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Summary. The goal of the article is to introduce an order on a simple closed curve.
To do this, we fix two points on the curve and devide it into two arcs. We prove that such a
decomposition is unique. Other auxiliary theorems about arcs are proven for preparation of
the proof of the above.
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The articles[[1B],[[211],[T1], [[20],[[12],[117],[122],[[3],.[4],[[9],[[10], L[15] [18],[[16],.[6],[[1O],[7],
[13], [2], [14], [11], and [%] provide the notation and terminology for this paper.

1. MIDDLE POINTS OFARCS

We follow the ruless, r denote real numbers,denotes a natural number, apdy denote points of
2

We now state a number of propositions:
(ZE] If r <s thenr < Zfand$s <s.

(3) LetT; be a non empty topological spaé¢tbe a subset of;, A be a subset of; [P, andB
be a subset of;. If Bis closed and\ = BN P, thenA is closed.

(4) LetTy, T, be non empty topological spacésbe a non empty subset ©f, andf be a map
from Ty into T>|P. Then

(i) fisamap froml into Ty, and

(i)  for every mapf, from Ty into T, such thatf, = f and f is continuous holdd; is continu-
ous.

(5) Forevery real numberand for every subsé& of E% such thaP = {p; p ranges over points
of £2: p; >r} holdsP is closed.

(6) For every real numberand for every subsét of E% such thaP = { p; pranges over points
of £2: py < r} holdsP is closed.

(7) For every real numberand for every subsét of E% such thaP = {p; p ranges over points
of £2: py =r} holdsP is closed.

1 The proposition (1) has been removed.
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(8) For every real numberand for every subsé of 2 such thaP = {p; p ranges over points
of £2: p, >r} holdsP is closed.

(9) Forevery real numberand for every subs& of E% such thaP = {p; p ranges over points
of £2: p, <r} holdsP is closed.

(10) For every real numberand for every subs@ of 2 such thaP = { p; p ranges over points
of £2: p, =r} holdsP is closed.

(11) For every subsét of 7 and for all pointsps, p2 of £{ such thaP is an arc fromp; to p;
holdsP is connected.

(12) For every subsé of E% and for all pointspy, p2 of Z:% such thaP is an arc fromp; to py
holdsP is closed.

(13) LetP be a subset of2 and py, p be points ofE2. SupposeP is an arc fromp; to pp.
Then there exists a pointof Z% such thag € P andg; = M.

(14) LetP, Q be subsets of2 and py, pz be points ofE%. SupposeP is an arc frompy to pz
andQ={q:q = M}. ThenP meetsQ andPN Qs closed.

(15) LetP, Q be subsets orE? and p1, p2 be points ofE%. SupposeP is an arc frompy to pz
andQ={q: = M}. ThenP meetsQ andPNQ s closed.

Let P be a non empty subset @? and letps, p2 be points off%. The functor xMiddI€P, p1, p2)
yielding a point of£2 is defined by:

(Def. 1) For every subse& of Z% suchthaQ={q:q = (pl)l%} holds xMiddI€P, p1, p2) =
FPOIn(R pla p27 Q)

LetP be a non empty subset & and letp;, p; be points of£2. The functor yMiddI€P, py, p2)
yielding a point of'E% is defined as follows:

(Def.2) For every subsé of £2 such thaQ = {q: ¢z = “’1)2%} holds yMiddI€P, p1, p2) =
FPoin(P, py, p2, Q).

One can prove the following three propositions:

(16) LetP be a non empty subset @ andps, p; be points of£2. If Pis an arc fromp; to py,
then xMiddIgP, p1, p2) € P and yMiddI€P, p1, p2) € P

(17) LetP be a non empty subset @# andp;, p; be points ofE2. If P is an arc fromp; to py,
thenp, = xMiddle(P, p1, p2) iff (p1)1 = (p2)1-

(18) LetP be a non empty subset ﬁ$ andpy, p2 be points of‘f,%. If Pis an arc frompy to po,
thenp; = yMiddle(P, p1, p2) iff (p1)2 = (P2)2.

2. SEGMENTS OFARCS

The following proposition is true

(19) LetP be a subset GE% andps, p2, 01, g2 be points on%. If Pis an arc fromp; to p, and
LE 01, 2, P, p1, P2, then LEQp, 01, P, p2, p1.

Let P be a subset OE% and letps, p2, q1 be points on% The functor LSegme(®, p1, p2,01)
yielding a subset crE% is defined as follows:

(Def. 3) LSegmen®, p1,p2,a1) = {q: LE q, a1, P, p1, p2}-

Let P be a subset OE% and letps, p2, q1 be points ofE%. The functor RSegme(®, p1, p2,d1)
yielding a subset of? is defined by:
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(Def. 4) RSegmeriP, p1, p2,01) = {q: LE g1, g, P, p1, p2}.

The following propositions are true:

(20) For every subsé of E% and for all pointgs, pz, g1 of @% holds LSegment®, p1, p2, 1) C
P.

(21) For every subsétof E% and for all pointspy, p2, q; of z% holds RSegme(, p1, p2,01) C
P.

(22) For every subsé? of E% and for all pointspy, p2 of E% such thaP is an arc fromp; to py
holds LSegmert®, p1, pz, p1) = {p1}-

(25E| For every subse® of Z£2 and for all pointsps, pz of £2 such thatP is an arc fromp; to
p2 holds LSegmerP, p1, pz, p2) = P.

(26) For every subsé of E% and for all pointspy, p» of E% such thaP is an arc fromp; to po
holds RSegmefiP, p, pz, p2) = { p2}-

(27) For every subsé of E% and for all pointspy, p2 of Z:% such thaP is an arc fromp; to pz
holds RSegmef, p1, p2, p1) = P.

(28) LetP be a subset of2 and p;, p2, g1 be points ofE2. If P is an arc fromp; to p; and
a1 € P, then RSegme(P, p1, p2,q1) = LSegmentP, py, p1,01).

LetP be a subset oE2 and letps, ps, g1, gz be points of£2. The functor Segme(®, p1, P2, d1, d2)
yielding a subset orE% is defined as follows:

(Def. 5)  Segment®, p1, p2,q1,02) = RSegmen(P, py, pz,d1) NLSegmentP, p1, p2,dz2)-

One can prove the following four propositions:

(29) For every subset of Z2 and for all points p;, pz, 1, 92 of Z2 holds
Segmen(P, p1, P2,01,02) = {q: LE a1, @, P, p1, p2 A LE q, 02, P, p1, p2}.

(30) LetP be a subset o£2 andpy, pz, g1, gz be points ofE2. SupposeP is an arc fromp; to
p2. Then LEqs, g, P, p1, p2 if and only if LE gy, g1, P, p2, p1.

(31) LetP be a subset o@% and ps1, pz, q be points of'E% If Pis an arc fromp; to py and
q € P, then LSegmert®, p1, pz, q) = RSegmer(P, p2, p1,q).

(32) LetP be a subset dE% andpzi, p2, 1, 02 be points ofE%. If Pis an arc fromp; to p, and
01 € Panda; € P, then SegmeP, py, p2,d1, d2) = SegmentP, pz, p1, G2, ta).-

3. DECOMPOSITION OF ASIMPLE CLOSED CURVE INTO TWO ARCS

Let sbe a real number. The functor VerticalLiisgyielding a subset o2 is defined as follows:
(Def. 6) \VerticalLinds) = {p; p ranges over points af2: p; = s}.
The functor HorizontalLings) yields a subset ofZ and is defined by:
(Def. 7) HorizontalLings) = {p: p2 = s}.
We now state four propositions:
(33) For every real numberholds VerticalLinér) is closed and HorizontalLire) is closed.
(34) For every real numberand for every poinp of E% holdsp € VerticalLine(r) iff py =r.

(35) For every real numberand for every poinp of Z% holdsp € HorizontalLingr) iff p,=r.

2 The propositions (23) and (24) have been removed.
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(40E| Let P be a compact non empty subset®}. SupposeP is a simple closed curve. Then
there exist non empty subs&s P, of Z% such that

(i) Pyisan arc from Whin(P) to Emax(P),
(i) Pyisanarc from Bax(P) to Wmin(P),
(i) PLNPo = {Wmin(P),Emax(P)},
(v) P,UP,=P and
(v)  (FPOIN(PL, Wipin(P), Emax(P), VerticalLing( W-boundPILESboundP) y,, -, (| point(Py, Emax(P), Wmin(P), VerticalLing

4. UNIQUENESS OFDECOMPOSITION OF ASIMPLE CLOSED CURVE
The following propositions are true:

(41) For every subsé of I such thaP = (the carrier ofl) \ {0,1} holdsP is open.

(44@ For all real numbers, sholds]r, s misses{r,s}.

(45) For all real numbera, b, ¢ holdsc € ]a, b[ iff a< candc < b.

(46) For every subsé of R* and for all real numbers s such thaP = Jr, s holdsP is open.

(47) LetSbe a non empty topological spa¢g, P> be subsets db, andP; be a subset ob[P,.
If PL =P andP; C P,, thenS[P, = S|P, |P;.

(48) For every subsd¥ of I such that?; = (the carrier ofl) \ {0,1} holdsP; # 0 andP; is
connected.

(49) For every subsét of £] and for all pointsps, p2 of £{ such thaP is an arc fromp; to p;
holds p;1 # p2.

(50) LetP be a subset of7, Q be a subset ofE7) [P, andpy, p2 be points ofEy. If Pis an arc
from p1 to p2 andQ = P\ {p1, p2}, thenQ is open.

(52F] LetP be asubset o}, Py, P, be non empty subsets @, Q be a subset of£}) [P, and
p1, p2 be points ofE}. Supposep; € P andp; € P andPy is an arc frompy to p2 andP; is
an arc fromp; to p; andPLUP, = P andPL NP, = {p1, p2} andQ = P;\ {p1, p2}. ThenQ
is open.

(53) LetP be a subset of7, Q be a subset ofE7) [P, andp, p2 be points ofEf. If Pis an arc
from p; to p; andQ = P\ {p1, p2}, thenQ is connected.

(54) LetG; be a non empty topological spa¢g, P be subsets aB;, Q' be a subset oB; [P,
andQ be a subset B4 [P. If P, C P andQ = Q' andQ' is connected, the® is connected.

(55) LetP be a subset of7 andpy, p2 be points ofE{. Suppose is an arc fromp; to py.
Then there exists a poimk of 7 such thatps € P andpz # p1 andps # p».

(56) For every subsét of £7 and for all pointsps, p2 of Z{ such thaP is an arc fromp; to p;
holdsP\ {p1, p2} # 0.

(57) LetPy be asubset o7, P be a subset of7, Q be a subset of£7) [P, andpy, p2 be points
of £7. If Pris an arc fromp; to p; andPy C P andQ = Py \ {p1, p2}, thenQ is connected.

(58) LetT, SV be non empty topological spacé&s,be a non empty subset 8f P, be a subset
of S, f be a map fronT into S|P;, andg be a map fron§[P; into V. Supposd; C P, and f
is continuous and is continuous. Then there exists a nfafpom T intoV such thah=g- f
andh is continuous.

3 The propositions (36)—(39) have been removed.
4 The propositions (42) and (43) have been removed.
5 The proposition (51) has been removed.
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(59) LetPy, P> be subsets off andpy, p2 be points of£f. If Py is an arc fromp; to p, andP,
is an arc fromp; to p2 andP; C P, thenPp = P,.

(60) LetP be a non empty subset @2, Q be a subset of £2) [P, and py, pz be points of£2.
SupposeP is a simple closed curve aq € P andp; € Pandp; # p2 andQ = P\ {p1, p2}-
ThenQ is not connected.

(61) LetP be a non empty subset @&, Py, P,, P;, P, be subsets of2, andp;, p; be points of
E%. Suppose thaP is a simple closed curve ari®] is an arc fromp; to p, andP;, is an arc
from p; to p, andPLUP, = P andPj is an arc fromp; to p, andP is an arc frompy to py
andP; UP, = P. ThenP, = P; andP, = P} or P = P, andP, = P;.

5. LOWERARCS ANDUPPERARCS

Let us observe that every elementRf is real.
One can prove the following proposition

(64E| Let P, be a subset oE% r be a real number, angy, p2 be points ofE%. Supposép:)1 <
r andr < (pz)1 andPy is an arc fromp; to pp. ThenP; meets VerticalLingr) andPr N
VerticalLing(r) is closed.

Let P be a compact non empty subsetEﬁ. Let us assume th&tis a simple closed curve. The
functor UpperAr¢P) yielding a non empty subset (Zf% is defined by the conditions (Def. 8).
(Def. 8)(i) UpperArgP) is an arc from Whin(P) to Emax(P), and

(i)  there exists a non empty subsE of Z% such thatP, is an arc from Eax(P)
to Wpin(P) and UpperAr¢P) N P, = {Wnin(P),Emax(P)} and UpperAr¢P) U P, =
P and (FPoin(UpperArc(P),Wmin(P),EmaX(P),VerticaILine(W'boundp);E_boundP))))2 >
(LP0INt(P2, Emax(P), Wiin(P), VerticalLine( Y2oundP) LE-boundP)

Let P be a compact non empty subsemﬁ. Let us assume th&tis a simple closed curve. The
functor LowerArgP) yielding a non empty subset Gt% is defined as follows:

ef. owerArdP) is an arc from Bax(P) to Wpin(P) and UpperAr¢P) N LowerArc(P) =

(Def.9) L ArdP) i f Rax(P Whin(P du Ar¢P) NL Arc(P
{Whin(P), Emax(P) } and UpperAr¢P) ULowerArc(P) = P and(FPoin{ UpperArd P), Wnin(P), Emax(P), VerticalLine
(LPoint(LowerArc(P), Emax(P), Wiin(P), VerticalLine( W-2oundP) rEzboundP) ) ),

The following propositions are true:

(65) Let P be a compact non empty subset Gf% Suppose P is a sim-
ple closed curve. Then UpperAR) is an arc from Wn(P) to Emax(P) and
UpperArdP) is an arc from FRax(P) to Wpin(P) and LowerAr¢P) is an arc from
Emax(P) to Wmin(P) and LowerAr¢P) is an arc from Wn(P) to Enax(P) and
UpperArdP) N LowerArc(P) = {Wmin(P),Emax(P)} and UpperAréP) U LowerArc(P) =
P and (FPoin{UpperArqP), Win(P), Emax(P), VerticalLine( W-2eundPrEboundP) )y, -,
(LPoint{LowerArc(P), Emax(P), Wiin(P), VerticalLine( W-2oundPI 1 E-boundP) ).,

(66) Let P be a compact non empty subset @2. If P is a simple closed curve,
then LowerAr¢P) = (P \ UpperArqP)) U {Wnin(P),Emax(P)} and UpperAr¢P) = (P \
LowerArc(P)) U {Wmin(P), Emax(P) }-

(67) LetP be a compact nhon empty subsetzq?f andP; be a subset o(ff%) [P. If Pis asimple
closed curve and UpperAie) NP1 = {Wnin(P), Emax(P)} and UpperAr¢P) UP; = P, then
P1 = LowerArc(P).

(68) LetP be a compact non empty subsemﬁ andP; be a subset o(fz%) [P. If Pis asimple
closed curve ané N LowerArc(P) = {Wnin(P), Emax(P)} andPy U LowerArc(P) = P, then
P1 = UpperArdP).

6 The propositions (62) and (63) have been removed.
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6. AN ORDER OFPOINTS IN A SIMPLE CLOSED CURVE

We now state two propositions:

(69) LetP be a subset oE2 andpy, pz, g be points ofE£2. If P is an arc fromp; to p; and LE

a, p1, P, p1, p2, theng = p.

(70) LetP be a subset OE% andpi, p2, q be points of‘E%. If Pis an arc fromp; to p> and LE

P2, G, P, p1, P2, theng = po.

Let P be a compact non empty subset@f and letqy, gy be points off%. The predicate

a1 <p O is defined by the conditions (Def. 10).

(Def. 10)(i) a1 € UpperArqP) andq, € LowerArc(P) andgy # Wmin(P), or

(i) g1 € UpperArqP) andg, € UpperArdP) and LEqy, 02, UpperArgP), Wmin(P), Emax(P),

or

(i) g1 € LowerArc(P) andq € LowerArc(P) anddz # Win(P) and LEqs, 02, LowerArg(P),

Emax( P) i Wmin(P) .

One can prove the following propositions:

(71) LetP be a compact non empty subset#g andq be a point of£2. If P is a simple closed

curve andy € P, thenq <p q.

(72) LetP be a compact non empty subset®t andas, gz be points of£2. If P is a simple

closed curve and; <p gz andgp <p g1, thengs = 0.

(73) LetP be a compact non empty subsetiff andas, gy, gz be points ofE2. If Pis a simple

(1

(2]

4

(3]

6]
(7]
8l

[

[20]

[11]

[12]

[13]

[14]

closed curve and; <p g andgz <p 0s, thengs <p gs.
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