Bounding Boxes for Special Sequences in \mathcal{E}^2

Yatsuka Nakamura Shinshu University Nagano Adam Grabowski University of Białystok

Summary. This is the continuation of the proof of the Jordan Theorem according to [18].

MML Identifier: JORDAN5D.

WWW: http://mizar.org/JFM/Vol10/jordan5d.html

The articles [19], [23], [2], [21], [20], [1], [16], [24], [3], [4], [22], [6], [11], [10], [9], [8], [12], [13], [15], [17], [7], [14], and [5] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we use the following convention: p, q are points of $\mathcal{E}_{\mathrm{T}}^2$, r is a real number, h is a non constant standard special circular sequence, g is a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, f is a non empty finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, and I, i_1 , i, j, k are natural numbers.

The following propositions are true:

- (3)¹ For every natural number n and for every finite sequence h of elements of \mathcal{E}_T^n such that $\operatorname{len} h \geq 2$ holds $h_{\operatorname{len} h} \in \mathcal{L}(h, \operatorname{len} h 1)$.
- (4) If $3 \le i$, then $i \mod (i 1) = 1$.
- (5) If $p \in \operatorname{rng} h$, then there exists a natural number i such that $1 \le i$ and $i+1 \le \operatorname{len} h$ and h(i) = p.
- (6) For every finite sequence g of elements of \mathbb{R} such that $r \in \operatorname{rng} g$ holds $(\operatorname{Inc}(g))(1) \leq r$ and $r \leq (\operatorname{Inc}(g))(\operatorname{len}\operatorname{Inc}(g))$.
- (7) Suppose $1 \le i$ and $i \le \text{len } h$ and $1 \le I$ and $I \le \text{width the Go-board of } h$. Then (the Go-board of $h \circ (1,I)$)₁ $\le (h_i)_1$ and $(h_i)_1 \le (\text{the Go-board of } h \circ (\text{len the Go-board of } h,I))_1$.
- (8) Suppose $1 \le i$ and $i \le \text{len } h$ and $1 \le I$ and $I \le \text{len the Go-board of } h$. Then (the Go-board of $h \circ (I,1)$)₂ $\le (h_i)_2$ and $(h_i)_2 \le (\text{the Go-board of } h \circ (I,\text{width the Go-board of } h))_2$.
- (9) Suppose $1 \le i$ and $i \le len the Go-board of <math>f$. Then there exist k, j such that $k \in dom f$ and $\langle i, j \rangle \in the indices of the Go-board of <math>f$ and $f_k = the Go-board of <math>f \circ (i, j)$.
- (10) Suppose $1 \le j$ and $j \le$ width the Go-board of f. Then there exist k, i such that $k \in$ dom f and $\langle i, j \rangle \in$ the indices of the Go-board of f and $f_k =$ the Go-board of $f \circ (i, j)$.

¹ The propositions (1) and (2) have been removed.

- (11) Suppose $1 \le i$ and $i \le len the Go-board of <math>f$ and $1 \le j$ and $j \le width the Go-board of <math>f$. Then there exists k such that $k \in \text{dom } f$ and $\langle i, j \rangle \in \text{the indices of the Go-board of } f$ and $(f_k)_1 = (\text{the Go-board of } f \circ (i, j))_1$.
- (12) Suppose $1 \le i$ and $i \le len the Go-board of <math>f$ and $1 \le j$ and $j \le width the Go-board of <math>f$. Then there exists k such that $k \in \text{dom } f$ and $\langle i, j \rangle \in \text{the indices of the Go-board of } f$ and $(f_k)_2 = (\text{the Go-board of } f \circ (i, j))_2$.

2. Extrema of Projections

We now state a number of propositions:

- (13) If $1 \le i$ and $i \le \text{len } h$, then S-bound($\widetilde{\mathcal{L}}(h)$) $\le (h_i)_2$ and $(h_i)_2 \le \text{N-bound}(\widetilde{\mathcal{L}}(h))$.
- (14) If $1 \le i$ and $i \le \text{len } h$, then W-bound($\widetilde{\mathcal{L}}(h)$) $\le (h_i)_1$ and $(h_i)_1 \le \text{E-bound}(\widetilde{\mathcal{L}}(h))$.
- (15) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = \text{W-bound}(\widetilde{\mathcal{L}}(h)) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $X = (\text{proj2} \upharpoonright \text{W}_{\text{most}}(\widetilde{\mathcal{L}}(h)))^{\circ} \text{(the carrier of } (\mathcal{E}_{\mathsf{T}}^2) \upharpoonright \text{W}_{\text{most}}(\widetilde{\mathcal{L}}(h))).$
- (16) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = \text{E-bound}(\widetilde{\mathcal{L}}(h)) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $X = (\text{proj2} \upharpoonright \text{E}_{\text{most}}(\widetilde{\mathcal{L}}(h)))^{\circ} \text{(the carrier of } (\mathcal{E}_T^2) \upharpoonright \text{E}_{\text{most}}(\widetilde{\mathcal{L}}(h))).$
- (17) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{N-bound}(\widetilde{\mathcal{L}}(h)) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $X = (\text{proj1} \upharpoonright \text{N}_{\text{most}}(\widetilde{\mathcal{L}}(h)))^{\circ}$ (the carrier of $(\mathcal{E}^2_{\mathsf{T}}) \upharpoonright \text{N}_{\text{most}}(\widetilde{\mathcal{L}}(h))$).
- (18) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{S-bound}(\widetilde{\mathcal{L}}(h)) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $X = (\text{proj1} \upharpoonright S_{\text{most}}(\widetilde{\mathcal{L}}(h)))^{\circ} \text{(the carrier of } (\mathcal{E}_T^2) \upharpoonright S_{\text{most}}(\widetilde{\mathcal{L}}(h))).$
- (19) For every subset X of \mathbb{R} such that $X = \{q_1 : q \in \widetilde{\mathcal{L}}(g)\}$ holds $X = (\text{proj } 1 \upharpoonright \widetilde{\mathcal{L}}(g))^{\circ}$ (the carrier of $(\mathcal{L}_T^2) \upharpoonright \widetilde{\mathcal{L}}(g)$).
- (20) For every subset X of \mathbb{R} such that $X = \{q_2 : q \in \widetilde{\mathcal{L}}(g)\}$ holds $X = (\text{proj2} \upharpoonright \widetilde{\mathcal{L}}(g))^{\circ}$ (the carrier of $(\mathcal{E}_{\mathsf{T}}^2) \upharpoonright \widetilde{\mathcal{L}}(g)$).
- (21) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = \text{W-bound}(\widetilde{\mathcal{L}}(h)) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\inf X = \inf(\text{proj2} \upharpoonright \text{W}_{\text{most}}(\widetilde{\mathcal{L}}(h))).$
- (22) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = \text{W-bound}(\widetilde{\mathcal{L}}(h)) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\sup X = \sup(\text{proj}2 \upharpoonright W_{\text{most}}(\widetilde{\mathcal{L}}(h))).$
- (23) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = \text{E-bound}(\widetilde{\mathcal{L}}(h)) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\inf X = \inf(\text{proj2} \upharpoonright \text{E}_{\text{most}}(\widetilde{\mathcal{L}}(h))).$
- (24) For every subset X of \mathbb{R} such that $X = \{q_2 : q_1 = \text{E-bound}(\widetilde{\mathcal{L}}(h)) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\sup X = \sup(\text{proj}2 \upharpoonright E_{\text{most}}(\widetilde{\mathcal{L}}(h))).$
- (25) For every subset X of \mathbb{R} such that $X = \{q_1 : q \in \widetilde{L}(g)\}$ holds $\inf X = \inf(\text{proj } 1 \upharpoonright \widetilde{L}(g))$.
- (26) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{S-bound}(\widetilde{\mathcal{L}}(h)) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\inf X = \inf(\text{proj } 1 \upharpoonright S_{\text{most}}(\widetilde{\mathcal{L}}(h))).$
- (27) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{S-bound}(\widetilde{\mathcal{L}}(h)) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\sup X = \sup(\text{proj } 1 \upharpoonright S_{\text{most}}(\widetilde{\mathcal{L}}(h))).$
- (28) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{N-bound}(\widetilde{\mathcal{L}}(h)) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\inf X = \inf(\text{proj } 1 \upharpoonright \text{N}_{\text{most}}(\widetilde{\mathcal{L}}(h))).$
- (29) For every subset X of \mathbb{R} such that $X = \{q_1 : q_2 = \text{N-bound}(\widetilde{\mathcal{L}}(h)) \land q \in \widetilde{\mathcal{L}}(h)\}$ holds $\sup X = \sup(\text{proj } 1 \upharpoonright \text{N}_{\text{most}}(\widetilde{\mathcal{L}}(h))).$

- (30) For every subset X of \mathbb{R} such that $X = \{q_2 : q \in \widetilde{\mathcal{L}}(g)\}$ holds $\inf X = \inf(\operatorname{proj} 2 \upharpoonright \widetilde{\mathcal{L}}(g))$.
- (31) For every subset X of \mathbb{R} such that $X = \{q_1 : q \in \widetilde{\mathcal{L}}(g)\}$ holds $\sup X = \sup(\text{proj } 1 \upharpoonright \widetilde{\mathcal{L}}(g))$.
- (32) For every subset X of \mathbb{R} such that $X = \{q_2 : q \in \widetilde{\mathcal{L}}(g)\}$ holds $\sup X = \sup(\text{proj} 2 \upharpoonright \widetilde{\mathcal{L}}(g))$.
- (33) If $p \in \widetilde{\mathcal{L}}(h)$ and $1 \le I$ and $I \le$ width the Go-board of h, then (the Go-board of $h \circ (1,I)$)₁ $\le p_1$.
- (34) If $p \in \mathcal{L}(h)$ and $1 \le I$ and $I \le$ width the Go-board of h, then $p_1 \le$ (the Go-board of $h \circ$ (len the Go-board of h, I))₁.
- (35) If $p \in \mathcal{L}(h)$ and $1 \le I$ and $I \le len$ the Go-board of h, then (the Go-board of $h \circ (I, 1))_2 \le p_2$.
- (36) If $p \in \widetilde{L}(h)$ and $1 \le I$ and $I \le len$ the Go-board of h, then $p_2 \le ($ the Go-board of $h \circ (I, width the Go-board of <math>h))_2$.
- (37) Suppose $1 \le i$ and $i \le len the Go-board of <math>h$ and $1 \le j$ and $j \le width the Go-board of <math>h$. Then there exists q such that $q_1 = (the Go-board of <math>h \circ (i,j))_1$ and $q \in \widetilde{\mathcal{L}}(h)$.
- (38) Suppose $1 \le i$ and $i \le len the Go-board of <math>h$ and $1 \le j$ and $j \le width the Go-board of <math>h$. Then there exists q such that $q_2 = (the Go-board of <math>h \circ (i,j))_2$ and $q \in \widetilde{\mathcal{L}}(h)$.
- (39) W-bound($\widetilde{\mathcal{L}}(h)$) = (the Go-board of $h \circ (1,1)$)₁.
- (40) S-bound($\widetilde{\mathcal{L}}(h)$) = (the Go-board of $h \circ (1,1)$)₂.
- (41) E-bound($\widetilde{\mathcal{L}}(h)$) = (the Go-board of $h \circ (\text{lenthe Go-board of } h, 1))_1.$
- (42) N-bound($\widetilde{\mathcal{L}}(h)$) = (the Go-board of $h \circ (1, \text{width the Go-board of } h))_2.$
- (43) Let Y be a non empty finite subset of \mathbb{N} . Suppose that $1 \le i$ and $i \le \text{len } f$ and $1 \le I$ and $I \le \text{len } f$ be a non empty finite subset of \mathbb{N} . Suppose that $1 \le i$ and $i \le \text{len } f$ and $1 \le I$ and $I \le I$ an
- (44) Let Y be a non empty finite subset of \mathbb{N} . Suppose that $1 \leq i$ and $i \leq \text{len } h$ and $1 \leq I$ and $I \leq \text{width the Go-board of } h$ and $Y = \{j : \langle j, I \rangle \in \text{the indices of the Go-board of } h \wedge \bigvee_k (k \in \text{dom } h \wedge h_k = \text{the Go-board of } h \circ (j, I))\}$ and $(h_i)_2 = (\text{the Go-board of } h \circ (1, I))_2$ and $i_1 = \min Y$. Then (the Go-board of $h \circ (i_1, I))_1 \leq (h_i)_1$.
- (45) Let Y be a non empty finite subset of \mathbb{N} . Suppose that $1 \le i$ and $i \le \operatorname{len} h$ and $1 \le I$ and $I \le \operatorname{width}$ the Go-board of h and $Y = \{j : \langle j, I \rangle \in \operatorname{the indices}$ of the Go-board of $h \land \bigvee_k (k \in \operatorname{dom} h \land h_k = \operatorname{the Go-board}$ of $h \circ (j, I)\}$ and $(h_i)_2 = (\operatorname{the Go-board}$ of $h \circ (1, I))_2$ and $i_1 = \max Y$. Then (the Go-board of $h \circ (i_1, I))_1 \ge (h_i)_1$.
- (46) Let Y be a non empty finite subset of \mathbb{N} . Suppose that $1 \le i$ and $i \le \text{len } f$ and $1 \le I$ and $I \le \text{len } f$ be a non empty finite subset of \mathbb{N} . Suppose that $1 \le i$ and $i \le \text{len } f$ and $1 \le I$ and $I \le I$ an
 - 3. COORDINATES OF THE SPECIAL CIRCULAR SEQUENCES BOUNDING BOXES

Let g be a non constant standard special circular sequence. The functor $i_{SW}g$ yielding a natural number is defined by:

(Def. 1) $\langle 1, i_{SW} g \rangle \in$ the indices of the Go-board of g and the Go-board of $g \circ (1, i_{SW} g) = W_{\min}(\widetilde{\mathcal{L}}(g))$.

The functor $i_{NW} g$ yields a natural number and is defined as follows:

(Def. 2) $\langle 1, i_{NW} g \rangle \in$ the indices of the Go-board of g and the Go-board of $g \circ (1, i_{NW} g) = W_{max}(\widetilde{\mathcal{L}}(g))$.

The functor $i_{SE} g$ yields a natural number and is defined by the conditions (Def. 3).

- (Def. 3)(i) \langle len the Go-board of g, $i_{SE} g \rangle$ \in the indices of the Go-board of g, and
 - (ii) the Go-board of $g \circ (\text{len the Go-board of } g, i_{SE} g) = E_{\min}(\widetilde{\mathcal{L}}(g)).$

The functor $i_{NE} g$ yields a natural number and is defined by the conditions (Def. 4).

- (Def. 4)(i) $\langle \text{len the Go-board of } g, i_{\text{NE }} g \rangle \in \text{the indices of the Go-board of } g, \text{ and}$
 - (ii) the Go-board of $g \circ (\text{len the Go-board of } g, i_{\text{NE }}g) = E_{\text{max}}(\widetilde{\mathcal{L}}(g)).$

The functor $i_{WS} g$ yields a natural number and is defined by:

(Def. 5) $\langle i_{WS} g, 1 \rangle \in$ the indices of the Go-board of g and the Go-board of $g \circ (i_{WS} g, 1) = S_{min}(\widetilde{\mathcal{L}}(g))$.

The functor $i_{ES} g$ yields a natural number and is defined by:

(Def. 6) $\langle i_{ES} g, 1 \rangle \in \text{the indices of the Go-board of } g \text{ and the Go-board of } g \circ (i_{ES} g, 1) = S_{max}(\widetilde{\mathcal{L}}(g)).$

The functor $i_{WN} g$ yields a natural number and is defined by the conditions (Def. 7).

- (Def. 7)(i) $\langle i_{WN} g, width \text{ the Go-board of } g \rangle \in \text{the indices of the Go-board of } g, \text{ and } g \in \text{the indices of the Go-board of } g$
 - (ii) the Go-board of $g \circ (i_{WN} g, width the Go-board of g) = N_{min}(\widetilde{\mathcal{L}}(g)).$

The functor $i_{EN} g$ yields a natural number and is defined by the conditions (Def. 8).

- (Def. 8)(i) $\langle i_{EN} g, width the Go-board of g \rangle \in the indices of the Go-board of g, and$
 - (ii) the Go-board of $g \circ (i_{EN} g, width the Go-board of g) = N_{max}(\widetilde{\mathcal{L}}(g)).$

One can prove the following propositions:

- (47) $1 \le i_{WN} h$ and $i_{WN} h \le len the Go-board of <math>h$ and $1 \le i_{EN} h$ and $i_{EN} h \le len the Go-board of <math>h$ and $1 \le i_{WS} h$ and $i_{WS} h \le len the Go-board of <math>h$ and $1 \le i_{ES} h$ and $i_{ES} h \le len the Go-board of <math>h$.
- (48) $1 \le i_{NE} h$ and $i_{NE} h \le width$ the Go-board of h and $1 \le i_{SE} h$ and $i_{SE} h \le width$ the Go-board of h and $1 \le i_{NW} h$ and $i_{NW} h \le width$ the Go-board of h and $1 \le i_{SW} h$ and $i_{SW} h \le width$ the Go-board of h.

Let g be a non constant standard special circular sequence. The functor $n_{SW} g$ yielding a natural number is defined by:

(Def. 9)
$$1 \le n_{SW} g$$
 and $n_{SW} g + 1 \le \operatorname{len} g$ and $g(n_{SW} g) = W_{\min}(\widetilde{\mathcal{L}}(g))$.

The functor $n_{NW}g$ yielding a natural number is defined by:

(Def. 10)
$$1 \le n_{\text{NW}} g$$
 and $n_{\text{NW}} g + 1 \le \text{len } g$ and $g(n_{\text{NW}} g) = W_{\text{max}}(\widetilde{\mathcal{L}}(g))$.

The functor $n_{SE} g$ yields a natural number and is defined as follows:

(Def. 11)
$$1 \le n_{SE} g$$
 and $n_{SE} g + 1 \le \text{len } g$ and $g(n_{SE} g) = E_{min}(\widetilde{\mathcal{L}}(g))$.

The functor $n_{NE} g$ yielding a natural number is defined as follows:

(Def. 12)
$$1 \le n_{\text{NE}} g$$
 and $n_{\text{NE}} g + 1 \le \text{len } g$ and $g(n_{\text{NE}} g) = E_{\text{max}}(\widetilde{\mathcal{L}}(g))$.

The functor $n_{WS} g$ yields a natural number and is defined as follows:

(Def. 13)
$$1 \le n_{\text{WS}} g$$
 and $n_{\text{WS}} g + 1 \le \text{len } g$ and $g(n_{\text{WS}} g) = S_{\min}(\widetilde{\mathcal{L}}(g))$.

The functor $n_{ES} g$ yields a natural number and is defined as follows:

(Def. 14) $1 \le n_{ES} g$ and $n_{ES} g + 1 \le \operatorname{len} g$ and $g(n_{ES} g) = S_{\max}(\widetilde{\mathcal{L}}(g))$.

The functor $n_{WN}g$ yielding a natural number is defined by:

(Def. 15) $1 \le n_{WN} g$ and $n_{WN} g + 1 \le \text{len } g$ and $g(n_{WN} g) = N_{\min}(\widetilde{\mathcal{L}}(g))$.

The functor $n_{EN} g$ yielding a natural number is defined by:

(Def. 16) $1 \le n_{\text{EN}} g$ and $n_{\text{EN}} g + 1 \le \text{len } g$ and $g(n_{\text{EN}} g) = N_{\text{max}}(\widetilde{\mathcal{L}}(g))$.

The following four propositions are true:

- (49) $n_{WN} h \neq n_{WS} h$.
- (50) $n_{SW} h \neq n_{SE} h$.
- (51) $n_{\text{EN}} h \neq n_{\text{ES}} h$.
- (52) $n_{NW} h \neq n_{NE} h$.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat 1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinall.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vo19/pscomp_1.html.
- [6] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [7] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [8] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathbb{T}}^2$. Arcs, line segments and special polygonal arcs. *Journal of Formalized Mathematics*, 3, 1991. http://mizar.org/JFM/Vol3/topreal1.html.
- [9] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/cqc_sim1.html.
- [10] Katarzyna Jankowska. Matrices. Abelian group of matrices. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/ Vol3/matrix 1.html.
- [11] Jaroslaw Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/seq_4.html.
- [12] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board part I. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/goboard1.html.
- [13] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board part II. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/goboard2.html.
- [14] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/pre_circ.html.
- [15] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/goboard5.html.
- [16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/binarith.html.
- [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [18] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report 19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan, April 1980.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.

- [20] Andrzej Trybulec. Tuples, projections and Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/mcart_1.html.
- [21] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [22] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [23] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [24] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received June 8, 1998

Published January 2, 2004