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The articles([20],[[28],[124],[13],[141, 1], [[21],[[22],[113],[[24], [291,[171,[118] L I6],.[T11] L T15] L 12],
[8l. [91, [B], [10], [27], [12], and [16] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following convention:is an element oR, V is a subset ofz{, s, s1,
S, t, t1, to are points ofE7, Cis a simple closed curv® is a subset oE%, anda, p, p1, P2, Q, d1,
0 are points ofE2.

We now state several propositions:

(1) For all real numbers, b holds(a—b)? = (b— a)>2.

(2) LetS T be non empty topological spacesbe a map fron8into T, andA be a subset of
T. If f is a homeomorphism andlis connected, thefi=1(A) is connected.

(3) LetS T be non empty topological structureflshe a map fronginto T, andA be a subset
of T. If f is a homeomorphism andlis compact, therf ~1(A) is compact.

(4) proj2 NorthHalflinea is lower bounded.
(5) proj2 SouthHalflinea is upper bounded.
(6) proj2’ WestHalflinea is upper bounded.
(7) proj2’ EastHalfline is lower bounded.
Let us considea. One can verify the following observations:
x  proj2° NorthHalflinea is non empty,
x  proj2° SouthHalflinea is non empty,
x  proj1° WestHalflinea is non empty, and
x  proj1° EastHalflineais non empty.

The following four propositions are true:
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(8) inf(proj2° NorthHalflinea) = ay.
(9) sugproj2 SouthHalfline) = a,.
(10) supprojl° WestHalflinea) = a;.
(11) inf(proj1° EastHalfline) = a;.
Let us considea. One can check the following observations:
* NorthHalflineais closed,
*  SouthHalflinexis closed,
x EastHalflineais closed, and
*  WestHalflinea is closed.

The following propositions are true:

(12) If ac BDDP, then NorthHalfline Z UBDP.
(13) Ifac BDDP, then SouthHalflinaZ UBDP.
(14) If ac BDDP, then EastHalflina £ UBDP.

(15) If a€ BDDP, then WestHalflina Z UBDP.

(16) For every subsé of Z% and for all pointsps, pz, q of E% such thaf is an arc fromp; to
P2 andq # p; holdsp; ¢ LSegmentP, p1, p2,q).

(17) For every subsé of Z% and for all pointsps, pz, q of E% such thaf is an arc fromp; to
P2 andq # py holdsp; ¢ RSegmer(P, py, pz, q).

(18) LetC be a simple closed curve,be a subset OE% andps1, p2 be points on%. Suppose
P is an arc fromp; to p2 andP C C. Then there exists a non empty subRetf E% such that
Ris an arc fromp; to p, andPUR=C andPNR = {p1, p2}-

(19) LetP be a subset ofZ and py, pz, g1, Gz be points of £2. SupposeP is an arc fromp;

to p2 andqg; € P andgp € Pandag # p1 andar # pz anddz # p1 anddp # pz anday # Gp.
Then there exists a non empty sub@atf E% such thaQQ is an arc fronqg; to gz andQ C P

andQ misses{ p1, p2}.

2. TwoO SPECIAL POINTS ON A SIMPLE CLOSED CURVE

Let us considep, P. The functor North-Boun(, P) yields a point ofE% and is defined by:
(Def. 1) North-Boundp, P) = [p1,inf(proj2° (P N NorthHalflinep))].

The functor South-Bour(gh, P) yields a point ofE% and is defined as follows:
(Def. 2) South-Boungh, P) = [p1,sup(proj2’ (PN SouthHalflineg))].

The following propositions are true:

(20) (North-Boundp,P)); = p1 and(South-Boundp,P))1 = p1.

(21) (North-Boundp,P)), = inf(proj2’(P N NorthHalflinep)) and (South-Boundp,P)), =
sup(proj2° (PN SouthHalflingp)).

(22) For every compact subgetof Z% such thatp € BDDC holds North-Boun¢p,C) € C and
North-Boundp,C) € NorthHalflinep and South-Bounip,C) € C and South-Boun,C) €
SouthHalflinep.
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(23) For every compact subgebf £2 such thatp € BDDC holds(South-Boundp,C))2 < p2
andpz < (North-Boundp,C))>.

(24) For every compact subsé& of Z% such thatp € BDDC holds inf(proj2°(C N
NorthHalflinep)) > sup(proj2’ (Cn SouthHalflingp)).

(25) For every compact subseét of E% such thatp € BDDC holds South-Boung,C) #
North-Boundp,C).

(26) For every subs& of £2 holds £(North-Bound p,C), South-Boundp,C)) is vertical.

(27) For every compact subsebf £2 such thap € BDDC holds £ (North-Bound p,C), South-Boundp,C)) N
C = {North-Boundp,C), South-Boundp,C)}.

(28) LetC be a compact subset Gﬁ? Suppose € BDDC andg € BDDC andp; # ¢1. Then
North-Boundp,C), South-Boun¢q,C), North-Boundq,C), South-Boundp,C) are mutu-
ally different.

3. AN ORDER OFPOINTS ON A SIMPLE CLOSED CURVE

Let us considen, V, s, $, t1, to. We say thak;, s, separatéy, to onV if and only if:

(Def. 3) For every subsék of Z{ such thatA is an arc froms; to s, and A C V holds A meets
{tl,tz}.

We introduces;, s, are neighbours witt, t; onV as an antonym ofy, s, separatéy, t; onV.
The following propositions are true:

(29) t,tseparatesy, s, onV.
(30) If s, s separatéy, to onV, thensy, s; separatéy, t; onV.
(31) If s, sp separatéy, to onV, thensy, s, separatéy, t; onV.
(32) st separate, t, onV.
(33) t1, sseparatdy, sonV.
(84) ti, sseparate, t, onV.
(35) s, t1 separatdy, sonV.

(36) Letps, p, q be points of £2. Supposey € C and p; € C and p; € C and p; # pz and
p1 # qandp; # g. Thenps, p2 are neighbours wid, g onC.

(37) If pr# p2 andpy € Candp; € C, then if p1, po separatey;, g2 onC, thenqs, gz separate
p1, p2 onC.

(38) Suppose; € Candp; € Candqg; € Candpy # pz andgs # p1 andgs # pz anddz # pa

andqy # p2. Thenps, p2 are neighbours widj;, g2 onC or p1, g1 are neighbours wipy, gz
onC.
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