Subsequences of Standard Special Circular Sequences in \mathcal{E}_T^2

Yatsuka Nakamura Shinshu University Nagano Roman Matuszewski Warsaw University Białystok Adam Grabowski Warsaw University Białystok

Summary. It is known that a standard special circular sequence in \mathcal{E}_T^2 properly defines a special polygon. We are interested in a part of such a sequence. It is shown that if the first point and the last point of the subsequence are different, it becomes a special polygonal sequence. The concept of "a part of" is introduced, and the subsequence having this property can be characterized by using "mid" function. For such subsequences, the concepts of "Upper" and "Lower" parts are introduced.

MML Identifier: JORDAN4.

WWW: http://mizar.org/JFM/Vol9/jordan4.html

The articles [15], [8], [1], [13], [18], [2], [3], [17], [4], [6], [7], [10], [12], [14], [5], [16], [9], and [11] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paper i, i_1 , i_2 , i_3 , j, k, n are natural numbers. The following propositions are true:

- (1) If n i = 0, then $n \le i$.
- (2) If $i \le j$, then (j+k) i = (j+k) i.
- (3) If $i \le j$, then (j+k) i = (j i) + k.
- (4) If $i_1 \neq 0$ and $i_2 = i_3 \cdot i_1$, then $i_3 \leq i_2$.
- (5) If $i_1 < i_2$, then $i_1 \div i_2 = 0$.
- (6) If 0 < j and j < i and i < j + j, then $i \mod j \neq 0$.
- (7) If 0 < j and $j \le i$ and i < j + j, then $i \mod j = i j$ and $i \mod j = i j'$.
- (8) $(j+j) \mod j = 0.$
- (9) If 0 < k and $k \le j$ and $k \mod j = 0$, then k = j.

SUBSEQUENCES OF STANDARD SPECIAL CIRCULAR ...

2. Some facts about cutting of finite sequences

- In the sequel *D* denotes a non empty set and f_1 denotes a finite sequence of elements of *D*. Next we state a number of propositions:
 - (14)¹ For every f_1 such that f_1 is circular and $1 \le \text{len } f_1$ holds $f_1(1) = f_1(\text{len } f_1)$.
 - (15) For all f_1, i_1, i_2 such that $i_1 \le i_2$ holds $f_1 | i_1 | i_2 = f_1 | i_1$ and $f_1 | i_2 | i_1 = f_1 | i_1$.
 - (16) $\varepsilon_D \upharpoonright i = \varepsilon_D$.
 - (17) $\operatorname{Rev}(\varepsilon_D) = \varepsilon_D.$
 - (18) For all f_1 , k such that $k < \text{len } f_1$ holds $(f_1)_{|k}(\text{len}((f_1)_{|k})) = f_1(\text{len } f_1)$ and $((f_1)_{|k})_{\text{len}((f_1)_{|k})} = (f_1)_{\text{len } f_1}$.
 - (19) Let g be a finite sequence of elements of \mathcal{E}_{T}^{2} and given *i*. If g is a special sequence and $i+1 < \log g$, then $g_{|i|}$ is a special sequence.
 - (20) For all f_1 , i_1 , i_2 such that $1 \le i_2$ and $i_2 \le i_1$ and $i_1 \le \text{len } f_1$ holds $\text{len mid}(f_1, i_2, i_1) = (i_1 i_2) + 1$.
 - (21) For all f_1 , i_1 , i_2 such that $1 \le i_2$ and $i_2 \le i_1$ and $i_1 \le \text{len } f_1$ holds $\text{len mid}(f_1, i_1, i_2) = (i_1 i_2) + 1$.
 - (22) For all f_1 , i_1 , i_2 , j such that $1 \le i_1$ and $i_1 \le i_2$ and $i_2 \le \text{len } f_1$ holds $(\text{mid}(f_1, i_1, i_2))(\text{len mid}(f_1, i_1, i_2)) = f_1(i_2)$.
 - (23) For all f_1 , i_1 , i_2 , j such that $1 \le i_1$ and $i_1 \le \text{len } f_1$ and $1 \le i_2$ and $i_2 \le \text{len } f_1$ holds $(\text{mid}(f_1, i_1, i_2))(\text{len mid}(f_1, i_1, i_2)) = f_1(i_2)$.
 - (24) For all f_1, i_1, i_2, j such that $1 \le i_2$ and $i_2 \le i_1$ and $i_1 \le \text{len } f_1$ and $1 \le j$ and $j \le (i_1 i_2) + 1$ holds $(\text{mid}(f_1, i_1, i_2))(j) = f_1((i_1 j_1) + 1)$.
 - (25) Let given f_1, i_1, i_2 . Suppose $1 \le i_2$ and $i_2 \le i_1$ and $i_1 \le \text{len } f_1$ and $1 \le j$ and $j \le (i_1 i_2) + 1$. Then $(\text{mid}(f_1, i_1, i_2))(j) = (\text{mid}(f_1, i_2, i_1))((((i_1 - i_2) + 1) - j) + 1)$ and $(((i_1 - i_2) + 1) - j) + 1 = (((i_1 - i_2) + 1) - j) + 1$.
 - (26) Let given f_1, i_1, i_2 . Suppose $1 \le i_1$ and $i_1 \le i_2$ and $i_2 \le \text{len } f_1$ and $1 \le j$ and $j \le (i_2 i_1) + 1$. Then $(\text{mid}(f_1, i_1, i_2))(j) = (\text{mid}(f_1, i_2, i_1))((((i_2 - i_1) + 1) - j) + 1)$ and $(((i_2 - i_1) + 1) - j) + 1 = (((i_2 - i_1) + 1) - j) + 1$.
 - (27) For all f_1 , k such that $1 \le k$ and $k \le \text{len } f_1$ holds $\text{mid}(f_1, k, k) = \langle (f_1)_k \rangle$ and $\text{len mid}(f_1, k, k) = 1$.
 - (28) $\operatorname{mid}(f_1, 0, 0) = f_1 \upharpoonright 1.$
 - (29) For all f_1 , k such that len $f_1 < k$ holds $mid(f_1, k, k) = \varepsilon_D$.
 - (30) For all f_1, i_1, i_2 holds $\operatorname{mid}(f_1, i_1, i_2) = \operatorname{Rev}(\operatorname{mid}(f_1, i_2, i_1))$.
 - (31) Let f be a finite sequence of elements of \mathcal{E}_{T}^{2} and given i_{1}, i_{2}, i . If $1 \le i_{1}$ and $i_{1} < i_{2}$ and $i_{2} \le \text{len } f$ and $1 \le i$ and $i < (i_{2} i_{1}) + 1$, then $\mathcal{L}(\text{mid}(f, i_{1}, i_{2}), i) = \mathcal{L}(f, (i + i_{1}) i_{1})$.
 - (32) Let f be a finite sequence of elements of \mathcal{E}_{T}^{2} and given i_{1}, i_{2}, i . If $1 \le i_{1}$ and $i_{1} < i_{2}$ and $i_{2} \le \text{len } f$ and $1 \le i$ and $i < (i_{2} i_{1}) + 1$, then $\mathcal{L}(\text{mid}(f, i_{2}, i_{1}), i) = \mathcal{L}(f, i_{2} i_{1})$.

¹ The propositions (10)–(13) have been removed.

3. DIVIDING OF SPECIAL CIRCULAR SEQUENCES INTO PARTS

Let *n* be a natural number and let *f* be a finite sequence. The functor $S_Drop(n, f)$ yields a natural number and is defined as follows:

(Def. 1) S_Drop
$$(n, f) = \begin{cases} n \mod (\operatorname{len} f - '1), \text{ if } n \mod (\operatorname{len} f - '1) \neq 0, \\ \operatorname{len} f - '1, \text{ otherwise.} \end{cases}$$

We now state three propositions:

- (33) For every finite sequence f holds S_Drop(len $f {}^{\prime}1, f) = \text{len } f {}^{\prime}1$.
- (34) For every natural number *n* and for every finite sequence *f* such that $1 \le n$ and $n \le \text{len } f 1$ holds S_Drop(n, f) = n.
- (35) For every natural number *n* and for every finite sequence *f* holds $S_Drop(n, f) = S_Drop(n + (len f '1), f)$ and $S_Drop(n, f) = S_Drop((len f '1) + n, f)$.

Let f be a non constant standard special circular sequence, let g be a finite sequence of elements of \mathcal{E}_{T}^{2} , and let i_{1} , i_{2} be natural numbers. We say that g is a right part of f from i_{1} to i_{2} if and only if the conditions (Def. 2) are satisfied.

(Def. 2) $1 \le i_1$ and $i_1 + 1 \le \text{len } f$ and $1 \le i_2$ and $i_2 + 1 \le \text{len } f$ and $g(\text{len } g) = f(i_2)$ and $1 \le \text{len } g$ and len g < len f and for every natural number i such that $1 \le i$ and $i \le \text{len } g$ holds $g(i) = f(S_D \text{rop}((i_1 + i) - i_1, f))$.

Let f be a non constant standard special circular sequence, let g be a finite sequence of elements of \mathcal{E}_{T}^{2} , and let i_{1} , i_{2} be natural numbers. We say that g is a left part of f from i_{1} to i_{2} if and only if the conditions (Def. 3) are satisfied.

(Def. 3) $1 \le i_1$ and $i_1 + 1 \le \text{len } f$ and $1 \le i_2$ and $i_2 + 1 \le \text{len } f$ and $g(\text{len } g) = f(i_2)$ and $1 \le \text{len } g$ and len g < len f and for every natural number i such that $1 \le i$ and $i \le \text{len } g$ holds $g(i) = f(S_D \text{rop}((\text{len } f + i_1) - i, f))$.

Let f be a non constant standard special circular sequence, let g be a finite sequence of elements of \mathcal{E}_{T}^{2} , and let i_{1} , i_{2} be natural numbers. We say that g is a part of f from i_{1} to i_{2} if and only if:

(Def. 4) g is a right part of f from i_1 to i_2 and a left part of f from i_1 to i_2 .

We now state a number of propositions:

- (36) Let *f* be a non constant standard special circular sequence, *g* be a finite sequence of elements of \mathcal{E}_{T}^{2} , and i_{1} , i_{2} be natural numbers. Suppose *g* is a part of *f* from i_{1} to i_{2} . Then $1 \leq i_{1}$ and $i_{1} + 1 \leq \text{len } f$ and $1 \leq i_{2}$ and $i_{2} + 1 \leq \text{len } f$ and $g(\text{len } g) = f(i_{2})$ and $1 \leq \text{len } g$ and len g < len f and for every natural number *i* such that $1 \leq i$ and $i \leq \text{len } g$ holds $g(i) = f(S_{-}\text{Drop}((i_{1} + i) i' 1, f))$ or for every natural number *i* such that $1 \leq i$ and $i \leq \text{len } g$ holds $g(i) = f(S_{-}\text{Drop}((\text{len } f + i_{1}) i' i, f))$.
- (37) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of \mathcal{E}_{T}^{2} , and i_{1} , i_{2} be natural numbers. Suppose g is a right part of f from i_{1} to i_{2} and $i_{1} \leq i_{2}$. Then len $g = (i_{2} i_{1}) + 1$ and $g = \text{mid}(f, i_{1}, i_{2})$.
- (38) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of \mathcal{E}_{T}^{2} , and i_{1} , i_{2} be natural numbers. Suppose g is a right part of f from i_{1} to i_{2} and $i_{1} > i_{2}$. Then $\log g = (\log f + i_{2}) i_{1}$ and $g = (\operatorname{mid}(f, i_{1}, \log f i_{1})) \cap (f | i_{2})$ and $g = (\operatorname{mid}(f, i_{1}, \log f i_{1})) \cap \operatorname{mid}(f, 1, i_{2})$.
- (39) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of \mathcal{E}_{T}^{2} , and i_{1} , i_{2} be natural numbers. Suppose g is a left part of f from i_{1} to i_{2} and $i_{1} \ge i_{2}$. Then len $g = (i_{1} i_{2}) + 1$ and $g = \text{mid}(f, i_{1}, i_{2})$.

- (40) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of \mathcal{E}_{T}^{2} , and i_{1} , i_{2} be natural numbers. Suppose g is a left part of f from i_{1} to i_{2} and $i_{1} < i_{2}$. Then len $g = (\text{len } f + i_{1}) i_{2}$ and $g = (\text{mid}(f, i_{1}, 1)) \cap \text{mid}(f, \text{len } f i_{1}, i_{2})$.
- (41) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of \mathcal{E}_{T}^{2} , and i_{1} , i_{2} be natural numbers. Suppose g is a right part of f from i_{1} to i_{2} . Then Rev(g) is a left part of f from i_{2} to i_{1} .
- (42) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of \mathcal{E}_{T}^{2} , and i_{1} , i_{2} be natural numbers. Suppose g is a left part of f from i_{1} to i_{2} . Then Rev(g) is a right part of f from i_{2} to i_{1} .
- (43) Let f be a non constant standard special circular sequence and i_1 , i_2 be natural numbers. If $1 \le i_1$ and $i_1 \le i_2$ and $i_2 < \text{len } f$, then $\text{mid}(f, i_1, i_2)$ is a right part of f from i_1 to i_2 .
- (44) Let f be a non constant standard special circular sequence and i_1, i_2 be natural numbers. If $1 \le i_1$ and $i_1 \le i_2$ and $i_2 < \text{len } f$, then $\text{mid}(f, i_2, i_1)$ is a left part of f from i_2 to i_1 .
- (45) Let f be a non constant standard special circular sequence and i_1 , i_2 be natural numbers. Suppose $1 \le i_2$ and $i_1 > i_2$ and $i_1 < \text{len } f$. Then $(\text{mid}(f, i_1, \text{len } f - i_1)) \cap \text{mid}(f, 1, i_2)$ is a right part of f from i_1 to i_2 .
- (46) Let f be a non constant standard special circular sequence and i_1 , i_2 be natural numbers. Suppose $1 \le i_1$ and $i_1 < i_2$ and $i_2 < \text{len } f$. Then $(\text{mid}(f, i_1, 1)) \cap \text{mid}(f, \text{len } f - i_1, i_2)$ is a left part of f from i_1 to i_2 .
- (47) Let *h* be a finite sequence of elements of \mathcal{E}_{T}^{2} and given i_{1} , i_{2} . If $1 \leq i_{1}$ and $i_{1} \leq \text{len } h$ and $1 \leq i_{2}$ and $i_{2} \leq \text{len } h$, then $\widetilde{\mathcal{L}}(\text{mid}(h, i_{1}, i_{2})) \subseteq \widetilde{\mathcal{L}}(h)$.
- (48) Let g be a finite sequence of elements of D. Then g is one-to-one if and only if for all i_1 , i_2 such that $1 \le i_1$ and $i_1 \le \log g$ and $1 \le i_2$ and $i_2 \le \log g$ and $g(i_1) = g(i_2)$ or $g_{i_1} = g_{i_2}$ holds $i_1 = i_2$.
- (49) Let f be a non constant standard special circular sequence and given i_2 . If $1 < i_2$ and $i_2 + 1 \le \text{len } f$, then $f \upharpoonright i_2$ is a special sequence.
- (50) Let f be a non constant standard special circular sequence and given i_2 . If $1 \le i_2$ and $i_2 + 1 < \text{len } f$, then $f_{|i_2|}$ is a special sequence.
- (51) Let f be a non constant standard special circular sequence and given i_1 , i_2 . If $1 \le i_1$ and $i_1 < i_2$ and $i_2 + 1 \le \text{len } f$, then $\text{mid}(f, i_1, i_2)$ is a special sequence.
- (52) Let f be a non constant standard special circular sequence and given i_1 , i_2 . If $1 < i_1$ and $i_1 < i_2$ and $i_2 \le \text{len } f$, then $\text{mid}(f, i_1, i_2)$ is a special sequence.
- (53) For all points p_0 , p, q_1 , q_2 of \mathcal{E}^2_{Γ} such that $p_0 \in \mathcal{L}(p,q_1)$ and $p_0 \in \mathcal{L}(p,q_2)$ and $p \neq p_0$ holds $q_1 \in \mathcal{L}(p,q_2)$ or $q_2 \in \mathcal{L}(p,q_1)$.
- (54) For every non constant standard special circular sequence f holds $\mathcal{L}(f,1) \cap \mathcal{L}(f, \text{len } f f') = \{f(1)\}$.
- (55) Let f be a non constant standard special circular sequence, i_1 , i_2 be natural numbers, and g_1 , g_2 be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^2$. Suppose $1 \leq i_1$ and $i_1 < i_2$ and $i_2 < \operatorname{len} f$ and $g_1 = \operatorname{mid}(f, i_1, i_2)$ and $g_2 = (\operatorname{mid}(f, i_1, 1)) \cap \operatorname{mid}(f, \operatorname{len} f i_1, i_2)$. Then $\widetilde{\mathcal{L}}(g_1) \cap \widetilde{\mathcal{L}}(g_2) = \{f(i_1), f(i_2)\}$ and $\widetilde{\mathcal{L}}(g_1) \cup \widetilde{\mathcal{L}}(g_2) = \widetilde{\mathcal{L}}(f)$.
- (56) Let *f* be a non constant standard special circular sequence, *g* be a finite sequence of elements of \mathcal{E}_{T}^{2} , and i_{1} , i_{2} be natural numbers. Suppose *g* is a right part of *f* from i_{1} to i_{2} and $i_{1} < i_{2}$. Then $\widetilde{\mathcal{L}}(g)$ is a special polygonal arc joining $f_{i_{1}}$ and $f_{i_{2}}$.

- (57) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of \mathcal{E}_{T}^{2} , and i_{1} , i_{2} be natural numbers. Suppose g is a left part of f from i_{1} to i_{2} and $i_{1} > i_{2}$. Then $\widetilde{\mathcal{L}}(g)$ is a special polygonal arc joining $f_{i_{1}}$ and $f_{i_{2}}$.
- (58) Let *f* be a non constant standard special circular sequence, *g* be a finite sequence of elements of \mathcal{E}_{T}^{2} , and i_{1} , i_{2} be natural numbers. Suppose *g* is a right part of *f* from i_{1} to i_{2} and $i_{1} \neq i_{2}$. Then $\widetilde{\mathcal{L}}(g)$ is a special polygonal arc joining $f_{i_{1}}$ and $f_{i_{2}}$.
- (59) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of E²_T, and i₁, i₂ be natural numbers. Suppose g is a left part of f from i₁ to i₂ and i₁ ≠ i₂. Then L̃(g) is a special polygonal arc joining f_{i1} and f_{i2}.
- (60) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of \mathcal{E}_{T}^{2} , and i_{1} , i_{2} be natural numbers. Suppose g is a part of f from i_{1} to i_{2} and $i_{1} \neq i_{2}$. Then $\widetilde{\mathcal{L}}(g)$ is a special polygonal arc joining $f_{i_{1}}$ and $f_{i_{2}}$.
- (61) Let f be a non constant standard special circular sequence, g be a finite sequence of elements of \mathcal{E}_{Γ}^2 , and i_1 , i_2 be natural numbers. Suppose g is a part of f from i_1 to i_2 and $g(1) \neq g(\operatorname{len} g)$. Then $\widetilde{\mathcal{L}}(g)$ is a special polygonal arc joining f_{i_1} and f_{i_2} .
- (62) Let f be a non constant standard special circular sequence and i_1 , i_2 be natural numbers. Suppose $1 \le i_1$ and $i_1 + 1 \le \text{len } f$ and $1 \le i_2$ and $i_2 + 1 \le \text{len } f$ and $i_1 \ne i_2$. Then there exist finite sequences g_1 , g_2 of elements of \mathcal{L}^2_T such that

 g_1 is a part of f from i_1 to i_2 and g_2 is a part of f from i_1 to i_2 and $\widetilde{\mathcal{L}}(g_1) \cap \widetilde{\mathcal{L}}(g_2) = \{f(i_1), f(i_2)\}$ and $\widetilde{\mathcal{L}}(g_1) \cup \widetilde{\mathcal{L}}(g_2) = \widetilde{\mathcal{L}}(f)$ and $\widetilde{\mathcal{L}}(g_1)$ is a special polygonal arc joining f_{i_1} and f_{i_2} and $\widetilde{\mathcal{L}}(g_2)$ is a special polygonal arc joining f_{i_1} and f_{i_2} and for every finite sequence g of elements of \mathcal{L}_T^2 such that g is a part of f from i_1 to i_2 holds $g = g_1$ or $g = g_2$.

In the sequel g_1 , g_2 are finite sequences of elements of \mathcal{E}_T^2 . The following propositions are true:

- (63) Let *f* be a non constant standard special circular sequence and *P* be a non empty subset of \mathcal{L}_{T}^{2} . If $P = \widetilde{\mathcal{L}}(f)$, then *P* is a simple closed curve.
- (64) Let f be a non constant standard special circular sequence and given g_1, g_2 . Suppose g_1 is a right part of f from i_1 to i_2 and g_2 is a right part of f from i_1 to i_2 . Then $g_1 = g_2$.
- (65) Let f be a non constant standard special circular sequence and given g_1, g_2 . Suppose g_1 is a left part of f from i_1 to i_2 and g_2 is a left part of f from i_1 to i_2 . Then $g_1 = g_2$.
- (66) Let f be a non constant standard special circular sequence and given g_1 , g_2 . Suppose $i_1 \neq i_2$ and g_1 is a right part of f from i_1 to i_2 and g_2 is a left part of f from i_1 to i_2 . Then $g_1(2) \neq g_2(2)$.
- (67) Let *f* be a non constant standard special circular sequence and given g_1, g_2 . Suppose $i_1 \neq i_2$ and g_1 is a part of *f* from i_1 to i_2 and g_2 is a part of *f* from i_1 to i_2 and $g_1(2) = g_2(2)$. Then $g_1 = g_2$.

Let f be a non constant standard special circular sequence and let i_1 , i_2 be natural numbers. Let us assume that $1 \le i_1$ and $i_1 + 1 \le \text{len } f$ and $1 \le i_2$ and $i_2 + 1 \le \text{len } f$ and $i_1 \ne i_2$. The functor Lower (f, i_1, i_2) yields a finite sequence of elements of \mathcal{E}_T^2 and is defined by the conditions (Def. 5).

(Def. 5)(i) Lower (f, i_1, i_2) is a part of f from i_1 to i_2 ,

- (ii) if $(f_{i_1+1})_1 < (f_{i_1})_1$ or $(f_{i_1+1})_2 < (f_{i_1})_2$, then $(\text{Lower}(f, i_1, i_2))(2) = f(i_1+1)$, and
- (iii) if $(f_{i_1+1})_1 \ge (f_{i_1})_1$ and $(f_{i_1+1})_2 \ge (f_{i_1})_2$, then $(\text{Lower}(f, i_1, i_2))(2) = f(S_1\text{Drop}(i_1 (i_1, f_1)))$.

The functor Upper (f, i_1, i_2) yielding a finite sequence of elements of \mathcal{E}_T^2 is defined by the conditions (Def. 6).

(Def. 6)(i) Upper (f, i_1, i_2) is a part of f from i_1 to i_2 ,

(ii) if $(f_{i_1+1})_1 > (f_{i_1})_1$ or $(f_{i_1+1})_2 > (f_{i_1})_2$, then $(\text{Upper}(f, i_1, i_2))(2) = f(i_1+1)$, and (iii) if $(f_{i_1+1})_1 \le (f_{i_1})_1$ and $(f_{i_1+1})_2 \le (f_{i_1})_2$, then $(\text{Upper}(f, i_1, i_2))(2) = f(\text{S}_{\text{Drop}}(i_1 - i_1, f_1))$.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [4] Czesław Byliński. Some properties of restrictions of finite sequences. Journal of Formalized Mathematics, 7, 1995. http://mizar. org/JFM/Vol7/finseq_5.html.
- [5] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [6] Agata Darmochwał and Yatsuka Nakamura. The topological space Z²_T. Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreall.html.
- [7] Agata Darmochwał and Yatsuka Nakamura. The topological space E²_T. Simple closed curves. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreal2.html.
- [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html.
- [9] Jarosław Kotowicz. Functions and finite sequences of real numbers. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/ JFM/Vol5/rfinseq.html.
- [10] Yatsuka Nakamura and Jarosław Kotowicz. Connectedness conditions using polygonal arcs. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/topreal4.html.
- [11] Yatsuka Nakamura and Roman Matuszewski. Reconstructions of special sequences. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/jordan3.html.
- [12] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Journal of Formalized Mathematics, 7, 1995. http: //mizar.org/JFM/Vol7/goboard5.html.
- [13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/ Vol5/binarith.html.
- [14] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/pre_topc.html.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [16] Andrzej Trybulec. On the decomposition of finite sequences. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/ Vol7/finseq_6.html.
- [17] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_ 4.html.
- [18] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received May 12, 1997

Published January 2, 2004