The Ordering of Points on a Curve. Part III ${ }^{1]}$

Artur Korniłowicz
University of Białystok

MML Identifier: JORDAN17.

WWW:http://mizar.org/JFM/Vol14/jordan17.html

The articles [1], [13], [2], [7], [8], [11], [5], [4], [12], [6], [9], [3], and [10] provide the notation and terminology for this paper.

We use the following convention: C, P are simple closed curves and a, b, c, d, e are points of $\mathcal{E}_{\mathrm{T}}^{2}$.

We now state several propositions:
(1) Let n be a natural number, a, p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{n}$, and P be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose $a \in P$ and P is an arc from p_{1} to p_{2}. Then there exists a map f from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{n}\right) \upharpoonright P$ and there exists a real number r such that f is a homeomorphism and $f(0)=p_{1}$ and $f(1)=p_{2}$ and $0 \leq r$ and $r \leq 1$ and $f(r)=a$.
(2) $\mathrm{W}_{\text {min }}(P) \leq_{P} \mathrm{E}_{\max }(P)$.
(3) If $a \leq_{P} \mathrm{E}_{\text {max }}(P)$, then $a \in \operatorname{UpperArc}(P)$.
(4) If $\mathrm{E}_{\max }(P) \leq_{P} a$, then $a \in \operatorname{Lower} \operatorname{Arc}(P)$.
(5) If $a \leq_{P} \mathrm{~W}_{\text {min }}(P)$, then $a \in \operatorname{LowerArc}(P)$.
(6) Let P be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $a \neq b$ and P is an arc from c to d and LE a, b, P, c, d. Then there exists e such that $a \neq e$ and $b \neq e$ and LE a, e, P, c, d and LE e, b, P, c, d.
(7) If $a \in P$, then there exists e such that $a \neq e$ and $a \leq_{P} e$.
(8) If $a \neq b$ and $a \leq_{P} b$, then there exists c such that $c \neq a$ and $c \neq b$ and $a \leq_{P} c$ and $c \leq_{P} b$.

Let P be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and let a, b, c, d be points of $\mathcal{E}_{\mathrm{T}}^{2}$. We say that a, b, c, d are in this order on P if and only if:
(Def. 1) $\quad a \leq_{P} b$ and $b \leq_{P} c$ and $c \leq_{P} d$ or $b \leq_{P} c$ and $c \leq_{P} d$ and $d \leq_{P} a$ or $c \leq_{P} d$ and $d \leq_{P} a$ and $a \leq_{P} b$ or $d \leq_{P} a$ and $a \leq_{P} b$ and $b \leq_{P} c$.

One can prove the following propositions:
(9) If $a \in P$, then a, a, a, a are in this order on P.
(10) If a, b, c, d are in this order on P, then b, c, d, a are in this order on P.

[^0](11) If a, b, c, d are in this order on P, then c, d, a, b are in this order on P.
(12) If a, b, c, d are in this order on P, then d, a, b, c are in this order on P.
(13) Suppose $a \neq b$ and a, b, c, d are in this order on P. Then there exists e such that $e \neq a$ and $e \neq b$ and a, e, b, c are in this order on P.
(14) Suppose $a \neq b$ and a, b, c, d are in this order on P. Then there exists e such that $e \neq a$ and $e \neq b$ and a, e, b, d are in this order on P.
(15) Suppose $b \neq c$ and a, b, c, d are in this order on P. Then there exists e such that $e \neq b$ and $e \neq c$ and a, b, e, c are in this order on P.
(16) Suppose $b \neq c$ and a, b, c, d are in this order on P. Then there exists e such that $e \neq b$ and $e \neq c$ and b, e, c, d are in this order on P.
(17) Suppose $c \neq d$ and a, b, c, d are in this order on P. Then there exists e such that $e \neq c$ and $e \neq d$ and a, c, e, d are in this order on P.
(18) Suppose $c \neq d$ and a, b, c, d are in this order on P. Then there exists e such that $e \neq c$ and $e \neq d$ and b, c, e, d are in this order on P.
(19) Suppose $d \neq a$ and a, b, c, d are in this order on P. Then there exists e such that $e \neq d$ and $e \neq a$ and a, b, d, e are in this order on P.
(20) Suppose $d \neq a$ and a, b, c, d are in this order on P. Then there exists e such that $e \neq d$ and $e \neq a$ and a, c, d, e are in this order on P.
(21) Suppose $a \neq c$ and $a \neq d$ and $b \neq d$ and a, b, c, d are in this order on P and b, a, c, d are in this order on P. Then $a=b$.
(22) Suppose $a \neq b$ and $b \neq c$ and $c \neq d$ and a, b, c, d are in this order on P and c, b, a, d are in this order on P. Then $a=c$.
(23) Suppose $a \neq b$ and $a \neq c$ and $b \neq d$ and a, b, c, d are in this order on P and d, b, c, a are in this order on P. Then $a=d$.
(24) Suppose $a \neq c$ and $a \neq d$ and $b \neq d$ and a, b, c, d are in this order on P and a, c, b, d are in this order on P. Then $b=c$.
(25) Suppose $a \neq b$ and $b \neq c$ and $c \neq d$ and a, b, c, d are in this order on P and a, d, c, b are in this order on P. Then $b=d$.
(26) Suppose $a \neq b$ and $a \neq c$ and $b \neq d$ and a, b, c, d are in this order on P and a, b, d, c are in this order on P. Then $c=d$.
(27) Suppose $a \in C$ and $b \in C$ and $c \in C$ and $d \in C$. Then
(i) a, b, c, d are in this order on C, or
(ii) a, b, d, c are in this order on C, or
(iii) a, c, b, d are in this order on C, or
(iv) a, c, d, b are in this order on C, or
(v) a, d, b, c are in this order on C, or
(vi) a, d, c, b are in this order on C.

References

[1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html
[2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[3] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Journal of Formalized Mathematics, 9, 1997. http: //mizar.org/JFM/Vol9/pscomp_1.html
[4] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html
[5] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html
[6] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991.http://mizar.org/JFM/Vol3/euclid.html
[7] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreal1.html.
[8] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreal2.html
[9] Adam Grabowski and Yatsuka Nakamura. The ordering of points on a curve. Part II. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/jordan5c.html
[10] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of simple closed curves and the order of their points. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/jordan6.html
[11] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, $1,1989$. http://mizar.org/JFM/Vol1/pre_topc.html
[12] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/ Vol3/borsuk_1.html.
[13] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

Received September 16, 2002
Published January 2, 2004

[^0]: ${ }^{1}$ This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

