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Summary. At the beginning, the concept of the segment of the simple closed curve
in 2-dimensional Euclidean space is defined. Some properties of segments are shown in the
succeeding theorems. At the end, the existence of the function which can divide the simple
closed curve into segments is shown. We can make the diameter of segments as small as we
want.
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The articles([19],[[22],[120],11],[[23],[[17],12],[13],[[4],[21], [10], [11] [[12] [ [14] [ [15] 18] {7],
[61, [8], [B], [13], [16], and [9] provide the notation and terminology for this paper.

1. DEFINITION OF THE SEGMENT AND ITS PROPERTY

In this papem, p1, q denote points oﬁ%.
The following three propositions are true:

(1) LetP be a compact non empty subset®f. SupposeP is a simple closed curve. Then
Wmin(P) € LowerArc(P) and Enax(P) € LowerArc(P) and Whyin(P) € UpperArdP) and
Emax(P) € UpperArdP).

(2) For every compact non empty subBeif E% and for evenyq such thaP is a simple closed
curve andy <p Wpin(P) holdsg = Win(P).

(3) For every compact non empty subBedf E% and for everyq such thaP is a simple closed
curve andy € P holds Whin(P) <p q.

Let P be a compact non empty subsetﬁ% and letq;, g2 be points ofz%. The functor
Segmen(d:, g, P) yields a subset GEE and is defined as follows:

_f{p:m<pp A p<pQ2}, if g2 # Wnin(P),
(Def. 1) Segmerit, 6, P) = { {p1:m<pp1V aL€eP A pr=Wnin(P)}, otherwise.

One can prove the following propositions:
(4) For every compact non empty subgetof z% such thatP is a simple closed curve

holds SegmeWmin(P), Emax(P),P) = UpperArqP) and SegmeiEmnax(P), Wmin(P),P) =
LowerArc(P).
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(5) LetP be a compact non empty subset®# andqs, gz be points ofE2. If P is a simple
closed curve and; <p g, theng; € Pandg, € P.

(6) LetP be a compact non empty subset## andqs, gz be points ofE2. If P is a simple
closed curve and; <p g, theng; € Segmen(s, gz, P) andgy € Segmenis, gz, P).

(7) LetP be a compact non empty subsetzcﬁ andq; be a point ofz% If e PandPis a
simple closed curve, them € Segmentg;, Wmin(P),P).

(8) LetP be a compact non empty subsetﬁ andq be a point off,%. If Pis a simple closed
curve andy € P andq # Wnin(P), then Segmetty, g, P) = {q}.

(9) LetP be a compact non empty subsetiéﬁ andqzi, g2 be points off%. If Pis asimple
closed curve and; # Win(P) anddz # Wmin(P), then Whin(P) ¢ Segmen(o, dz, P).

(10) LetP be a compact non empty subse@ anddqs, gz, gs be points of‘E%. Supposé is a
simple closed curve angh <p g2 andgz <p gz andg; = gz anddqs = Wnin(P) andq; # g3
anddz = gz andgz = Wmin(P). Then Segmerit, gz, P) N Segmen(ge, ds, P) = {dz2}-

(11) LetP be a compact non empty subset ﬁ$ and g, g2 be points off%. Suppose
P is a simple closed curve angh <p g2 and g1 # Wmin(P) and g2 # Wmin(P). Then
Segmerﬂql;q& P) ﬂsegmer(RJZanin(P)y P) = {QZ}

(12) Let P be a compact non empty subset ﬁ? and qi, g2 be points ofE%. Sup-
poseP is a simple closed curve angh <p gz and g1 # dz and g1 # Wnin(P). Then
Segmen(t, Wmin(P), P) N SegmentWmin(P), 1, P) = {Wmin(P)}.

(13) LetP be a compact non empty subsetlﬁﬁ andqi, 02, g3, g4 be points on%. Supposé®
is a simple closed curve ad <p g2 andgy <p gz andgs <p g4 andq; # ¢ andgy # gs.
Then Segmeitis, dz, P) misses Segmefts, g, P).

(14) LetP be a compact non empty subsetzcﬁ andqi, g2, g3 be points ofE%. Supposé is a
simple closed curve amgy <p g2 anddz <p gz andq; # Wnmin(P) andq; # gz andgy # gs.
Then Segmeiitis, dz, P) misses Segmefds, Wnin(P), P).

2. A FUNCTION TODIVIDE THE SIMPLE CLOSED CURVE

In the sequeh is a natural number.
One can prove the following propositions:

(15) LetP be a non empty subset @f and f be a map froni into (‘£7) [P. Supposé® # 0 and
f is a homeomorphism. Then there exists a gdmm I into Z£{ such thatf = g andg is
continuous and one-to-one.

(16) LetP be a non empty subset @f andg be a map froni into 7. Suppose is continuous
and one-to-one and rgg= P. Then there exists a mapfrom I into (‘Z£7) [P such thatf =g
andf is a homeomorphism.

One can verify that every finite sequence of elemeniwhich is increasing is also one-to-one.
Next we state several propositions:

(17) For every finite sequendeof elements oR such thatf is increasing holds is one-to-one.

(18) LetAbe asubset aE% andpz, p2 be points ofE?. Supposé\is an arc fronp; to p,. Then
there exists a mag from I into £2 such thag is continuous and one-to-one and gng A
andg(0) = p1 andg(1) = po.

(19) LetP be a non empty subset (ﬁ% p1, P2, 01, Oz be points ofB%, g be a map froni into
£2, ands;, s, be real numbers. Suppose tiRais an arc fromp; to p, andg is continuous
and one-to-one and rgg= P andg(0) = p; andg(1) = pz andg(s;) = g1 and 0< s and
s < 1landg(s) = gz and 0< s; ands; < 1 ands; < s. Then LEQqs, 02, P, p1, p2.
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(20) LetP be a non empty subset @, p1, pp, t1, g2 be points ofE2, g be a map froni into

Z%, ands;, s, be real numbers. Suppose tlggs continuous and one-to-one and ghg P
andg(0) = py andg(1) = pz andg(s1) = oz and 0< s; ands; < 1 andg(sz) =gz and 0< s,
ands; < 1 and LEdqs, gp, P, p1, p2. Thens; < sp.

(21) LetP be a compact non empty subsetZg ande be a real number. SuppoBés a simple
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closed curve and > 0. Then there exists a finite sequericef elements of the carrier a2
such that

h(1) = Wnin(P) andh is one-to-one and & lenh and rngh C P and for every natural num-
beri such that 1< i andi < lenh holdsh; <p hj; and for every natural numbérand for
every subseW of £2 such that 1< i andi < lenh andW = Segmenh;, hi+1,P) holds
@W < e and for every subsaV of £2 such thatW = Segmenthienn, h1, P) holds @V < e
and for every natural numbeésuch that I< i andi + 1 < lenh holds Segmefy, hi;1,P) N
Segmenthi;1,hit2,P) = {hi;1} and Segmeifbienn, hi, P) N Segmenth;, hy, P) = {h;} and
Segmenthienn—1, ienn, P) N Segmenthienn, h1,P) = {hienn} and Segmertbienn—1, Mienn, P)
misses Segmefit;, hy,P) and for all natural numbers j such that 1< i andi < j and
j <lenhandi andj are not adjacent holds Segm@mnth;1,P) misses Segmetit;,hj,1,P)
and for every natural numbersuch that 1< i andi + 1 < lenh holds Segmeibjgnn, h1, P)
misses Segmett, hi1,P).
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