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The articles [19], [23], [2], [21], [20], [1], [16], [24], [3], [4], [22], [6], [11], [10], [9], [8], [12],
[13], [15], [17], [7], [14], and [5] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we use the following convention:p, q are points ofE2
T, r is a real number,h is a

non constant standard special circular sequence,g is a finite sequence of elements ofE2
T, f is a non

empty finite sequence of elements ofE2
T, andI , i1, i, j, k are natural numbers.

The following propositions are true:

(3)1 For every natural numbern and for every finite sequenceh of elements ofEn
T such that

lenh≥ 2 holdshlenh ∈ L(h, lenh−′ 1).

(4) If 3 ≤ i, theni mod(i−′ 1) = 1.

(5) If p ∈ rngh, then there exists a natural numberi such that 1≤ i and i + 1 ≤ lenh and
h(i) = p.

(6) For every finite sequenceg of elements ofR such thatr ∈ rngg holds(Inc(g))(1)≤ r and
r ≤ (Inc(g))(lenInc(g)).

(7) Suppose 1≤ i and i ≤ lenh and 1≤ I and I ≤ widththe Go-board ofh. Then
(the Go-board ofh◦ (1, I))1≤ (hi)1 and(hi)1≤ (the Go-board ofh◦ (lenthe Go-board ofh, I))1.

(8) Suppose 1≤ i and i ≤ lenh and 1≤ I and I ≤ lenthe Go-board ofh. Then
(the Go-board ofh◦ (I ,1))2≤ (hi)2 and(hi)2≤ (the Go-board ofh◦ (I ,widththe Go-board ofh))2.

(9) Suppose 1≤ i andi ≤ lenthe Go-board off . Then there existk, j such thatk∈ dom f and
〈〈i, j〉〉 ∈ the indices of the Go-board off and fk = the Go-board off ◦ (i, j).

(10) Suppose 1≤ j and j ≤ widththe Go-board off . Then there existk, i such thatk∈ dom f
and〈〈i, j〉〉 ∈ the indices of the Go-board off and fk = the Go-board off ◦ (i, j).

1 The propositions (1) and (2) have been removed.
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(11) Suppose 1≤ i and i ≤ lenthe Go-board off and 1≤ j and j ≤ widththe Go-board off .
Then there existsk such thatk ∈ dom f and 〈〈i, j〉〉 ∈ the indices of the Go-board off and
( fk)1 = (the Go-board off ◦ (i, j))1.

(12) Suppose 1≤ i and i ≤ lenthe Go-board off and 1≤ j and j ≤ widththe Go-board off .
Then there existsk such thatk ∈ dom f and 〈〈i, j〉〉 ∈ the indices of the Go-board off and
( fk)2 = (the Go-board off ◦ (i, j))2.

2. EXTREMA OF PROJECTIONS

We now state a number of propositions:

(13) If 1≤ i andi ≤ lenh, then S-bound(L̃(h))≤ (hi)2 and(hi)2 ≤ N-bound(L̃(h)).

(14) If 1≤ i andi ≤ lenh, then W-bound(L̃(h))≤ (hi)1 and(hi)1 ≤ E-bound(L̃(h)).

(15) For every subsetX of R such thatX = {q2 : q1 = W-bound(L̃(h)) ∧ q ∈ L̃(h)} holds
X = (proj2� Wmost(L̃(h)))◦(the carrier of(E2

T)�Wmost(L̃(h))).

(16) For every subsetX of R such thatX = {q2 : q1 = E-bound(L̃(h)) ∧ q ∈ L̃(h)} holds
X = (proj2� Emost(L̃(h)))◦(the carrier of(E2

T)�Emost(L̃(h))).

(17) For every subsetX of R such thatX = {q1 : q2 = N-bound(L̃(h)) ∧ q ∈ L̃(h)} holds
X = (proj1� Nmost(L̃(h)))◦(the carrier of(E2

T)�Nmost(L̃(h))).

(18) For every subsetX of R such thatX = {q1 : q2 = S-bound(L̃(h)) ∧ q ∈ L̃(h)} holds
X = (proj1� Smost(L̃(h)))◦(the carrier of(E2

T)�Smost(L̃(h))).

(19) For every subsetX of R such thatX = {q1 : q∈ L̃(g)} holdsX = (proj1� L̃(g))◦(the carrier
of (E2

T)�L̃(g)).

(20) For every subsetX of R such thatX = {q2 : q∈ L̃(g)} holdsX = (proj2� L̃(g))◦(the carrier
of (E2

T)�L̃(g)).

(21) For every subsetX of R such thatX = {q2 : q1 = W-bound(L̃(h)) ∧ q ∈ L̃(h)} holds
inf X = inf(proj2� Wmost(L̃(h))).

(22) For every subsetX of R such thatX = {q2 : q1 = W-bound(L̃(h)) ∧ q ∈ L̃(h)} holds
supX = sup(proj2� Wmost(L̃(h))).

(23) For every subsetX of R such thatX = {q2 : q1 = E-bound(L̃(h)) ∧ q ∈ L̃(h)} holds
inf X = inf(proj2� Emost(L̃(h))).

(24) For every subsetX of R such thatX = {q2 : q1 = E-bound(L̃(h)) ∧ q ∈ L̃(h)} holds
supX = sup(proj2� Emost(L̃(h))).

(25) For every subsetX of R such thatX = {q1 : q∈ L̃(g)} holds infX = inf(proj1� L̃(g)).

(26) For every subsetX of R such thatX = {q1 : q2 = S-bound(L̃(h)) ∧ q ∈ L̃(h)} holds
inf X = inf(proj1� Smost(L̃(h))).

(27) For every subsetX of R such thatX = {q1 : q2 = S-bound(L̃(h)) ∧ q ∈ L̃(h)} holds
supX = sup(proj1� Smost(L̃(h))).

(28) For every subsetX of R such thatX = {q1 : q2 = N-bound(L̃(h)) ∧ q ∈ L̃(h)} holds
inf X = inf(proj1� Nmost(L̃(h))).

(29) For every subsetX of R such thatX = {q1 : q2 = N-bound(L̃(h)) ∧ q ∈ L̃(h)} holds
supX = sup(proj1� Nmost(L̃(h))).
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(30) For every subsetX of R such thatX = {q2 : q∈ L̃(g)} holds infX = inf(proj2� L̃(g)).

(31) For every subsetX of R such thatX = {q1 : q∈ L̃(g)} holds supX = sup(proj1� L̃(g)).

(32) For every subsetX of R such thatX = {q2 : q∈ L̃(g)} holds supX = sup(proj2� L̃(g)).

(33) If p∈ L̃(h) and 1≤ I andI ≤widththe Go-board ofh, then(the Go-board ofh◦ (1, I))1 ≤
p1.

(34) If p∈ L̃(h) and 1≤ I andI ≤widththe Go-board ofh, thenp1≤ (the Go-board ofh◦ (lenthe Go-board ofh, I))1.

(35) If p∈ L̃(h) and 1≤ I andI ≤ lenthe Go-board ofh, then(the Go-board ofh◦ (I ,1))2≤ p2.

(36) If p∈ L̃(h) and 1≤ I andI ≤ lenthe Go-board ofh, thenp2≤ (the Go-board ofh◦ (I ,widththe Go-board ofh))2.

(37) Suppose 1≤ i and i ≤ lenthe Go-board ofh and 1≤ j and j ≤ widththe Go-board ofh.
Then there existsq such thatq1 = (the Go-board ofh◦ (i, j))1 andq∈ L̃(h).

(38) Suppose 1≤ i and i ≤ lenthe Go-board ofh and 1≤ j and j ≤ widththe Go-board ofh.
Then there existsq such thatq2 = (the Go-board ofh◦ (i, j))2 andq∈ L̃(h).

(39) W-bound(L̃(h)) = (the Go-board ofh◦ (1,1))1.

(40) S-bound(L̃(h)) = (the Go-board ofh◦ (1,1))2.

(41) E-bound(L̃(h)) = (the Go-board ofh◦ (lenthe Go-board ofh, 1))1.

(42) N-bound(L̃(h)) = (the Go-board ofh◦ (1,widththe Go-board ofh))2.

(43) LetY be a non empty finite subset ofN. Suppose that 1≤ i and i ≤ len f and 1≤ I and
I ≤ lenthe Go-board off andY = { j : 〈〈I , j〉〉 ∈ the indices of the Go-board off ∧

∨
k (k ∈

dom f ∧ fk = the Go-board off ◦ (I , j))} and( fi)1 = (the Go-board off ◦ (I ,1))1 andi1 =
minY. Then(the Go-board off ◦ (I , i1))2 ≤ ( fi)2.

(44) LetY be a non empty finite subset ofN. Suppose that 1≤ i and i ≤ lenh and 1≤ I and
I ≤widththe Go-board ofh andY = { j : 〈〈 j, I〉〉 ∈ the indices of the Go-board ofh ∧

∨
k (k∈

domh ∧ hk = the Go-board ofh◦ ( j, I))} and(hi)2 = (the Go-board ofh◦ (1, I))2 andi1 =
minY. Then(the Go-board ofh◦ (i1, I))1 ≤ (hi)1.

(45) LetY be a non empty finite subset ofN. Suppose that 1≤ i and i ≤ lenh and 1≤ I and
I ≤widththe Go-board ofh andY = { j : 〈〈 j, I〉〉 ∈ the indices of the Go-board ofh ∧

∨
k (k∈

domh ∧ hk = the Go-board ofh◦ ( j, I))} and(hi)2 = (the Go-board ofh◦ (1, I))2 andi1 =
maxY. Then(the Go-board ofh◦ (i1, I))1 ≥ (hi)1.

(46) LetY be a non empty finite subset ofN. Suppose that 1≤ i and i ≤ len f and 1≤ I and
I ≤ lenthe Go-board off andY = { j : 〈〈I , j〉〉 ∈ the indices of the Go-board off ∧

∨
k (k ∈

dom f ∧ fk = the Go-board off ◦ (I , j))} and( fi)1 = (the Go-board off ◦ (I ,1))1 andi1 =
maxY. Then(the Go-board off ◦ (I , i1))2 ≥ ( fi)2.

3. COORDINATES OF THESPECIAL CIRCULAR SEQUENCESBOUNDING BOXES

Let g be a non constant standard special circular sequence. The functor iSWg yielding a natural
number is defined by:

(Def. 1) 〈〈1, iSWg〉〉 ∈ the indices of the Go-board ofg and the Go-board ofg ◦ (1, iSWg) =
Wmin(L̃(g)).

The functor iNW g yields a natural number and is defined as follows:

(Def. 2) 〈〈1, iNW g〉〉 ∈ the indices of the Go-board ofg and the Go-board ofg ◦ (1, iNW g) =
Wmax(L̃(g)).
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The functor iSEg yields a natural number and is defined by the conditions (Def. 3).

(Def. 3)(i) 〈〈 lenthe Go-board ofg, iSEg〉〉 ∈ the indices of the Go-board ofg, and

(ii) the Go-board ofg◦ (lenthe Go-board ofg, iSEg) = Emin(L̃(g)).

The functor iNEg yields a natural number and is defined by the conditions (Def. 4).

(Def. 4)(i) 〈〈 lenthe Go-board ofg, iNEg〉〉 ∈ the indices of the Go-board ofg, and

(ii) the Go-board ofg◦ (lenthe Go-board ofg, iNEg) = Emax(L̃(g)).

The functor iWSg yields a natural number and is defined by:

(Def. 5) 〈〈 iWSg, 1〉〉 ∈ the indices of the Go-board ofg and the Go-board ofg ◦ (iWSg,1) =
Smin(L̃(g)).

The functor iESg yields a natural number and is defined by:

(Def. 6) 〈〈 iESg, 1〉〉 ∈ the indices of the Go-board ofg and the Go-board ofg ◦ (iESg,1) =
Smax(L̃(g)).

The functor iWN g yields a natural number and is defined by the conditions (Def. 7).

(Def. 7)(i) 〈〈 iWN g, widththe Go-board ofg〉〉 ∈ the indices of the Go-board ofg, and

(ii) the Go-board ofg◦ (iWN g,widththe Go-board ofg) = Nmin(L̃(g)).

The functor iENg yields a natural number and is defined by the conditions (Def. 8).

(Def. 8)(i) 〈〈 iENg, widththe Go-board ofg〉〉 ∈ the indices of the Go-board ofg, and

(ii) the Go-board ofg◦ (iENg,widththe Go-board ofg) = Nmax(L̃(g)).

One can prove the following propositions:

(47) 1≤ iWN h and iWN h≤ lenthe Go-board ofh and 1≤ iENh and iENh≤ lenthe Go-board of
h and 1≤ iWSh and iWSh≤ lenthe Go-board ofh and 1≤ iESh and iESh≤ lenthe Go-board
of h.

(48) 1≤ iNEh and iNEh≤widththe Go-board ofh and 1≤ iSEh and iSEh≤widththe Go-board
of h and 1≤ iNW h and iNW h≤ widththe Go-board ofh and 1≤ iSWh and iSWh≤ widththe
Go-board ofh.

Let g be a non constant standard special circular sequence. The functor nSWg yielding a natural
number is defined by:

(Def. 9) 1≤ nSWg and nSWg+1≤ leng andg(nSWg) = Wmin(L̃(g)).

The functor nNW g yielding a natural number is defined by:

(Def. 10) 1≤ nNW g and nNW g+1≤ leng andg(nNW g) = Wmax(L̃(g)).

The functor nSEg yields a natural number and is defined as follows:

(Def. 11) 1≤ nSEg and nSEg+1≤ leng andg(nSEg) = Emin(L̃(g)).

The functor nNEg yielding a natural number is defined as follows:

(Def. 12) 1≤ nNEg and nNEg+1≤ leng andg(nNEg) = Emax(L̃(g)).

The functor nWSg yields a natural number and is defined as follows:

(Def. 13) 1≤ nWSg and nWSg+1≤ leng andg(nWSg) = Smin(L̃(g)).

The functor nESg yields a natural number and is defined as follows:
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(Def. 14) 1≤ nESg and nESg+1≤ leng andg(nESg) = Smax(L̃(g)).

The functor nWN g yielding a natural number is defined by:

(Def. 15) 1≤ nWN g and nWN g+1≤ leng andg(nWN g) = Nmin(L̃(g)).

The functor nENg yielding a natural number is defined by:

(Def. 16) 1≤ nENg and nENg+1≤ leng andg(nENg) = Nmax(L̃(g)).

The following four propositions are true:

(49) nWN h 6= nWSh.

(50) nSWh 6= nSEh.

(51) nENh 6= nESh.

(52) nNW h 6= nNEh.
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