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The articles|[10],[128],[12],[1211],[120],[11],[T16],[1241,[13],[14],[122],L16],114],[ 1201, [9],18],[112],
[13], [15], [27], [Z], [14], and [5] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we use the following conventiom, g are points ofE%, r is a real numberh is a
non constant standard special circular sequeniza finite sequence of eIements@f, fisanon
empty finite sequence of elementsi’#, andl, iy, i, j, kare natural numbers.

The following propositions are true:

(3E] For every natural number and for every finite sequendeof elements of£E7 such that
lenh > 2 holdshienn € L(h,lenh—"1).

(4) If3<i, thenimod(i—'1)=1.

(5) If p erngh, then there exists a natural numbesuch that 1< i andi+ 1 < lenh and
h(i) = p.

(6) For every finite sequeneeof elements ofR such thar € rngg holds(Inc(g))(1) <r and
r < (Inc(g))(lenInd(g)).

(7) Suppose K i andi <lenh and 1< 1 and| < widththe Go-board ofh. Then
(the Go-board oho (1,1))1 < (hi)1 and(h;)1 < (the Go-board ofo (lenthe Go-board o, 1));.

(8) Suppose K i andi <lenh and 1< 1| and | < lenthe Go-board ofh. Then
(the Go-board oho (1,1))2 < (hj)2 and(h;)2 < (the Go-board ofo (I, widththe Go-board off))s.

(9) Suppose X iandi < lenthe Go-board of. Then there exist, j such thak € domf and
(i, j) € the indices of the Go-board dfand fx = the Go-board of o (i, j).

(10) Suppose ¥ j andj < widththe Go-board of. Then there exisk, i such thak € domf
and(i, j) € the indices of the Go-board dfand fy = the Go-board of o (i, j).

1 The propositions (1) and (2) have been removed.
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(11) Suppose K i andi < lenthe Go-board of and 1< j and j < widththe Go-board of .
Then there exist& such thatk € domf and (i, j) € the indices of the Go-board df and
(fk)1 = (the Go-board of o (i, j))1.

(12) Suppose X i andi < lenthe Go-board of and 1< j andj < widththe Go-board of.
Then there exist& such thatk € domf and (i, j) € the indices of the Go-board df and
(fk)2 = (the Go-board of o (i, j))2.

2. EXTREMA OF PROJECTIONS

We now state a number of propositions:
(13) If1<iandi < lenh, then S-boun(lZ(h)) < (h)2 and(h)2 < N-bound Z(h)).
(14) If1<iandi < lenh, then W-boundZ(h)) < (hi); and(h;)1 < E-bound Z(h)).

(15) For every subseX of R such thatX = {q : g1 = W-bound Z(h)) A qe £(h)} holds
X = (proj2 | Wmost £(h)))°(the carrier of E2) | Wmos( L(h))).

(16) For every subseX of R such thatX = {q, : g1 = E-boundZ(h)) A q e Z(h)} holds
X = (proj2 | Emost L(h)))°(the carrier of £2) | Emost L(h))).

(17) For every subseX of R such thatX = {gy : ¢ = N-bound Z(h)) A g€ L(h)} holds
X = (proj1 | Nmost( £(h)))°(the carrier of £2)[ Nmos( L (h)))-

(18) For every subseX of R such thatX = {qs : g = S-boundZ(h)) A g€ L(h)} holds
X = (proj1 | Smos{ L(N)))°(the carrier o £2) | Smos L(h))).

(19) For every subs&t of R suchthaX ={g;:q € Z(g)} holdsX = (proj1| Z(g))"(the carrier
of (£9)1.£(9))-

(20) Forevery subset of R such thaX = {dz: q € £(g)} holdsX = (proj2| £(g))°(the carrier
of (£%)1.L(9))-

(21) For every subseX of R such thatX = {gz : a1 = W-bound £(h)) A g€ L(h)} holds
infX = inf(proj2 [ Wmos{ £(h))).

(22) For every subseX of R such thatX = {gz : gp = W-bound Z(h)) A qe€ L(h)} holds
supX = supproj2 | Wmesi L(h))).

(23) For every subseX of R such thatX = {q : g1 = E-bound£(h)) A g€ Z(h)} holds
inf X = inf(proj2 | Emost(£(h))).

(24) For every subseX of R such thatX = {qp : g1 = E-boundZ(h)) A g€ L(h)} holds
supX = sup(proj2 | Emost(£(h))).

(25) For every subsét of R such thatX = {a : g € £(g)} holds infX = inf(proj1 | £(g)).

(26) For every subseX of R such thatX = {q; : gp = S-boundZ(h)) A g€ L(h)} holds
infX = inf(proj1 | Smos{ L(h))).

(27) For every subseX of R such thatX = {qs : gz = S-boundZ(h)) A g€ L(h)} holds
supX = sup(projl | Smost £(h))).

(28) For every subseX of R such thatX = {gy : ¢ = N-bound Z(h)) A q € L(h)} holds
infX = inf(proj1 | Nmost(£(h))).

(29) For every subseX of R such thatX = {g; : g2 = N-bound L(h)) A g€ L(h)} holds
supX = sup(projl | Nmoesi{ £(h))).
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(30) For every subsét of R such thatX = {q : q € £(g)} holds infX = inf(proj2 | £(g)).

(31) For every subsét of R such thatX = {a : g € £(g)} holds supX = sug(proj1 | L(g)).

(32) Forevery subset of R suchthaX ={q,:q¢ L( )} holds supX = sup(proj2 | (g))
1<

(33) If pe £(h) and 1< | andl < widththe Go-board of, then(the Go-board ofio (1,1)); <
p1.

(34) If pe £(h)and 1< andl < widththe Go-board df, thenp; < (the Go-board ofio (lenthe Go-board dff, I));.
(35) Ifpe L(h)and 1< | andl < lenthe Go-board df, then(the Go-board oho (I,1)), < ps.
(36) If pe £(h)and 1< | andl < lenthe Go-board di, thenp, < (the Go-board oho (I, widththe Go-board of))..

(37) Suppose X i andi < lenthe Go-board of and 1< j and j < widththe Go-board oh.
Then there existg such thaty; = (the Go-board oho (i, j)); andg € L(h).

(38) Suppose ¥ i andi < lenthe Go-board ofi and 1< j and j < widththe Go-board oh.
Then there existg such thaty, = (the Go-board oho (i, j))2 andg € L(h).

(39) W-bound£(h)) = (the Go-board ofio (1,1));.

(40) S-boundZ(h)) = (the Go-board ofio (1,1))s.

(41) E-boundZ(h)) = (the Go-board oho (lenthe Go-board df, 1));.
(42) N-boundZ(h)) = (the Go-board oho (1,widththe Go-board oh))s.

(43) LetY be a non empty finite subset Bf. Suppose that ¥ i andi <lenf and 1< and
| <lenthe Go-board of andY = {j : {l, j) € the indices of the Go-board df A \/\ (ke
domf A fx=the Go-board of o (I, j))} and(fi)1 = (the Go-board of o (l,1)); andi; =
minY. Then(the Go-board of o (I,i1))2 < (fi)2.

(44) LetY be a non empty finite subset Bf. Suppose that ¥ i andi < lenh and 1< 1| and
| <widththe Go-board ofiandY = {j: (j, |} € the indices of the Go-board bf A \/, (ke
domh A hg =the Go-board oho (j,1))} and(h;)2 = (the Go-board oho (1,1)), andiy =
minY. Then(the Go-board ofo (i1, 1))1 < (hi)1.

(45) LetY be a non empty finite subset Bf. Suppose that ¥ i andi <lenh and 1< and
| <widththe Go-board ofiandY = {j : (j, |} € the indices of the Go-board bf A \/, (ke
domh A hy =the Go-board oho (j,1))} and(h;), = (the Go-board oho (1,1)), andiy =
maxY. Then(the Go-board oho (iy,1))1 > (hi)1.

(46) LetY be a non empty finite subset df Suppose that £ i andi <lenf and 1< 1| and
| <lenthe Go-board of andY = {j: (I, j) € the indices of the Go-board df A \/ (ke
domf A fyx =the Go-board off o (I, J))} and(f;)1 = (the Go-board of o (I,1))1 andi; =

maxY. Then(the Go-board of o (1,i1))2 > (fi)2.

3. COORDINATES OF THESPECIAL CIRCULAR SEQUENCESBOUNDING BOXES

Let g be a non constant standard special circular sequence. The fuggiielding a natural
number is defined by:

(Def. 1) (1, i§Wg) € the indices of the Go-board aj and the Go-board ofjo (1,iswg) =
Whin(L(9))-

The functor kw g yields a natural number and is defined as follows:

(Def. 2) (1, iﬁwg) € the indices of the Go-board af and the Go-board ofo (1,inwQ) =
Winax(L(9))-
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The functor §eg yields a natural number and is defined by the conditions (Def. 3).
(Def. 3)(i) (lenthe Go-board of, iseg) € the indices of the Go-board gf and
(i) the Go-board ofyo (lenthe Go-board of, iseg) = Emin(L(g)).
The functor e g yields a natural number and is defined by the conditions (Def. 4).

(Def. 4)(i) (lenthe Go-board of, ineg) € the indices of the Go-board gf and

(i) the Go-board ofyo (lenthe Go-board of, iNne9) = Emax(L(9)).
The functor jysg yields a natural number and is defined by:

(Def. 5) (iw~sg, 1) € the indices of the Go-board of and the Go-board ofjo (iwsg,1) =
Smin(£(9))-

The functor gsg yields a natural number and is defined by:

(Def. 6) (iE§g, 1) € the indices of the Go-board of and the Go-board ofyo (igsg,1) =
Smax(£(9))-

The functor yyn g Yields a natural number and is defined by the conditions (Def. 7).

(Def. 7)()) (iwng, widththe Go-board of)) € the indices of the Go-board gf and

(i) the Go-board ofyo (iwn g, widththe Go-board off) = Nmin(£(9)).
The functor gy g yields a natural number and is defined by the conditions (Def. 8).

(Def. 8)(i) (ieng, widththe Go-board off) € the indices of the Go-board gf and

(i) the Go-board ofyo (igng, widththe Go-board off) = Nimax(£(9)).

One can prove the following propositions:

(47) 1<iwnhandiynh <lenthe Go-board afiand 1< igyhand gyh < lenthe Go-board of
hand 1< iwsh and iysh < lenthe Go-board af and 1< igsh and gsh < lenthe Go-board
of h.

(48) 1<inghand eh < widththe Go-board ofi and 1< isgh and kgh < widththe Go-board
of hand 1< iywh and kwh < widththe Go-board of and 1< iswh and kwh < widththe
Go-board oh.

Let g be a non constant standard special circular sequence. The fugatgiyrelding a natural
number is defined by:

(Def.9) 1< nswgand rswg+ 1 <lengandg(nswg) = Wmin(Z(g)).

The functor Ry g yielding a natural number is defined by:

(Def. 10) 1< nnwgand nywg+1<lengandg(nnwg) = WmaX(Z(g)).
The functor geg yields a natural number and is defined as follows:

(Def. 11) 1< ngggand nseg+ 1 < leng andg(nseg) = Emm(Z(g)).
The functor R g yielding a natural number is defined as follows:

(Def. 12) 1< nyegand meg+ 1 < lengandg(nned) = Emax(L(9)).
The functor Rysg yields a natural number and is defined as follows:

(Def. 13) 1< nwsgand Rsg+ 1 < leng andg(nwsg) = Smin(£(9)).

The functor psg yields a natural number and is defined as follows:
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(Def. 14) 1< nesgand iksg+1 < leng andg(nesg) = Smax(Z(0)).

The functor gy g yielding a natural number is defined by:

(Def. 15) 1< nwngand Ryng+ 1 <lengandg(nwng) = Nmin(Z(g)).

The functor gy g yielding a natural number is defined by:

(Def. 16) 1< ngnygand eng+ 1 <lengandg(neng) = NmaX(Z(g)).

The following four propositions are true:

(49) nwnh# nwsh.
(50) nswh# nsgh.
(51) renh#ngsh.
(52) mwh#neh.
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