The Ordering of Points on a Curve. Part IV¹

Artur Korniłowicz University of Białystok

MML Identifier: JORDAN18.

WWW: http://mizar.org/JFM/Vol14/jordan18.html

The articles [20], [23], [24], [3], [4], [1], [21], [22], [13], [14], [19], [7], [18], [6], [11], [15], [2], [8], [9], [5], [10], [17], [12], and [16] provide the notation and terminology for this paper.

1. Preliminaries

We now state several propositions:

- (1) For all real numbers a, b holds $(a-b)^2 = (b-a)^2$.
- (2) Let S, T be non empty topological spaces, f be a map from S into T, and A be a subset of T. If f is a homeomorphism and A is connected, then $f^{-1}(A)$ is connected.
- (3) Let S, T be non empty topological structures, f be a map from S into T, and A be a subset of T. If f is a homeomorphism and A is compact, then $f^{-1}(A)$ is compact.
- (4) $proj2^{\circ}$ NorthHalfline a is lower bounded.
- (5) $proj2^{\circ}$ SouthHalfline *a* is upper bounded.
- (6) proj1° WestHalfline a is upper bounded.
- (7) $\operatorname{proj} 1^{\circ} \operatorname{EastHalfline} a$ is lower bounded.

Let us consider a. One can verify the following observations:

- * proj2° NorthHalfline a is non empty,
- * $proj2^{\circ}$ SouthHalfline a is non empty,
- * proj1° WestHalfline a is non empty, and
- * proj1° EastHalfline a is non empty.

The following four propositions are true:

This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

- (8) $\inf(\text{proj}2^{\circ}\text{NorthHalfline }a) = a_2.$
- (9) $\sup(\text{proj}2^{\circ} \text{SouthHalfline } a) = a_2.$
- (10) $\sup(\text{proj1}^{\circ}\text{WestHalfline }a) = a_1.$
- (11) $\inf(\text{proj1}^{\circ} \text{EastHalfline } a) = a_1.$

Let us consider a. One can check the following observations:

- * NorthHalfline a is closed,
- * SouthHalfline a is closed.
- * EastHalfline a is closed, and
- * WestHalfline a is closed.

The following propositions are true:

- (12) If $a \in BDDP$, then NorthHalfline $a \not\subseteq UBDP$.
- (13) If $a \in BDDP$, then SouthHalfline $a \not\subseteq UBDP$.
- (14) If $a \in BDDP$, then EastHalfline $a \not\subseteq UBDP$.
- (15) If $a \in BDDP$, then WestHalfline $a \not\subseteq UBDP$.
- (16) For every subset P of \mathcal{E}_{T}^{2} and for all points p_{1} , p_{2} , q of \mathcal{E}_{T}^{2} such that P is an arc from p_{1} to p_{2} and $q \neq p_{2}$ holds $p_{2} \notin LSegment(P, p_{1}, p_{2}, q)$.
- (17) For every subset P of \mathcal{E}_{T}^{2} and for all points p_{1} , p_{2} , q of \mathcal{E}_{T}^{2} such that P is an arc from p_{1} to p_{2} and $q \neq p_{1}$ holds $p_{1} \notin RSegment(P, p_{1}, p_{2}, q)$.
- (18) Let C be a simple closed curve, P be a subset of \mathcal{E}_T^2 , and p_1 , p_2 be points of \mathcal{E}_T^2 . Suppose P is an arc from p_1 to p_2 and $P \subseteq C$. Then there exists a non empty subset R of \mathcal{E}_T^2 such that R is an arc from p_1 to p_2 and $P \cup R = C$ and $P \cap R = \{p_1, p_2\}$.
- (19) Let P be a subset of \mathcal{E}_T^2 and p_1 , p_2 , q_1 , q_2 be points of \mathcal{E}_T^2 . Suppose P is an arc from p_1 to p_2 and $q_1 \in P$ and $q_2 \in P$ and $q_1 \neq p_1$ and $q_1 \neq p_2$ and $q_2 \neq p_1$ and $q_2 \neq p_2$ and $q_1 \neq q_2$. Then there exists a non empty subset Q of \mathcal{E}_T^2 such that Q is an arc from q_1 to q_2 and $Q \subseteq P$ and Q misses $\{p_1, p_2\}$.
 - 2. Two Special Points on a Simple Closed Curve

Let us consider p, P. The functor North-Bound(p, P) yields a point of \mathcal{E}_T^2 and is defined by:

(Def. 1) North-Bound(p,P) = [p_1 , inf(proj2 $^{\circ}(P \cap \text{NorthHalfline } p))].$

The functor South-Bound(p, P) yields a point of \mathcal{E}_T^2 and is defined as follows:

(Def. 2) South-Bound $(p, P) = [p_1, \sup(\text{proj}2^{\circ}(P \cap \text{SouthHalfline }p))].$

The following propositions are true:

- (20) (North-Bound(p,P))₁ = p_1 and (South-Bound(p,P))₁ = p_1 .
- (21) (North-Bound(p,P))₂ = inf $(\text{proj2}^{\circ}(P \cap \text{NorthHalfline}\,p))$ and (South-Bound(p,P))₂ = $\sup(\text{proj2}^{\circ}(P \cap \text{SouthHalfline}\,p))$.
- (22) For every compact subset C of \mathcal{E}^2_T such that $p \in BDDC$ holds $North\text{-Bound}(p,C) \in C$ and $North\text{-Bound}(p,C) \in North\text{Halfline } p$ and $South\text{-Bound}(p,C) \in C$ and $South\text{-Bound}(p,C) \in South\text{Halfline } p$.

- (23) For every compact subset C of \mathcal{E}^2_T such that $p \in BDDC$ holds (South-Bound(p,C))₂ < p_2 and $p_2 < (North-Bound<math>(p,C)$)₂.
- (24) For every compact subset C of \mathcal{E}^2_T such that $p \in BDDC$ holds $\inf(\text{proj2}^\circ(C \cap \text{NorthHalfline } p)) > \sup(\text{proj2}^\circ(C \cap \text{SouthHalfline } p))$.
- (25) For every compact subset C of \mathcal{E}^2_T such that $p \in BDDC$ holds South-Bound $(p,C) \neq$ North-Bound(p,C).
- (26) For every subset C of \mathcal{E}_T^2 holds $\mathcal{L}(North-Bound(p,C), South-Bound(p,C))$ is vertical.
- (27) For every compact subset C of \mathcal{E}_{T}^{2} such that $p \in BDDC$ holds $\mathcal{L}(North-Bound(p,C), South-Bound(p,C)) \cap C = {North-Bound(p,C), South-Bound(p,C)}.$
- (28) Let C be a compact subset of \mathcal{E}^2_T . Suppose $p \in BDDC$ and $q \in BDDC$ and $p_1 \neq q_1$. Then North-Bound(p,C), South-Bound(q,C), North-Bound(q,C), South-Bound(p,C) are mutually different.
 - 3. AN ORDER OF POINTS ON A SIMPLE CLOSED CURVE

Let us consider n, V, s_1, s_2, t_1, t_2 . We say that s_1, s_2 separate t_1, t_2 on V if and only if:

(Def. 3) For every subset A of \mathcal{E}_T^n such that A is an arc from s_1 to s_2 and $A \subseteq V$ holds A meets $\{t_1, t_2\}$.

We introduce s_1 , s_2 are neighbours wrt t_1 , t_2 on V as an antonym of s_1 , s_2 separate t_1 , t_2 on V. The following propositions are true:

- (29) t, t separate s_1 , s_2 on V.
- (30) If s_1 , s_2 separate t_1 , t_2 on V, then s_2 , s_1 separate t_1 , t_2 on V.
- (31) If s_1 , s_2 separate t_1 , t_2 on V, then s_1 , s_2 separate t_2 , t_1 on V.
- (32) s, t_1 separate s, t_2 on V.
- (33) t_1 , s separate t_2 , s on V.
- (34) t_1 , s separate s, t_2 on V.
- (35) s, t_1 separate t_2 , s on V.
- (36) Let p_1 , p_2 , q be points of \mathcal{E}_T^2 . Suppose $q \in C$ and $p_1 \in C$ and $p_2 \in C$ and $p_1 \neq p_2$ and $p_1 \neq q$ and $p_2 \neq q$. Then p_1 , p_2 are neighbours wrt q, q on C.
- (37) If $p_1 \neq p_2$ and $p_1 \in C$ and $p_2 \in C$, then if p_1 , p_2 separate q_1 , q_2 on C, then q_1 , q_2 separate p_1 , p_2 on C.
- (38) Suppose $p_1 \in C$ and $p_2 \in C$ and $q_1 \in C$ and $p_1 \neq p_2$ and $q_1 \neq p_1$ and $q_1 \neq p_2$ and $q_2 \neq p_1$ and $q_2 \neq p_2$. Then p_1 , p_2 are neighbours wrt q_1 , q_2 on C or p_1 , q_1 are neighbours wrt p_2 , q_2 on C.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [2] Leszek Borys. Paracompact and metrizable spaces. *Journal of Formalized Mathematics*, 3, 1991. http://mizar.org/JFM/Vol3/pcomps_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.

- [5] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in £². Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vo19/pscomp_1.html.
- [6] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [7] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [8] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [9] Agata Darmochwał and Yatsuka Nakamura. The topological space E_T². Arcs, line segments and special polygonal arcs. *Journal of Formalized Mathematics*, 3, 1991. http://mizar.org/JFM/Vol3/topreall.html.
- [10] Agata Darmochwał and Yatsuka Nakamura. The topological space \(\mathcal{E}_T^2\). Simple closed curves. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreal2.html.
- [11] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/metric_1.html.
- [12] Artur Korniłowicz, Robert Milewski, Adam Naumowicz, and Andrzej Trybulec. Gauges and cages. Part I. *Journal of Formalized Mathematics*, 12, 2000. http://mizar.org/JFM/Vol12/jordan1a.html.
- [13] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/seg_4.html.
- [14] Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/incproj.html.
- [15] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons, part I. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/sppol_1.html.
- [16] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of simple closed curves and the order of their points. *Journal of Formalized Mathematics*, 9, 1997. http://mizar.org/JFM/Vol9/jordan6.html.
- [17] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/jordan2c.html.
- [18] Beata Padlewska. Connected spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/connsp_1.html.
- [19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [21] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html
- [22] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/square_1.html.
- [23] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [24] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received September 16, 2002

Published January 2, 2004