(9) Let P be a compact non empty subset ofE2
T andq1, q2 be points ofE2

T. If P is a simple
closed curve andq1 6= Wmin(P) andq2 6= Wmin(P), then Wmin(P) /∈ Segment(q1,q2,P).

(10) LetP be a compact non empty subset ofE2
T andq1, q2, q3 be points ofE2

T. SupposeP is a
simple closed curve andq1 ≤P q2 andq2 ≤P q3 andq1 = q2 andq1 = Wmin(P) andq1 6= q3

andq2 = q3 andq2 = Wmin(P). Then Segment(q1,q2,P)∩Segment(q2,q3,P) = {q2}.

(11) Let P be a compact non empty subset ofE2
T and q1, q2 be points ofE2

T. Suppose
P is a simple closed curve andq1 ≤P q2 and q1 6= Wmin(P) and q2 6= Wmin(P). Then
Segment(q1,q2,P)∩Segment(q2,Wmin(P),P) = {q2}.

(12) Let P be a compact non empty subset ofE2
T and q1, q2 be points of E2

T. Sup-
pose P is a simple closed curve andq1 ≤P q2 and q1 6= q2 and q1 6= Wmin(P). Then
Segment(q2,Wmin(P),P)∩Segment(Wmin(P),q1,P) = {Wmin(P)}.

(13) LetP be a compact non empty subset ofE2
T andq1, q2, q3, q4 be points ofE2

T. SupposeP
is a simple closed curve andq1 ≤P q2 andq2 ≤P q3 andq3 ≤P q4 andq1 6= q2 andq2 6= q3.
Then Segment(q1,q2,P) misses Segment(q3,q4,P).

(14) LetP be a compact non empty subset ofE2
T andq1, q2, q3 be points ofE2

T. SupposeP is a
simple closed curve andq1 ≤P q2 andq2 ≤P q3 andq1 6= Wmin(P) andq1 6= q2 andq2 6= q3.
Then Segment(q1,q2,P) misses Segment(q3,Wmin(P),P).

2. A FUNCTION TO DIVIDE THE SIMPLE CLOSED CURVE

In the sequeln is a natural number.
One can prove the following propositions:

(15) LetP be a non empty subset ofEn
T and f be a map fromI into (En

T)�P. SupposeP 6= /0 and
f is a homeomorphism. Then there exists a mapg from I into En

T such thatf = g andg is
continuous and one-to-one.

(16) LetP be a non empty subset ofEn
T andg be a map fromI into En

T. Supposeg is continuous
and one-to-one and rngg = P. Then there exists a mapf from I into (En

T)�P such thatf = g
and f is a homeomorphism.

One can verify that every finite sequence of elements ofR which is increasing is also one-to-one.
Next we state several propositions:

(17) For every finite sequencef of elements ofR such thatf is increasing holdsf is one-to-one.

(18) LetA be a subset ofE2
T andp1, p2 be points ofE2

T. SupposeA is an arc fromp1 to p2. Then
there exists a mapg from I into E2

T such thatg is continuous and one-to-one and rngg = A
andg(0) = p1 andg(1) = p2.

(19) LetP be a non empty subset ofE2
T, p1, p2, q1, q2 be points ofE2

T, g be a map fromI into
E2

T, ands1, s2 be real numbers. Suppose thatP is an arc fromp1 to p2 andg is continuous
and one-to-one and rngg = P andg(0) = p1 andg(1) = p2 andg(s1) = q1 and 0≤ s1 and
s1 ≤ 1 andg(s2) = q2 and 0≤ s2 ands2 ≤ 1 ands1 ≤ s2. Then LEq1, q2, P, p1, p2.
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(20) LetP be a non empty subset ofE2
T, p1, p2, q1, q2 be points ofE2

T, g be a map fromI into
E2

T, ands1, s2 be real numbers. Suppose thatg is continuous and one-to-one and rngg = P
andg(0) = p1 andg(1) = p2 andg(s1) = q1 and 0≤ s1 ands1 ≤ 1 andg(s2) = q2 and 0≤ s2

ands2 ≤ 1 and LEq1, q2, P, p1, p2. Thens1 ≤ s2.

(21) LetP be a compact non empty subset ofE2
T andebe a real number. SupposeP is a simple

closed curve ande> 0. Then there exists a finite sequenceh of elements of the carrier ofE2
T

such that

h(1) = Wmin(P) andh is one-to-one and 8≤ lenh and rngh⊆ P and for every natural num-
ber i such that 1≤ i and i < lenh holdshi ≤P hi+1 and for every natural numberi and for
every subsetW of E2 such that 1≤ i and i < lenh and W = Segment(hi ,hi+1,P) holds
ØW < e and for every subsetW of E2 such thatW = Segment(hlenh,h1,P) holds ØW < e
and for every natural numberi such that 1≤ i andi +1 < lenh holds Segment(hi ,hi+1,P)∩
Segment(hi+1,hi+2,P) = {hi+1} and Segment(hlenh,h1,P)∩Segment(h1,h2,P) = {h1} and
Segment(hlenh−′1,hlenh,P)∩Segment(hlenh,h1,P) = {hlenh} and Segment(hlenh−′1,hlenh,P)
misses Segment(h1,h2,P) and for all natural numbersi, j such that 1≤ i and i < j and
j < lenh andi and j are not adjacent holds Segment(hi ,hi+1,P) misses Segment(h j ,h j+1,P)
and for every natural numberi such that 1< i and i + 1 < lenh holds Segment(hlenh,h1,P)
misses Segment(hi ,hi+1,P).
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