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Summary. We discuss here some methods for reconstructing special sequences which
generate special polygonal arcsmﬁ. For such reconstructions we introduce a “mid” function
which cuts out the middle part of a sequence; tHeftinction, which cuts down the left part
of a sequence at some point; thg function for cutting down the right part at some point;
and the | |” function for cutting down both sides at two given points.

We also introduce some methods glueing two special sequences. By such cutting and glue-
ing methods, the speciality of sequences (generatability of special polygonal arcs) is shown to
be preserved.
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The articles[[14],[[17],[[2],[[8],[156],[[10],12],[114],[112],[128],.15] [T4],[[16],.16],.19],I8],18], and
[[7] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this papel, i1, i2, N denote natural numbers.
Next we state a number of propositions:

Q) fi—'ip>1ori—i;>1 theni—"ip=i—1ij;.

2 n-'0=n.

(B) i1—i2<ip—'ia.

(4) Ifip<ip, thenn—"i, <n-'ij.

(5) Ifip<ip, theni;—'n<iz—'n.

6) Ifi—"ip>1ori—i;>1 then(i—"iy)+ip=i.

(7) Ifiy <ip, theni; —'1<i,.

8 i—-'2=i-"1-"1

(9) Ifip+1<iy, theni;—"1<izandi; —'2< iz andiy <io.

(10) Supposé; +2<izoriiz+1+1<ip. Thenii+1<izand(i1+1)—'1< i and (i1 +
1)-'2<izandi;+1<irand(i;—'1)+1<izand((ii—'1)+1)—"1< i andi; < iy and
i1—"1<irandii—'2< iz andi; <i».

1The work has been done while the second author was visiting Nagano in autumn 1996.
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(11) Ifip<iporii<ip;—'1,theni; <iz+1andi; <i;+1landi; <iz+1+1landi; <ip+1+1
andi; <i>+2andi; <ix+2.

(12) Ifiy<iporip+1<ip, theni; <i—'1.
(13) Ifi > iy, theni > iy —'io.
(14) If1<iand1<i;—'i,theni; i <ij.

We follow the rulesn, i, i1, j denote natural numbers aBddenotes a non empty set.
Next we state several propositions:

(15) For all finite sequencas g such that lep < i buti <lenp+lengori <len(p~q) holds
(P~ a)(i) =q(i —lenp).

(16) For every sex and for every finite sequendeholds (f ~ (x))(lenf +1) = x and ((x) ~
f)(1) = x.

(17) Letx be a set and be a finite sequence of elements@f Suppose K lenf. Then
(f~(x))(1) = (1) and (f ~ (x))(1) = f; and ({x) ~ f)(lenf + 1) = f(lenf) and ({x) °
f)(lenf +1) = fient.

(18) For every finite sequendesuch that lerf = 1 holds Reyf) = f.

(19) For every finite sequencé of elements ofD and for every natural numbés holds
len(fx) =lenf —"k.

(20) LetD be a setf be a finite sequence of elementdifandk be a natural number. K< n,
then(fn)(k) = f(k).

(21) For every finite sequenck of elements ofD and for all natural numberl, I, holds
fi, [(12="12) = (f1l2)y,.

2. MIDDLE FUNCTION FORFINITE SEQUENCES

Let us consideD, let f be a finite sequence of elementsfand letk;, ko be natural numbers.
The functor midf, ki, ko) yielding a finite sequence of elementsdfs defined as follows:

i S fgl((ke—"ka) +1), if ky < ko,
(Def. 1) mlc(f,kLkZ) = { Relv(flkz—’lr((kl 7 k2) +1))7 otherwise.

The following propositions are true:

(22) Letf be a finite sequence of elementsbfindk;, k, be natural numbers. If £ k; and
ki <lenf and 1< ky andk;, < lenf, then Reymid(f, ki, ko)) = mid(ReV f), (lenf —"ky) +
1,(lenf —"kg)+1).

(23) Letn, m be natural numbers anfibe a finite sequence of elements&f If 1 < mand
m+n <lenf, thenfn(m) = f(m+n).

(24) Leti be a natural number arfdbe a finite sequence of elementdbfif 1 <iandi <lenf,
then(Rev(f))(i) = f((lenf —i)+1).

(25) For every finite sequendeof elements oD and for every natural numbé&such that K k
holds mid f,1,k) = f [k.

(26) For every finite sequenck of elements oD and for every natural numbds such that
k<lenf holds mid f k lenf) = /.
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(27) Letf be a finite sequence of elementdbandk;, ko be natural numbers. Supposeck;
andk; <lenf and 1< ky; andko < lenf. Then

@) (mid(f, ki, k2))(1) = f(ka),
(i) if ks <k, thenlenmidf, ki, ko) = (ko —'"ki) + 1 and for every natural numbesuch that
1 <iandi <lenmid(f, ki, k) holds(mid(f, kg, kz))(i) = f((i+ki)—"1),and
(i) if kg > ko, then lenmidf, ki, ko) = (k1 — ko) + 1 and for every natural numbesuch that
1<iandi <lenmidf, ki, ky) holds(mid(f, ki, ko))(i) = f((ks —"i)+1).

(28) For every finite sequenck of elements ofD and for all natural numberk;, ko holds
rngmid f, ki, ko) C rngf.

(29) For every finite sequendeof elements oD such that i< lenf holds mid f,1,lenf) = f.

(30) For every finite sequendeof elements oD such that 1< lenf holds mid f,lenf,1) =

Rev(f).

(31) Letf be afinite sequence of elementdbfindk,, ko, i be natural numbers. Suppose k;
andk; <k andk; < lenf and 1<iandi < (kp—"ki)+1ori < (kp—ki)+1ori < (ko+
1) —kg. Then(mid(f, kg, ko)) (i) = f((i + ki) =" 1) and (mid(f, ka, k2))(i) = f((i—"1) + ki)
and(mid(f,ky,kp))(i) = f((i+ki) —1) and(mid(f, ki, ko)) (i) = f((i—1)+kp).

(32) Letf be afinite sequence of elementdandk, i be natural numbers. If £ i andi <k
andk <lenf, then(mid(f,1,k))(i) = f(i).

(833) Letf be a finite sequence of elementsidfindk;, ky, be natural numbers. If £ k; and
ki <k andky <lenf, then lenmidf, ki, ko) <lenf.

(34) For every finite sequendeof elements of£7 such that < lenf holds f(1) € L(f)and
fie L(f)andf(lenf) € L(f) andfiens € L(T).

(35) For all pointspy, pz, G1, g2 of E2 such that(p1)1 = (p2)1 or (p1)2 = (p2)2 but gy €
L(p1, p2) butgz € L(p1, p2) holds (1)1 = (d2)1 Or (d1)2 = (G2)2-

(36) For all pointsp1, p2, 01, gp of ETZ- such thatpi)1 = (p2)1 0r (p1)2 = (p2)2 but L(q1,q2) C
L(p1, p2) holds(a1)1 = (02)1 or (a1)2 = (02)2.

(87) Letf be afinite sequence of elementszcﬁ andn be a natural number. IfZ nandf is a
special sequence, thdrin is a special sequence.

(38) Letf be a finite sequence of elementsﬁ andn be a natural number. Suppase lenf
and 2<lenf —'nandf is a special sequence. ThéR is a special sequence.

(39) Letf be a finite sequence of elementsiéﬁ andkj, ko be natural numbers. Suppogés
a special sequence andlk; andk; < lenf and 1< k; andks < lenf andk; # ko. Then
mid(f, ki, ko) is a special sequence.

3. A CONCEPT OFINDEX FORFINITE SEQUENCES INE2

Let f be a finite sequence of elementsﬂﬁand letp be a point ofE%. Let us assume thate Z(f).
The functor Indegp, ) yielding a natural number is defined by:

(Def. 2) There exists a non empty sub&edf N such that Indefp, f) = minSandS={i: pe

L(f,D)}.

One can prove the following propositions:

(40) Letf be afinite sequence of elementsﬁ, p be a point ofE%, andi be a natural number.
If pe L(f,i), then Indexp, f) <i.
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(41) Letf be a finite sequence of elements®# and p be a point ofE2. If p € £(f), then
1 <Index(p, f) and Indexp, f) < lenf.

(42) For every finite sequendeof elements ofE% and for every poinp of Z% such thatp €
L(f)holdsp e L(f,Index(p, f)).

(43) For every finite sequendeof elements ofE% and for every poinp of E% such thatp €
L(f,1) holds Indexp, f) = 1.

(44) For every finite sequendeof elements ofE% and for every poinp of E% suchthatlerf >2
holds Indexfq, f) = 1.

(45) Letf be a finite sequence of elementsﬁ, p be a point ofﬁ%, and giveni;. If fis a
special sequence andkli; andis <lenf andp = f(i1), then Indexp, f) +1=1ij.

(46) Letf be a finite sequence of elements®#, p be a point of£2, and giveni;. If f is a
special sequence amqe £(f,i1), theni; = Index(p, f) ori; = Index(p, f) + 1.

(47) Letf be a finite sequence of elements®#, p be a point of£2, and giveni;. If f is a
special sequence anth-1 <lenf andp € L(f,i1) andp # f(i1), theni; = Index(p, f).

Let g be a finite sequence of elementsZf and letp;, p, be points ofE2. We say thag is a
special sequence joining, p2 if and only if:

(Def. 3) gis a special sequence agfl) = p1 andg(leng) = p».

One can prove the following propositions:

(48) Letg be a finite sequence of elementsi’ﬁ and ps1, p2 be points off%. Supposg is a
special sequence joinirg, p2. Then Reyg) is a special sequence joining, p;.

(49) Letf, g be finite sequences of elements®f, p be a point of£2, and givenj. If p €
L(f)andg= (p) " mid(f,Index(p, f)+1,lenf)and 1< jandj+1<leng, thenL(g,j) C
L(f,(Index(p, f)+j)—'1).

(50) Letf, g be finite sequences of elementsﬁ and p be a point ofz% Supposef is a
special sequence ampd= L(f) andp # f(Index(p, f)+1) andg= (p) " mid(f, Index(p, f)+
1,lenf). Thengis a special sequence joinimy fient.

(51) Letf, gbe finite sequences of elements&f, p be a point of£2, and givenj. If pe Z(f)
and 1< jandj+1<lengandg= (mid(f,1,Index(p, f))) "~ (p), thenL(g, j) C L(f,]).

(52) Letf, g be finite sequences of elements®f and p be a point of£2. Supposef is a
special sequence aqke L(f) andp # f(1) andg = (mid(f,1,Index(p, f))) ~ (p). Theng
is a special sequence joinirg, p.

4., LEFT AND RIGHT CUTTING FUNCTIONS FORFINITE SEQUENCES |N£$

Let f be a finite sequence of elementszc;ﬁ and letp be a point of‘E%. The functor| p, f yielding
a finite sequence of elements®f is defined as follows:

(p) " mid(f,Index(p, f)+1,lenf), if p# f(Index(p, f) + 1),

(Def. 4) |p,f= { mid(f,Index(p, f) +1,lenf), otherwise.

The functor| f, p yields a finite sequence of elementsﬁ and is defined by:

_ [ (mid(f,1,Index(p, f))) ~ (p), if p# f(1),
(Def. 5) Lf,p_{ (p), otherwise.

One can prove the following propositions:
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(53) Let f be a finite sequence of elements ﬁ$ and p be a point ofE%. Supposef
is a special sequence amde £(f) and p = f(Index(p, f)+1) and p # f(lenf). Then
Index(p,Rev(f)) + Index(p, f) +1=lenf.

(54) Letf be a finite sequence of eIements@f and p be a point ofE%. If fis a special
sequence ang € L(f) andp # f(Index(p, f) + 1), then Indexp,Rev(f)) + Index(p, f) =
lenf.

(55) Let givenD, f be a finite sequence of elementsyfk be a natural number, arube an
element oD. Then((p) ~ f)[(k+1) = (p) "~ (f[k).

(56) Let givenD, f be a non empty finite sequence of element®ofandk;, k, be natural
numbers. Ifk; < ky andk; € domf, then mid f, kg, ko) = (f (k1)) ~ mid(f, ks + 1, ko).

Let f be a non empty finite sequence. One can check thatfRé&vnon empty.
One can prove the following propositions:

(57) Letf be a non empty finite sequence of elementﬁéfand p be a point off%. If fisa
special sequence anqe L(f), then| p,ReV(f) = Rev(| f, p).
(58) Letf be a non empty finite sequence of elementE&dfand p be a point of£2. Suppose
pe L(f). Then
) (pf)(1)=p and
(i) for every i such that 1< i andi < len|p,f holds if p = f(Index(p, f) + 1),

then (| p,f)(i) = f(Index(p,f) +1i) and if p # f(Index(p, f) + 1), then (| p, f)(i) =
f((Index(p, f)+i)—1).

(59) Letf be a finite sequence of elements@f and p be a point ofz%. Supposef is a

special sequence amule L(f). Then(| f, p)(len| f, p) = p and for evenyi such that I< i
andi < Index(p, f) holds(| f, p)(i) = f(i).

(60) Letf bea finite~sequence of elementsZf and p be a point of£2 such thatf is a special
sequence and € L(f). Then
() if p#£f(1),thenlen f,p=Indexp,f)+1, and
(i) if p=1f(1),thenlen f,p=Indexp,f).
(61) Letf be a non empty finitg sequence of elementiﬁ)hndp be a point ofE% such thatf
is a special sequence apd: L(f) andp# f(lenf). Then
() if p=f(Index(p, f)+1),thenlen p,f =lenf —Indexp, f), and
(i) if p# f(Indexp,f)+1),thenlen p, f = (lenf —Index(p, f)) + 1.

Let p1, P2, Ga, Oz be points of £2. The predicatey <p, p, 02 is defined by the conditions
(Def. 6).

(Def. 6)(i)) o1 € L(p1,p2),

(i) 02€ L(p1,p2), and

(iiiy  for all real numbersq, rp such that 0<ry andry <l andgs = (1—r1)-p1+ri-pz and
0<rgpandr, <landgy=(1-r2)-p1+rz-pz holdsri <rs.

Let p1, p2, 01, g2 be points 0@2. The predicate) <p,,p, 02 is defined as follows:

(Def. 7) a1 <p,.p, d2 andqs # Q.

Next we state several propositions:

(62) For all pointsps, p2, q1, g2 of E% such thatyy <p, p, 02 andgz <p, p, 01 holdsgy = op.
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(63) For all pointsps, p2, 01, gz of @TZ- such thaty; € £(p1, p2) andgp € L(p1, p2) andpy # p2
holdsay <p,,p, G2 OF G2 <py,p, G1 PUtG1 <py,p, G2 DUt <py p, G

(64) Letf be a non empty finite sequence of elementﬁfand p, 9, p1, P2 be points of'E%.
If f is a special sequence apds L(f) andq € L(f) and Indexp, f) < Index(q, f), then
qe L(Ip,f).

(65) For all pointsp, g, p1, p2 of Z% such thatp <y, p, g holdsq € L(p, p2) andp € L(p1,0).

(66) Letf be a non empty finite sequence of elementiéfand p, 9, p1, p2 be points of‘E%.
Supposef is a special sequence apds L(f) angq € L(f)andp # q and Indexp, f) =
Index(q, f) andp Zfindexp 1): findexp. ) 11 & Thenge L(| p, f).

5. CUTTING BOTH SIDES OF AFINITE SEQUENCE AND ADISCUSSION OFSPECIALITY OF
SEQUENCES INE?2

Let f be a finite sequence of eIements%’)ﬁ and letp, q be points ofz%. The functor| | p, f,q
yields a finite sequence of elements%g and is defined by:

|1p,f,q,if pe L(f)andge L(f) and Indexp, f) < Index(q, f) or IndexXp, f) = Index(q, f) and

(Def. 8) JLp,f,q:{ Rev(| ] q, f, p), otherwise.

One can prove the following propositions:

(67) Letf be afinite sequence of elementskg andp be a point of£2. Supposd is a special
sequence and € L(f) andp # f(1). Then| f, pis a special sequence joinirfg, p.

(68) Letf be a non empty finite sequence of element&paindp be a point ofE£2. Supposef
is a special sequence ap& £(f)andp# f(lenf). Then| p, f is a special sequence joining
P, flenf-

(69) Letf be a non empty finite sequence of elementgﬁ)hndp be a point ofE%. Supposd
is a special sequence apd L(f) andp # f(lenf). Then| p, f is a special sequence.

(70) Letf be afinite sequence of elementsﬁ andp be a point on%. Supposd is a special
sequence ande L(f) andp# f(1). Then| f, pis a special sequence.

(71) Letf be a non empty finite sequence of elementﬁ)bnd p, q be points of’B%. Suppose
f is a special sequence apds L(f) andq e L(f) andp# . Then|| p, f,q is a special
sequence joining, g.

(72) Letf be a non empty finite sequence of element&paindp, g be points ofE% Suppose
f is a special sequence apd= L(f) andq e L(f) andp # qg. Then|| p, f,q is a special
sequence.

(73) Letf, gbe finite sequences of elementsE,ﬁ. Supposd (lenf) = g(1) andf is a special
sequence andis a special sequence addf) N £(g) = {g(1)}. Thenf "~ mid(g,2,leng) is
a special sequence.

(74) Letf, g be finite sequences of elementsd. Suppose (lenf) = g(1) andf is a special
sequence andis a special sequence aidf) N L(g) = {g(1)}. Thenf "~ mid(g,2,leng) is
a special sequence joinirfg, gieng-

(75) For every finite sequence of elements ofﬂ% and for every natural number holds
L(fn) C L(T).

(76) Letf be afinite sequence of eIementsZ(‘;ﬁ andp be a point of’B%. If pe Z(f) andf is
a special sequence, therf| f, p) C L(f).
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(77) Letf be anon empty finite sequence of element&pandp be a point ofE2. If pe L(f)
andf is a special sequence, thei| p, f) C L(f).

(78) Letf, g be non empty finite sequences of elementﬁahndp be a point ofz% Suppose
(Ienf) g(1) andp € Z(f) and f is a special sequence agds a special sequence and
L(f)NnL(g) = {g(1)} andp # f(lenf). Then(] p, ) ~ mid(g, 2,leng) is a special sequence
joining p, Jieng-

(79) Letf, gbe non empty finite sequences of element&paindp be a point of£2. Suppose
fv(lenf)~: g(1) andp € L(f) and f is a special sequence agds a special sequence and
L(f)NnL(g) ={g(1)} andp+# f(lenf). Then(] p, f) ~ mid(g, 2,leng) is a special sequence.

(80) Letf, gbe finite sequences of elementsEﬁ Suppose‘(lenf) g(1) andf is a special

sequence and is a special sequence atidf) ﬁL( ) ={g(1)}. Then (mid(f,1lenf -’
1)) " gis a special sequence.

(81) Letf, gbe finite sequences of elementsﬁ. Supposd (lenf) = g(1) andf is a special
sequence and is a special sequence ad f) N £(g) = {g(1)}. Then (mid(f,1,lenf -/
1)) ~ gis a special sequence joinirig, gieng-

(82) Letf, gbe finite sequences of elementszq? andp be a point ofE% Suppose‘ (Ienf)

g(1) andp € £(g) andf is a special sequence agik a special sequence andf) N £(g) =
{g(1)} andp # g(1). Then(mid(f,1,lenf —' 1))~ | g, pis a special sequence joinirfg, p.

(83) Letf, gbe finite sequences of elementsﬁ andp be a point 0fE$ Suppose‘ (Ienf)

g(1) andpe L(g) andf is a special sequence agdks a special sequence a.m;lf) N L(g)
{9(1)} andp # g(1). Then(mid(f,1,lenf —' 1))~ | g, pis a special sequence.
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