The Ordering of Points on a Curve. Part II

Adam Grabowski University of Białystok Yatsuka Nakamura Shinshu University Nagano

Summary. The proof of the Jordan Curve Theorem according to [11] is continued. The notions of the first and last point of a oriented arc are introduced as well as ordering of points on a curve in \mathcal{E}_T^2 .

MML Identifier: JORDAN5C.

WWW: http://mizar.org/JFM/Vol9/jordan5c.html

The articles [12], [14], [1], [15], [2], [3], [4], [7], [13], [9], [8], [10], [5], and [6] provide the notation and terminology for this paper.

1. FIRST AND LAST POINT OF A CURVE

One can prove the following proposition

- (1) Let P, Q be subsets of \mathcal{E}_T^2 , p_1 , p_2 , q_1 be points of \mathcal{E}_T^2 , f be a map from \mathbb{I} into $(\mathcal{E}_T^2) \upharpoonright P$, and s_1 be a real number. Suppose that P is an arc from p_1 to p_2 and $q_1 \in P$ and $q_1 \in Q$ and $f(s_1) = q_1$ and f is a homeomorphism and $f(0) = p_1$ and $f(1) = p_2$ and $0 \le s_1$ and $s_1 \le 1$ and for every real number t such that $0 \le t$ and $t < s_1$ holds $f(t) \notin Q$. Let g be a map from \mathbb{I} into $(\mathcal{E}_T^2) \upharpoonright P$ and s_2 be a real number. Suppose g is a homeomorphism and $g(0) = p_1$ and $g(1) = p_2$ and $g(s_2) = q_1$ and $0 \le s_2$ and $s_2 \le 1$. Let t be a real number. If $0 \le t$ and $t < s_2$, then $g(t) \notin Q$.
- Let P, Q be subsets of \mathcal{E}_T^2 and let p_1 , p_2 be points of \mathcal{E}_T^2 . Let us assume that P meets Q and $P \cap Q$ is closed and P is an arc from p_1 to p_2 . The functor FPoint (P, p_1, p_2, Q) yields a point of \mathcal{E}_T^2 and is defined by the conditions (Def. 1).
- (Def. 1)(i) FPoint(P, p_1 , p_2 , Q) $\in P \cap Q$, and
 - (ii) for every map g from \mathbb{I} into $(\mathcal{E}_T^2) \upharpoonright P$ and for every real number s_2 such that g is a homeomorphism and $g(0) = p_1$ and $g(1) = p_2$ and $g(s_2) = \text{FPoint}(P, p_1, p_2, Q)$ and $0 \le s_2$ and $s_2 \le 1$ and for every real number t such that $0 \le t$ and $t < s_2$ holds $g(t) \notin Q$.

The following propositions are true:

- (2) Let P, Q be subsets of \mathcal{L}^2_T and p, p_1, p_2 be points of \mathcal{L}^2_T . If $p \in P$ and P is an arc from p_1 to p_2 and $Q = \{p\}$, then P is an arc from p_1 to p_2 and p_2 and p_3 is an arc from p_3 to p_4 and p_5 is an arc from p_4 to p_5 and p_7 is an arc from p_7 to p_7 and p_7 is an arc from p_7 to p_7 and p_7 is an arc from p_7 to p_7 and p_7 is an arc from p_7 to p_7 and p_7 is an arc from p_7 to p_7 and p_7 is an arc from p_7 to p_7 and p_7 is an arc from p_7 to p_7 and p_7 is an arc from p_7 and p_7 is a positive p_7 and p_7 is a positive p_7 and p_7 is a positive p_7 and p_7 is an arc from p_7 and p_7 is a positive p_7 and p_7 is a positive p_7 and p_7 and p_7 is a positive p_7 and p_7 and
- (3) Let P be a subset of \mathcal{E}_T^2 , Q be a subset of \mathcal{E}_T^2 , and p_1 , p_2 be points of \mathcal{E}_T^2 . If $p_1 \in Q$ and $P \cap Q$ is closed and P is an arc from p_1 to p_2 , then $P(Q) = p_1$.

- (4) Let P, Q be subsets of \mathcal{E}_T^2 , p_1 , p_2 , q_1 be points of \mathcal{E}_T^2 , f be a map from \mathbb{I} into $(\mathcal{E}_T^2) \upharpoonright P$, and s_1 be a real number. Suppose that P is an arc from p_1 to p_2 and $q_1 \in P$ and $q_1 \in Q$ and $f(s_1) = q_1$ and f is a homeomorphism and $f(0) = p_1$ and $f(1) = p_2$ and $0 \le s_1$ and $s_1 \le 1$ and for every real number t such that $1 \ge t$ and $t > s_1$ holds $f(t) \notin Q$. Let g be a map from \mathbb{I} into $(\mathcal{E}_T^2) \upharpoonright P$ and s_2 be a real number. Suppose g is a homeomorphism and $g(0) = p_1$ and $g(1) = p_2$ and $g(s_2) = q_1$ and $0 \le s_2$ and $s_2 \le 1$. Let t be a real number. If $1 \ge t$ and $t > s_2$, then $g(t) \notin Q$.
- Let P, Q be subsets of \mathcal{E}_T^2 and let p_1 , p_2 be points of \mathcal{E}_T^2 . Let us assume that P meets Q and $P \cap Q$ is closed and P is an arc from p_1 to p_2 . The functor LPoint (P, p_1, p_2, Q) yielding a point of \mathcal{E}_T^2 is defined by the conditions (Def. 2).
- (Def. 2)(i) LPoint(P, p_1 , p_2 , Q) $\in P \cap Q$, and
 - (ii) for every map g from \mathbb{I} into $(\mathcal{E}_T^2) \upharpoonright P$ and for every real number s_2 such that g is a homeomorphism and $g(0) = p_1$ and $g(1) = p_2$ and $g(s_2) = \operatorname{LPoint}(P, p_1, p_2, Q)$ and $0 \le s_2$ and $s_2 \le 1$ and for every real number t such that $1 \ge t$ and $t > s_2$ holds $g(t) \notin Q$.

One can prove the following three propositions:

- (5) Let P, Q be subsets of \mathcal{E}_T^2 and p, p_1, p_2 be points of \mathcal{E}_T^2 . If $p \in P$ and P is an arc from p_1 to p_2 and $Q = \{p\}$, then LPoint $(P, p_1, p_2, Q) = p$.
- (6) Let P, Q be subsets of $\mathcal{E}_{\mathbb{T}}^2$ and p_1, p_2 be points of $\mathcal{E}_{\mathbb{T}}^2$. If $p_2 \in Q$ and $P \cap Q$ is closed and P is an arc from p_1 to p_2 , then LPoint $(P, p_1, p_2, Q) = p_2$.
- (7) Let P be a subset of \mathcal{E}_T^2 , Q be a subset of \mathcal{E}_T^2 , and p_1 , p_2 be points of \mathcal{E}_T^2 . Suppose $P \subseteq Q$ and P is closed and an arc from p_1 to p_2 . Then $\text{FPoint}(P, p_1, p_2, Q) = p_1$ and $\text{LPoint}(P, p_1, p_2, Q) = p_2$.

2. The ordering of points on a curve

Let P be a subset of \mathcal{E}_T^2 and let p_1 , p_2 , q_1 , q_2 be points of \mathcal{E}_T^2 . We say that LE q_1 , q_2 , P, p_1 , p_2 if and only if the conditions (Def. 3) are satisfied.

(Def. 3)(i) $q_1 \in P$,

- (ii) $q_2 \in P$, and
- (iii) for every map g from \mathbb{I} into $(\mathcal{E}_{\mathbf{T}}^2) \upharpoonright P$ and for all real numbers s_1 , s_2 such that g is a homeomorphism and $g(0) = p_1$ and $g(1) = p_2$ and $g(s_1) = q_1$ and $0 \le s_1$ and $s_1 \le 1$ and $g(s_2) = q_2$ and $0 \le s_2$ and $s_2 \le 1$ holds $s_1 \le s_2$.

Next we state several propositions:

- (8) Let P be a subset of \mathcal{E}_{T}^{2} , p_{1} , p_{2} , q_{1} , q_{2} be points of \mathcal{E}_{T}^{2} , g be a map from \mathbb{I} into $(\mathcal{E}_{T}^{2}) \upharpoonright P$, and s_{1} , s_{2} be real numbers. Suppose that P is an arc from p_{1} to p_{2} and g is a homeomorphism and $g(0) = p_{1}$ and $g(1) = p_{2}$ and $g(s_{1}) = q_{1}$ and $0 \le s_{1}$ and $s_{1} \le 1$ and $s_{2} \le 1$ and $s_{3} \le 1$. Then LE s_{1} , s_{2} , s_{3} , s_{4} , s_{5} , s_{5} , s_{5} , s_{5} , s_{6} , s_{7} , s_{7}
- (9) Let P be a subset of \mathcal{E}_T^2 and p_1 , p_2 , q_1 be points of \mathcal{E}_T^2 . If P is an arc from p_1 to p_2 and $q_1 \in P$, then LE q_1 , q_1 , P, p_1 , p_2 .
- (10) Let P be a subset of \mathcal{E}_T^2 and p_1 , p_2 , q_1 be points of \mathcal{E}_T^2 . Suppose P is an arc from p_1 to p_2 and $q_1 \in P$. Then LE p_1 , q_1 , P, p_1 , p_2 and LE q_1 , p_2 , P, p_1 , p_2 .
- (11) For every subset P of \mathcal{E}_T^2 and for all points p_1 , p_2 of \mathcal{E}_T^2 such that P is an arc from p_1 to p_2 holds LE p_1 , p_2 , P, p_1 , p_2 .
- (12) Let P be a subset of \mathcal{E}_T^2 and p_1, p_2, q_1, q_2 be points of \mathcal{E}_T^2 . Suppose P is an arc from p_1 to p_2 and LE q_1, q_2, P, p_1, p_2 and LE q_2, q_1, P, p_1, p_2 . Then $q_1 = q_2$.

- (13) Let P be a subset of \mathcal{E}_T^2 and p_1 , p_2 , q_1 , q_2 , q_3 be points of \mathcal{E}_T^2 . Suppose P is an arc from p_1 to p_2 and LE q_1 , q_2 , P, p_1 , p_2 and LE q_2 , q_3 , P, p_1 , p_2 . Then LE q_1 , q_3 , P, p_1 , p_2 .
- (14) Let P be a subset of \mathcal{E}_{T}^{2} and p_{1} , p_{2} , q_{1} , q_{2} be points of \mathcal{E}_{T}^{2} . Suppose P is an arc from p_{1} to p_{2} and $q_{1} \in P$ and $q_{2} \in P$ and $q_{1} \neq q_{2}$. Then LE q_{1} , q_{2} , P, p_{1} , p_{2} and not LE q_{2} , q_{1} , P, p_{1} , p_{2} and not LE q_{1} , q_{2} , P, p_{1} , p_{2} .

3. Some properties of the ordering of points on a curve

We now state a number of propositions:

- (15) Let f be a finite sequence of elements of $\mathcal{E}_{\mathbb{T}}^2$, Q be a subset of $\mathcal{E}_{\mathbb{T}}^2$, and q be a point of $\mathcal{E}_{\mathbb{T}}^2$. Suppose f is a special sequence and $\widetilde{L}(f) \cap Q$ is closed and $q \in \widetilde{L}(f)$ and $q \in Q$. Then LE $\mathsf{FPoint}(\widetilde{L}(f), f_1, f_{\mathsf{len}f}, Q), q, \widetilde{L}(f), f_1, f_{\mathsf{len}f}$.
- (16) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, Q be a subset of $\mathcal{E}_{\mathrm{T}}^2$, and q be a point of $\mathcal{E}_{\mathrm{T}}^2$. Suppose f is a special sequence and $\widetilde{L}(f) \cap Q$ is closed and $q \in \widetilde{L}(f)$ and $q \in Q$. Then LE q, LPoint($\widetilde{L}(f), f_1, f_{\mathrm{len}f}, Q$), $\widetilde{L}(f), f_1, f_{\mathrm{len}f}$.
- (17) For all points q_1 , q_2 , p_1 , p_2 of \mathcal{E}_T^2 such that $p_1 \neq p_2$ holds if LE q_1 , q_2 , $\mathcal{L}(p_1, p_2)$, p_1 , p_2 , then $q_1 \leq_{p_1, p_2} q_2$.
- (18) Let P, Q be subsets of $\mathcal{E}_{\mathbf{T}}^2$ and p_1 , p_2 be points of $\mathcal{E}_{\mathbf{T}}^2$. Suppose P is an arc from p_1 to p_2 and P meets Q and $P \cap Q$ is closed. Then $\mathsf{FPoint}(P, p_1, p_2, Q) = \mathsf{LPoint}(P, p_2, p_1, Q)$ and $\mathsf{LPoint}(P, p_1, p_2, Q) = \mathsf{FPoint}(P, p_2, p_1, Q)$.
- (19) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, Q be a subset of $\mathcal{E}_{\mathrm{T}}^2$, and i be a natural number. Suppose $\widetilde{\mathcal{L}}(f)$ meets Q and Q is closed and f is a special sequence and $1 \leq i$ and $i+1 \leq \ln f$ and $\mathrm{FPoint}(\widetilde{\mathcal{L}}(f), f_1, f_{\ln f}, Q) \in \mathcal{L}(f, i)$. Then $\mathrm{FPoint}(\widetilde{\mathcal{L}}(f), f_1, f_{\ln f}, Q) = \mathrm{FPoint}(\mathcal{L}(f, i), f_i, f_{i+1}, Q)$.
- (20) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$, Q be a subset of $\mathcal{E}_{\mathrm{T}}^2$, and i be a natural number. Suppose $\widetilde{\mathcal{L}}(f)$ meets Q and Q is closed and f is a special sequence and $1 \leq i$ and $i+1 \leq \mathrm{len}\, f$ and $\mathrm{LPoint}(\widetilde{\mathcal{L}}(f), f_1, f_{\mathrm{len}\, f}, Q) \in \mathcal{L}(f, i)$. Then $\mathrm{LPoint}(\widetilde{\mathcal{L}}(f), f_1, f_{\mathrm{len}\, f}, Q) = \mathrm{LPoint}(\mathcal{L}(f, i), f_i, f_{i+1}, Q)$.
- (21) Let f be a finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^2$ and i be a natural number. Suppose $1 \leq i$ and $i+1 \leq \mathrm{len}\, f$ and f is a special sequence and $\mathrm{FPoint}(\widetilde{\mathcal{L}}(f), f_1, f_{\mathrm{len}\, f}, \mathcal{L}(f, i)) \in \mathcal{L}(f, i)$. Then $\mathrm{FPoint}(\widetilde{\mathcal{L}}(f), f_1, f_{\mathrm{len}\, f}, \mathcal{L}(f, i)) = f_i$.
- (22) Let f be a finite sequence of elements of \mathcal{E}^2_T and i be a natural number. Suppose $1 \leq i$ and $i+1 \leq \text{len } f$ and f is a special sequence and $\text{LPoint}(\widetilde{\mathcal{L}}(f), f_1, f_{\text{len } f}, \mathcal{L}(f, i)) \in \mathcal{L}(f, i)$. Then $\text{LPoint}(\widetilde{\mathcal{L}}(f), f_1, f_{\text{len } f}, \mathcal{L}(f, i)) = f_{i+1}$.
- (23) Let f be a finite sequence of elements of \mathcal{E}_T^2 and i be a natural number. Suppose f is a special sequence and $1 \le i$ and $i + 1 \le \text{len } f$. Then LE f_i , f_{i+1} , $\widetilde{\mathcal{L}}(f)$, f_1 , $f_{\text{len } f}$.
- (24) Let f be a finite sequence of elements of \mathcal{E}^2_T and i, j be natural numbers. Suppose f is a special sequence and $1 \le i$ and $i \le j$ and $j \le \text{len } f$. Then LE f_i , f_j , $\widetilde{\mathcal{L}}(f)$, f_1 , $f_{\text{len } f}$.
- (25) Let f be a finite sequence of elements of \mathcal{E}_{T}^{2} , q be a point of \mathcal{E}_{T}^{2} , and i be a natural number. Suppose f is a special sequence and $1 \le i$ and $i + 1 \le \text{len } f$ and $q \in \mathcal{L}(f,i)$. Then LE f_i , q, $\widetilde{\mathcal{L}}(f)$, f_1 , $f_{\text{len } f}$.
- (26) Let f be a finite sequence of elements of \mathcal{E}_{T}^{2} , q be a point of \mathcal{E}_{T}^{2} , and i be a natural number. Suppose f is a special sequence and $1 \leq i$ and $i+1 \leq \text{len } f$ and $q \in \mathcal{L}(f,i)$. Then LE $q, f_{i+1}, \widetilde{\mathcal{L}}(f), f_{1}, f_{\text{len } f}$.

- (27) Let f be a finite sequence of elements of \mathcal{E}^2_T , Q be a subset of \mathcal{E}^2_T , q be a point of \mathcal{E}^2_T , and i, j be natural numbers. Suppose that $\widetilde{\mathcal{L}}(f)$ meets Q and f is a special sequence and Q is closed and $FPoint(\widetilde{\mathcal{L}}(f), f_1, f_{\operatorname{len} f}, Q) \in \mathcal{L}(f, i)$ and $1 \leq i$ and $i+1 \leq \operatorname{len} f$ and $q \in \mathcal{L}(f, j)$ and $1 \leq j$ and $j+1 \leq \operatorname{len} f$ and $q \in Q$ and $FPoint(\widetilde{\mathcal{L}}(f), f_1, f_{\operatorname{len} f}, Q) \neq q$. Then $i \leq j$ and if i=j, then $FPoint(\widetilde{\mathcal{L}}(f), f_1, f_{\operatorname{len} f}, Q) \leq f_i, f_{i+1} q$.
- (28) Let f be a finite sequence of elements of $\mathcal{E}_{\mathsf{T}}^2$, Q be a subset of $\mathcal{E}_{\mathsf{T}}^2$, q be a point of $\mathcal{E}_{\mathsf{T}}^2$, and i, j be natural numbers. Suppose that $\widetilde{\mathcal{L}}(f)$ meets Q and f is a special sequence and Q is closed and $\mathsf{LPoint}(\widetilde{\mathcal{L}}(f), f_1, f_{\mathsf{len}\,f}, Q) \in \mathcal{L}(f, i)$ and $1 \le i$ and $i+1 \le \mathsf{len}\,f$ and $q \in \mathcal{L}(f, j)$ and $1 \le j$ and $j+1 \le \mathsf{len}\,f$ and $q \in Q$ and $\mathsf{LPoint}(\widetilde{\mathcal{L}}(f), f_1, f_{\mathsf{len}\,f}, Q) \ne q$. Then $i \ge j$ and if i = j, then $q \le f_{i,f_{i+1}} \mathsf{LPoint}(\widetilde{\mathcal{L}}(f), f_1, f_{\mathsf{len}\,f}, Q)$.
- (29) Let f be a finite sequence of elements of \mathcal{E}_{T}^{2} , q_{1} , q_{2} be points of \mathcal{E}_{T}^{2} , and i be a natural number. Suppose $q_{1} \in \mathcal{L}(f,i)$ and $q_{2} \in \mathcal{L}(f,i)$ and f is a special sequence and $1 \leq i$ and $i+1 \leq \text{len } f$. If LE $q_{1}, q_{2}, \widetilde{\mathcal{L}}(f), f_{1}, f_{\text{len } f}$, then LE $q_{1}, q_{2}, \mathcal{L}(f,i), f_{i}, f_{i+1}$.
- (30) Let f be a finite sequence of elements of \mathcal{E}^2_T and q_1, q_2 be points of \mathcal{E}^2_T . Suppose $q_1 \in \widetilde{\mathcal{L}}(f)$ and $q_2 \in \widetilde{\mathcal{L}}(f)$ and f is a special sequence and $q_1 \neq q_2$. Then LE $q_1, q_2, \widetilde{\mathcal{L}}(f), f_1, f_{\text{len } f}$ if and only if for all natural numbers i, j such that $q_1 \in \mathcal{L}(f, i)$ and $q_2 \in \mathcal{L}(f, j)$ and $1 \leq i$ and $i+1 \leq \text{len } f$ and $1 \leq j$ and $j+1 \leq \text{len } f$ holds $i \leq j$ and if i=j, then $q_1 \leq f_{i,f_{i+1}}$ q_2 .

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [5] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [6] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [7] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topmetr.html.
- [8] Agata Darmochwał and Yatsuka Nakamura. The topological space E_T². Arcs, line segments and special polygonal arcs. *Journal of Formalized Mathematics*, 3, 1991. http://mizar.org/JFM/Vol3/topreal1.html.
- [9] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/jordan3.html.
- [10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [11] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report 19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan, April 1980.
- [12] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [13] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [14] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

[15] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.

Received September 10, 1997

Published January 2, 2004