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Summary. Let Sbe a subset of the topological Euclidean planeE2
T. We say thatShas

Jordan’s property if there exist two non-empty, disjoint and connected subsetsG1 andG2 of
E2

T such thatSc = G1∪G2 andG1\G1 = G2\G2 (see [13], [8]). The aim is to prove that the
boundaries of some special polygons inE2

T have this property (see Section 3). Moreover, it is
proved that both the interior and the exterior of the boundary of any rectangle inE2

T is open
and connected.

MML Identifier: JORDAN1.

WWW: http://mizar.org/JFM/Vol4/jordan1.html

The articles [14], [16], [1], [9], [17], [4], [5], [3], [12], [11], [10], [2], [15], [7], and [6] provide the
notation and terminology for this paper.

1. SELECTED THEOREMS ON CONNECTED SPACES

In this paperG1, G2 are non empty topological spaces andx, y are points ofG1.
One can prove the following propositions:

(1) For every topological structureG1 and for every subsetA of G1 holds the carrier ofG1�A=
A.

(2) Let G1 be a non empty topological space. Suppose that for all pointsx, y of G1 there
existsG2 such thatG2 is connected and there exists a mapf from G2 into G1 such thatf is
continuous andx∈ rng f andy∈ rng f . ThenG1 is connected.

(4)1 Let G1 be a non empty topological space. Suppose that for all pointsx, y of G1 there exists
a maph from I into G1 such thath is continuous andx = h(0) andy = h(1). ThenG1 is
connected.

(5) LetA be a subset ofG1. Suppose that for all pointsx1, y1 of G1 such thatx1 ∈ A andy1 ∈ A
andx1 6= y1 there exists a maph from I into G1�A such thath is continuous andx1 = h(0) and
y1 = h(1). ThenA is connected.

(6) Let A0 be a subset ofG1 andA1 be a subset ofG1. SupposeA0 is connected andA1 is
connected andA0 meetsA1. ThenA0∪A1 is connected.

(7) Let A0, A1, A2 be subsets ofG1. SupposeA0 is connected andA1 is connected andA2 is
connected andA0 meetsA1 andA1 meetsA2. ThenA0∪A1∪A2 is connected.

1 The proposition (3) has been removed.
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(8) LetA0, A1, A2, A3 be subsets ofG1. Suppose thatA0 is connected andA1 is connected and
A2 is connected andA3 is connected andA0 meetsA1 andA1 meetsA2 andA2 meetsA3. Then
A0∪A1∪A2∪A3 is connected.

2. CERTAIN CONNECTED AND OPEN SUBSETS IN THEEUCLIDEAN PLANE

In the sequelQ, P1, P2 denote subsets ofE2
T andP denotes a subset ofE2

T.
Let n be a natural number and letP be a subset ofEn

T. We say thatP is convex if and only if:

(Def. 1) For all pointsw1, w2 of En
T such thatw1 ∈ P andw2 ∈ P holdsL(w1,w2)⊆ P.

We now state the proposition

(9) For every natural numbern and for every subsetP of En
T such thatP is convex holdsP is

connected.

In the sequels1, t1, s2, t2, s, t, s3, t3, s4, t4, s5, t5, s6, t6, l , s7, t7 denote real numbers.
The following propositions are true:

(10) If s1 < s3 ands1 < s4 and 0≤ l andl ≤ 1, thens1 < (1− l) ·s3 + l ·s4.

(11) If s3 < s1 ands4 < s1 and 0≤ l andl ≤ 1, then(1− l) ·s3 + l ·s4 < s1.

In the sequels8, t8 are real numbers.
One can prove the following propositions:

(12) {[s, t] : s1 < s ∧ s< s2 ∧ t1 < t ∧ t < t2}= {[s3, t3] : s1 < s3}∩{[s4, t4] : s4 < s2}∩{[s5,
t5] : t1 < t5}∩{[s6, t6] : t6 < t2}.

(13) {[s, t] : s1 6≤ s ∨ s 6≤ s2 ∨ t1 6≤ t ∨ t 6≤ t2} = {[s3, t3] : s3 < s1}∪{[s4, t4] : t4 < t1}∪{[s5,
t5] : s2 < s5}∪{[s6, t6] : t2 < t6}.

(14) For alls1, t1, s2, t2, P such thatP = {[s, t] : s1 < s ∧ s< s2 ∧ t1 < t ∧ t < t2} holdsP is
convex.

(15) For alls1, t1, s2, t2, P such thatP = {[s, t] : s1 < s ∧ s< s2 ∧ t1 < t ∧ t < t2} holdsP is
connected.

(16) For alls1, P such thatP = {[s, t] : s1 < s} holdsP is convex.

(17) For alls1, P such thatP = {[s, t] : s1 < s} holdsP is connected.

(18) For alls2, P such thatP = {[s, t] : s< s2} holdsP is convex.

(19) For alls2, P such thatP = {[s, t] : s< s2} holdsP is connected.

(20) For allt1, P such thatP = {[s, t] : t1 < t} holdsP is convex.

(21) For allt1, P such thatP = {[s, t] : t1 < t} holdsP is connected.

(22) For allt2, P such thatP = {[s, t] : t < t2} holdsP is convex.

(23) For allt2, P such thatP = {[s, t] : t < t2} holdsP is connected.

(24) For alls1, t1, s2, t2, P such thatP = {[s, t] : s1 6≤ s ∨ s 6≤ s2 ∨ t1 6≤ t ∨ t 6≤ t2} holdsP is
connected.

(25) For everys1 and for every subsetP of E2
T such thatP = {[s, t] : s1 < s} holdsP is open.

(26) For everys1 and for every subsetP of E2
T such thatP = {[s, t] : s1 > s} holdsP is open.

(27) For everys1 and for every subsetP of E2
T such thatP = {[s, t] : s1 < t} holdsP is open.
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(28) For everys1 and for every subsetP of E2
T such thatP = {[s, t] : s1 > t} holdsP is open.

(29) For alls1, t1, s2, t2 and for every subsetP of E2
T such thatP= {[s, t] : s1 < s ∧ s< s2 ∧ t1 <

t ∧ t < t2} holdsP is open.

(30) For alls1, t1, s2, t2 and for every subsetP of E2
T such thatP= {[s, t] : s1 6≤ s ∨ s 6≤ s2 ∨ t1 6≤

t ∨ t 6≤ t2} holdsP is open.

(31) Let givens1, t1, s2, t2, P, Q. SupposeP = {[s7, t7] : s1 < s7 ∧ s7 < s2 ∧ t1 < t7 ∧ t7 < t2}
andQ = {[s8, t8] : s1 6≤ s8 ∨ s8 6≤ s2 ∨ t1 6≤ t8 ∨ t8 6≤ t2}. ThenP missesQ.

(32) Let s1, s2, t1, t2 be real numbers. Then{p; p ranges over points ofE2
T: s1 < p1 ∧ p1 <

s2 ∧ t1 < p2 ∧ p2 < t2}= {[s7, t7] : s1 < s7 ∧ s7 < s2 ∧ t1 < t7 ∧ t7 < t2}.

(33) For alls1, s2, t1, t2 holds{q1;q1 ranges over points ofE2
T: s1 6≤ (q1)1 ∨ (q1)1 6≤ s2 ∨ t1 6≤

(q1)2 ∨ (q1)2 6≤ t2}= {[s8, t8] : s1 6≤ s8 ∨ s8 6≤ s2 ∨ t1 6≤ t8 ∨ t8 6≤ t2}.

(34) For alls1, s2, t1, t2 holds{p0; p0 ranges over points ofE2
T: s1 < (p0)1 ∧ (p0)1 < s2 ∧ t1 <

(p0)2 ∧ (p0)2 < t2} is a subset ofE2
T.

(35) For alls1, s2, t1, t2 holds{p1; p1 ranges over points ofE2
T: s1 6≤ (p1)1 ∨ (p1)1 6≤ s2 ∨ t1 6≤

(p1)2 ∨ (p1)2 6≤ t2} is a subset ofE2
T.

(36) For alls1, t1, s2, t2, P such thatP= {p0; p0 ranges over points ofE2
T: s1 < (p0)1 ∧ (p0)1 <

s2 ∧ t1 < (p0)2 ∧ (p0)2 < t2} holdsP is connected.

(37) For alls1, t1, s2, t2, P such thatP= {p1; p1 ranges over points ofE2
T: s1 6≤ (p1)1 ∨ (p1)1 6≤

s2 ∨ t1 6≤ (p1)2 ∨ (p1)2 6≤ t2} holdsP is connected.

(38) Let givens1, t1, s2, t2 andP be a subset ofE2
T. SupposeP = {p0; p0 ranges over points of

E2
T: s1 < (p0)1 ∧ (p0)1 < s2 ∧ t1 < (p0)2 ∧ (p0)2 < t2}. ThenP is open.

(39) Let givens1, t1, s2, t2 andP be a subset ofE2
T. SupposeP = {p1; p1 ranges over points of

E2
T: s1 6≤ (p1)1 ∨ (p1)1 6≤ s2 ∨ t1 6≤ (p1)2 ∨ (p1)2 6≤ t2}. ThenP is open.

(40) Let givens1, t1, s2, t2, P, Q. Suppose that

(i) P = {p; p ranges over points ofE2
T: s1 < p1 ∧ p1 < s2 ∧ t1 < p2 ∧ p2 < t2}, and

(ii) Q= {q1;q1 ranges over points ofE2
T: s1 6≤ (q1)1 ∨ (q1)1 6≤ s2 ∨ t1 6≤ (q1)2 ∨ (q1)2 6≤ t2}.

ThenP missesQ.

(41) Let givens1, t1, s2, t2 andP, P1, P2 be subsets ofE2
T. Suppose that

(i) s1 < s2,

(ii) t1 < t2,

(iii) P = {p; p ranges over points ofE2
T: p1 = s1 ∧ p2 ≤ t2 ∧ p2 ≥ t1 ∨ p1 ≤ s2 ∧ p1 ≥

s1 ∧ p2 = t2 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 = t1 ∨ p1 = s2 ∧ p2 ≤ t2 ∧ p2 ≥ t1},
(iv) P1 = {p2; p2 ranges over points ofE2

T: s1 < (p2)1 ∧ (p2)1 < s2 ∧ t1 < (p2)2 ∧ (p2)2 < t2},
and

(v) P2 = {p3; p3 ranges over points ofE2
T: s1 6≤ (p3)1 ∨ (p3)1 6≤ s2 ∨ t1 6≤ (p3)2 ∨ (p3)2 6≤ t2}.

Then

(vi) Pc = P1∪P2,

(vii) Pc 6= /0,

(viii) P1 missesP2, and

(ix) for all subsetsP3, P4 of (E2
T)�Pc such thatP3 = P1 andP4 = P2 holdsP3 is a component of

(E2
T)�Pc andP4 is a component of(E2

T)�Pc.
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(42) Let givens1, t1, s2, t2 andP, P1, P2 be subsets ofE2
T. Suppose that

(i) s1 < s2,

(ii) t1 < t2,

(iii) P = {p; p ranges over points ofE2
T: p1 = s1 ∧ p2 ≤ t2 ∧ p2 ≥ t1 ∨ p1 ≤ s2 ∧ p1 ≥

s1 ∧ p2 = t2 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 = t1 ∨ p1 = s2 ∧ p2 ≤ t2 ∧ p2 ≥ t1},
(iv) P1 = {p2; p2 ranges over points ofE2

T: s1 < (p2)1 ∧ (p2)1 < s2 ∧ t1 < (p2)2 ∧ (p2)2 < t2},
and

(v) P2 = {p3; p3 ranges over points ofE2
T: s1 6≤ (p3)1 ∨ (p3)1 6≤ s2 ∨ t1 6≤ (p3)2 ∨ (p3)2 6≤ t2}.

ThenP = P1\P1 andP = P2\P2.

(43) Let givens1, s2, t1, t2, P, P1. Suppose that

(i) P = {p; p ranges over points ofE2
T: p1 = s1 ∧ p2 ≤ t2 ∧ p2 ≥ t1 ∨ p1 ≤ s2 ∧ p1 ≥

s1 ∧ p2 = t2 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 = t1 ∨ p1 = s2 ∧ p2 ≤ t2 ∧ p2 ≥ t1}, and

(ii) P1 = {p2; p2 ranges over points ofE2
T: s1 < (p2)1 ∧ (p2)1 < s2 ∧ t1 < (p2)2 ∧ (p2)2 < t2}.

ThenP1 ⊆Ω(E2
T)�Pc.

(44) Let givens1, s2, t1, t2, P, P1. Suppose that

(i) P = {p; p ranges over points ofE2
T: p1 = s1 ∧ p2 ≤ t2 ∧ p2 ≥ t1 ∨ p1 ≤ s2 ∧ p1 ≥

s1 ∧ p2 = t2 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 = t1 ∨ p1 = s2 ∧ p2 ≤ t2 ∧ p2 ≥ t1}, and

(ii) P1 = {p2; p2 ranges over points ofE2
T: s1 < (p2)1 ∧ (p2)1 < s2 ∧ t1 < (p2)2 ∧ (p2)2 < t2}.

ThenP1 is a subset of(E2
T)�Pc.

(45) Let givens1, s2, t1, t2, P, P2. Suppose that

(i) s1 < s2,

(ii) t1 < t2,

(iii) P = {p; p ranges over points ofE2
T: p1 = s1 ∧ p2 ≤ t2 ∧ p2 ≥ t1 ∨ p1 ≤ s2 ∧ p1 ≥

s1 ∧ p2 = t2 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 = t1 ∨ p1 = s2 ∧ p2 ≤ t2 ∧ p2 ≥ t1}, and

(iv) P2 = {p3; p3 ranges over points ofE2
T: s1 6≤ (p3)1 ∨ (p3)1 6≤ s2 ∨ t1 6≤ (p3)2 ∨ (p3)2 6≤ t2}.

ThenP2 ⊆Ω(E2
T)�Pc.

(46) Let givens1, s2, t1, t2, P, P2. Suppose that

(i) s1 < s2,

(ii) t1 < t2,

(iii) P = {p; p ranges over points ofE2
T: p1 = s1 ∧ p2 ≤ t2 ∧ p2 ≥ t1 ∨ p1 ≤ s2 ∧ p1 ≥

s1 ∧ p2 = t2 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 = t1 ∨ p1 = s2 ∧ p2 ≤ t2 ∧ p2 ≥ t1}, and

(iv) P2 = {p3; p3 ranges over points ofE2
T: s1 6≤ (p3)1 ∨ (p3)1 6≤ s2 ∨ t1 6≤ (p3)2 ∨ (p3)2 6≤ t2}.

ThenP2 is a subset of(E2
T)�Pc.

3. JORDAN’ S PROPERTY

Let Sbe a subset ofE2
T. We say thatS is Jordan if and only if the conditions (Def. 2) are satisfied.

(Def. 2)(i) Sc 6= /0, and

(ii) there exist subsetsA1, A2 of E2
T such thatSc = A1∪A2 andA1 missesA2 andA1 \A1 =

A2 \A2 and for all subsetsC1, C2 of (E2
T)�Sc such thatC1 = A1 andC2 = A2 holdsC1 is a

component of(E2
T)�Sc andC2 is a component of(E2

T)�Sc.

We introduceShas Jordan’s property as a synonym ofS is Jordan.
Next we state two propositions:
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(47) LetSbe a subset ofE2
T. SupposeShas Jordan’s property. Then

(i) Sc 6= /0, and

(ii) there exist subsetsA1, A2 of E2
T and there exist subsetsC1, C2 of (E2

T)�Sc such that
Sc = A1∪A2 andA1 missesA2 andA1 \A1 = A2 \A2 andC1 = A1 andC2 = A2 andC1 is a
component of(E2

T)�Sc andC2 is a component of(E2
T)�Sc and for every subsetC3 of (E2

T)�Sc

such thatC3 is a component of(E2
T)�Sc holdsC3 = C1 or C3 = C2.

(48) Let givens1, s2, t1, t2 andP be a subset ofE2
T such thats1 < s2 andt1 < t2 andP = {p; p

ranges over points ofE2
T: p1 = s1 ∧ p2 ≤ t2 ∧ p2 ≥ t1 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 =

t2 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 = t1 ∨ p1 = s2 ∧ p2 ≤ t2 ∧ p2 ≥ t1}. ThenP has Jordan’s
property.
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