The Jordan's Property for Certain Subsets of the Plane

Yatsuka Nakamura	Jarosław Kotowicz
Shinshu University	Warsaw University
Nagano	Białystok

Summary. Let *S* be a subset of the topological Euclidean plane \mathcal{E}_{T}^{2} . We say that *S* has Jordan's property if there exist two non-empty, disjoint and connected subsets G_1 and G_2 of \mathcal{E}_{T}^{2} such that $S^{c} = G_1 \cup G_2$ and $\overline{G_1} \setminus G_1 = \overline{G_2} \setminus G_2$ (see [13], [8]). The aim is to prove that the boundaries of some special polygons in \mathcal{E}_{T}^{2} have this property (see Section 3). Moreover, it is proved that both the interior and the exterior of the boundary of any rectangle in \mathcal{E}_{T}^{2} is open and connected.

MML Identifier: JORDAN1.

WWW: http://mizar.org/JFM/Vol4/jordan1.html

The articles [14], [16], [1], [9], [17], [4], [5], [3], [12], [11], [10], [2], [15], [7], and [6] provide the notation and terminology for this paper.

1. Selected theorems on connected spaces

In this paper G_1 , G_2 are non empty topological spaces and x, y are points of G_1 . One can prove the following propositions:

- (1) For every topological structure G_1 and for every subset A of G_1 holds the carrier of $G_1 \upharpoonright A = A$.
- (2) Let G_1 be a non empty topological space. Suppose that for all points x, y of G_1 there exists G_2 such that G_2 is connected and there exists a map f from G_2 into G_1 such that f is continuous and $x \in \operatorname{rng} f$ and $y \in \operatorname{rng} f$. Then G_1 is connected.
- (4)¹ Let G_1 be a non empty topological space. Suppose that for all points x, y of G_1 there exists a map h from \mathbb{I} into G_1 such that h is continuous and x = h(0) and y = h(1). Then G_1 is connected.
- (5) Let *A* be a subset of G_1 . Suppose that for all points x_1 , y_1 of G_1 such that $x_1 \in A$ and $y_1 \in A$ and $x_1 \neq y_1$ there exists a map *h* from \mathbb{I} into $G_1 | A$ such that *h* is continuous and $x_1 = h(0)$ and $y_1 = h(1)$. Then *A* is connected.
- (6) Let A_0 be a subset of G_1 and A_1 be a subset of G_1 . Suppose A_0 is connected and A_1 is connected and A_0 meets A_1 . Then $A_0 \cup A_1$ is connected.
- (7) Let A_0 , A_1 , A_2 be subsets of G_1 . Suppose A_0 is connected and A_1 is connected and A_2 is connected and A_0 meets A_1 and A_1 meets A_2 . Then $A_0 \cup A_1 \cup A_2$ is connected.

¹ The proposition (3) has been removed.

- (8) Let A_0, A_1, A_2, A_3 be subsets of G_1 . Suppose that A_0 is connected and A_1 is connected and A_2 is connected and A_3 is connected and A_0 meets A_1 and A_1 meets A_2 and A_2 meets A_3 . Then $A_0 \cup A_1 \cup A_2 \cup A_3$ is connected.
 - 2. CERTAIN CONNECTED AND OPEN SUBSETS IN THE EUCLIDEAN PLANE
- In the sequel Q, P_1 , P_2 denote subsets of \mathcal{E}_T^2 and P denotes a subset of \mathcal{E}_T^2 . Let *n* be a natural number and let *P* be a subset of \mathcal{E}_T^n . We say that *P* is convex if and only if:

(Def. 1) For all points w_1, w_2 of $\mathcal{E}^n_{\mathsf{T}}$ such that $w_1 \in P$ and $w_2 \in P$ holds $\mathcal{L}(w_1, w_2) \subseteq P$.

We now state the proposition

(9) For every natural number *n* and for every subset *P* of \mathcal{E}_{T}^{n} such that *P* is convex holds *P* is connected.

In the sequel s_1 , t_1 , s_2 , t_2 , s, t, s_3 , t_3 , s_4 , t_4 , s_5 , t_5 , s_6 , t_6 , l, s_7 , t_7 denote real numbers. The following propositions are true:

- (10) If $s_1 < s_3$ and $s_1 < s_4$ and $0 \le l$ and $l \le 1$, then $s_1 < (1-l) \cdot s_3 + l \cdot s_4$.
- (11) If $s_3 < s_1$ and $s_4 < s_1$ and $0 \le l$ and $l \le 1$, then $(1-l) \cdot s_3 + l \cdot s_4 < s_1$.

In the sequel s_8 , t_8 are real numbers. One can prove the following propositions:

- (12) $\{[s,t]: s_1 < s \land s < s_2 \land t_1 < t \land t < t_2\} = \{[s_3,t_3]: s_1 < s_3\} \cap \{[s_4,t_4]: s_4 < s_2\} \cap \{[s_5,t_5]: t_1 < t_5\} \cap \{[s_6,t_6]: t_6 < t_2\}.$
- (13) $\{ [s,t] : s_1 \not\leq s \lor s \not\leq s_2 \lor t_1 \not\leq t \lor t \not\leq t_2 \} = \{ [s_3,t_3] : s_3 < s_1 \} \cup \{ [s_4,t_4] : t_4 < t_1 \} \cup \{ [s_5, t_5] : s_2 < s_5 \} \cup \{ [s_6,t_6] : t_2 < t_6 \}.$
- (14) For all s_1, t_1, s_2, t_2, P such that $P = \{[s,t] : s_1 < s \land s < s_2 \land t_1 < t \land t < t_2\}$ holds P is convex.
- (15) For all s_1, t_1, s_2, t_2, P such that $P = \{[s,t] : s_1 < s \land s < s_2 \land t_1 < t \land t < t_2\}$ holds P is connected.
- (16) For all s_1 , P such that $P = \{[s,t] : s_1 < s\}$ holds P is convex.
- (17) For all s_1 , P such that $P = \{[s,t] : s_1 < s\}$ holds P is connected.
- (18) For all s_2 , P such that $P = \{[s,t] : s < s_2\}$ holds P is convex.
- (19) For all s_2 , *P* such that $P = \{[s,t] : s < s_2\}$ holds *P* is connected.
- (20) For all t_1 , P such that $P = \{[s,t] : t_1 < t\}$ holds P is convex.
- (21) For all t_1 , *P* such that $P = \{[s,t] : t_1 < t\}$ holds *P* is connected.
- (22) For all t_2 , *P* such that $P = \{[s,t] : t < t_2\}$ holds *P* is convex.
- (23) For all t_2 , *P* such that $P = \{[s,t] : t < t_2\}$ holds *P* is connected.
- (24) For all s_1, t_1, s_2, t_2, P such that $P = \{[s,t] : s_1 \leq s \lor s \leq s_2 \lor t_1 \leq t \lor t \leq t_2\}$ holds P is connected.
- (25) For every s_1 and for every subset P of \mathcal{E}^2_{Γ} such that $P = \{[s,t] : s_1 < s\}$ holds P is open.
- (26) For every s_1 and for every subset *P* of \mathcal{E}^2_T such that $P = \{[s,t] : s_1 > s\}$ holds *P* is open.
- (27) For every s_1 and for every subset P of \mathcal{E}^2_{T} such that $P = \{[s,t] : s_1 < t\}$ holds P is open.

- (28) For every s_1 and for every subset P of \mathcal{E}_T^2 such that $P = \{[s,t] : s_1 > t\}$ holds P is open.
- (29) For all s_1, t_1, s_2, t_2 and for every subset P of \mathcal{E}_T^2 such that $P = \{[s,t] : s_1 < s \land s < s_2 \land t_1 < t \land t < t_2\}$ holds P is open.
- (30) For all s_1, t_1, s_2, t_2 and for every subset *P* of \mathcal{E}^2_T such that $P = \{[s,t] : s_1 \not\leq s \lor s \not\leq s_2 \lor t_1 \not\leq t \lor t \not\leq t_2\}$ holds *P* is open.
- (31) Let given s_1, t_1, s_2, t_2, P, Q . Suppose $P = \{[s_7, t_7] : s_1 < s_7 \land s_7 < s_2 \land t_1 < t_7 \land t_7 < t_2\}$ and $Q = \{[s_8, t_8] : s_1 \leq s_8 \lor s_8 \leq s_2 \lor t_1 \leq t_8 \lor t_8 \leq t_2\}$. Then *P* misses *Q*.
- (32) Let s_1, s_2, t_1, t_2 be real numbers. Then $\{p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: s_1 < p_1 \land p_1 < s_2 \land t_1 < p_2 \land p_2 < t_2\} = \{[s_7, t_7]: s_1 < s_7 \land s_7 < s_2 \land t_1 < t_7 \land t_7 < t_2\}.$
- (33) For all s_1, s_2, t_1, t_2 holds $\{q_1; q_1 \text{ ranges over points of } \mathcal{E}_{\mathsf{T}}^2: s_1 \not\leq (q_1)_1 \lor (q_1)_1 \not\leq s_2 \lor t_1 \not\leq (q_1)_2 \lor (q_1)_2 \not\leq t_2\} = \{[s_8, t_8]: s_1 \not\leq s_8 \lor s_8 \not\leq s_2 \lor t_1 \not\leq t_8 \lor t_8 \not\leq t_2\}.$
- (34) For all s_1, s_2, t_1, t_2 holds $\{p_0; p_0 \text{ ranges over points of } \mathcal{E}_T^2: s_1 < (p_0)_1 \land (p_0)_1 < s_2 \land t_1 < (p_0)_2 \land (p_0)_2 < t_2\}$ is a subset of \mathcal{E}_T^2 .
- (35) For all s_1, s_2, t_1, t_2 holds $\{p_1; p_1 \text{ ranges over points of } \mathcal{E}^2_{\mathrm{T}}: s_1 \not\leq (p_1)_1 \lor (p_1)_1 \not\leq s_2 \lor t_1 \not\leq (p_1)_2 \lor (p_1)_2 \not\leq t_2\}$ is a subset of $\mathcal{E}^2_{\mathrm{T}}$.
- (36) For all s_1, t_1, s_2, t_2, P such that $P = \{p_0; p_0 \text{ ranges over points of } \mathcal{E}_T^2: s_1 < (p_0)_1 \land (p_0)_1 < s_2 \land t_1 < (p_0)_2 \land (p_0)_2 < t_2\}$ holds *P* is connected.
- (37) For all s_1, t_1, s_2, t_2, P such that $P = \{p_1; p_1 \text{ ranges over points of } \mathcal{E}_T^2: s_1 \not\leq (p_1)_1 \lor (p_1)_1 \not\leq s_2 \lor t_1 \not\leq (p_1)_2 \lor (p_1)_2 \not\leq t_2\}$ holds P is connected.
- (38) Let given s_1 , t_1 , s_2 , t_2 and P be a subset of \mathcal{E}^2_T . Suppose $P = \{p_0; p_0 \text{ ranges over points of } \mathcal{E}^2_T$: $s_1 < (p_0)_1 \land (p_0)_1 < s_2 \land t_1 < (p_0)_2 \land (p_0)_2 < t_2\}$. Then P is open.
- (39) Let given s_1, t_1, s_2, t_2 and P be a subset of \mathcal{E}^2_T . Suppose $P = \{p_1; p_1 \text{ ranges over points of } \mathcal{E}^2_T$: $s_1 \not\leq (p_1)_1 \lor (p_1)_1 \not\leq s_2 \lor t_1 \not\leq (p_1)_2 \lor (p_1)_2 \not\leq t_2\}$. Then P is open.
- (40) Let given s_1 , t_1 , s_2 , t_2 , P, Q. Suppose that
- (i) $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}: s_{1} < p_{1} \land p_{1} < s_{2} \land t_{1} < p_{2} \land p_{2} < t_{2}\}, \text{ and }$
- (ii) $Q = \{q_1; q_1 \text{ ranges over points of } \mathcal{E}^2_{\mathrm{T}} : s_1 \not\leq (q_1)_1 \lor (q_1)_1 \not\leq s_2 \lor t_1 \not\leq (q_1)_2 \lor (q_1)_2 \not\leq t_2\}.$ Then *P* misses *Q*.
- (41) Let given s_1 , t_1 , s_2 , t_2 and P, P_1 , P_2 be subsets of \mathcal{E}_T^2 . Suppose that
- (i) $s_1 < s_2$,
- (ii) $t_1 < t_2$,
- (iii) $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}: p_{1} = s_{1} \land p_{2} \leq t_{2} \land p_{2} \geq t_{1} \lor p_{1} \leq s_{2} \land p_{1} \geq s_{1} \land p_{2} = t_{2} \lor p_{1} \leq s_{2} \land p_{1} \geq s_{1} \land p_{2} = t_{1} \lor p_{1} = s_{2} \land p_{2} \leq t_{2} \land p_{2} \geq t_{1} \},$
- (iv) $P_1 = \{p_2; p_2 \text{ ranges over points of } \mathcal{E}_T^2: s_1 < (p_2)_1 \land (p_2)_1 < s_2 \land t_1 < (p_2)_2 \land (p_2)_2 < t_2\},\$ and
- (v) $P_2 = \{p_3; p_3 \text{ ranges over points of } \mathcal{E}_T^2: s_1 \not\leq (p_3)_1 \lor (p_3)_1 \not\leq s_2 \lor t_1 \not\leq (p_3)_2 \lor (p_3)_2 \not\leq t_2\}.$ Then
- (vi) $P^{c} = P_1 \cup P_2$,
- (vii) $P^{c} \neq \emptyset$,
- (viii) P_1 misses P_2 , and
- (ix) for all subsets P_3 , P_4 of $(\mathcal{E}_T^2) \upharpoonright P^c$ such that $P_3 = P_1$ and $P_4 = P_2$ holds P_3 is a component of $(\mathcal{E}_T^2) \upharpoonright P^c$ and P_4 is a component of $(\mathcal{E}_T^2) \upharpoonright P^c$.

- (42) Let given s_1, t_1, s_2, t_2 and P, P_1, P_2 be subsets of \mathcal{E}_T^2 . Suppose that
- (i) $s_1 < s_2$,
- (ii) $t_1 < t_2$,
- (iii) $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}: p_{1} = s_{1} \land p_{2} \leq t_{2} \land p_{2} \geq t_{1} \lor p_{1} \leq s_{2} \land p_{1} \geq s_{1} \land p_{2} = t_{2} \lor p_{1} \leq s_{2} \land p_{1} \geq s_{1} \land p_{2} = t_{1} \lor p_{1} = s_{2} \land p_{2} \leq t_{2} \land p_{2} \geq t_{1} \},$
- (iv) $P_1 = \{p_2; p_2 \text{ ranges over points of } \mathcal{E}_T^2: s_1 < (p_2)_1 \land (p_2)_1 < s_2 \land t_1 < (p_2)_2 \land (p_2)_2 < t_2\},\$ and
- (v) $P_2 = \{p_3; p_3 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: s_1 \not\leq (p_3)_1 \lor (p_3)_1 \not\leq s_2 \lor t_1 \not\leq (p_3)_2 \lor (p_3)_2 \not\leq t_2\}.$ Then $P = \overline{P_1} \setminus P_1$ and $P = \overline{P_2} \setminus P_2.$
- (43) Let given s_1 , s_2 , t_1 , t_2 , P, P_1 . Suppose that
- (i) $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}: p_{1} = s_{1} \land p_{2} \leq t_{2} \land p_{2} \geq t_{1} \lor p_{1} \leq s_{2} \land p_{1} \geq s_{1} \land p_{2} = t_{2} \lor p_{1} \leq s_{2} \land p_{1} \geq s_{1} \land p_{2} = t_{1} \lor p_{1} = s_{2} \land p_{2} \leq t_{2} \land p_{2} \geq t_{1} \}, \text{ and}$
- (ii) $P_1 = \{p_2; p_2 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: s_1 < (p_2)_1 \land (p_2)_1 < s_2 \land t_1 < (p_2)_2 \land (p_2)_2 < t_2\}.$ Then $P_1 \subseteq \Omega_{(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright \mathcal{P}^c}.$
- (44) Let given s_1 , s_2 , t_1 , t_2 , P, P_1 . Suppose that
- (i) $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}: p_{1} = s_{1} \land p_{2} \leq t_{2} \land p_{2} \geq t_{1} \lor p_{1} \leq s_{2} \land p_{1} \geq s_{1} \land p_{2} = t_{2} \lor p_{1} \leq s_{2} \land p_{1} \geq s_{1} \land p_{2} = t_{1} \lor p_{1} = s_{2} \land p_{2} \leq t_{2} \land p_{2} \geq t_{1} \}, \text{ and}$
- (ii) $P_1 = \{p_2; p_2 \text{ ranges over points of } \mathcal{E}_T^2: s_1 < (p_2)_1 \land (p_2)_1 < s_2 \land t_1 < (p_2)_2 \land (p_2)_2 < t_2\}.$ Then P_1 is a subset of $(\mathcal{E}_T^2) \upharpoonright P^c$.
- (45) Let given s_1 , s_2 , t_1 , t_2 , P, P_2 . Suppose that
- (i) $s_1 < s_2$,
- (ii) $t_1 < t_2$,
- (iii) $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}: p_{1} = s_{1} \land p_{2} \leq t_{2} \land p_{2} \geq t_{1} \lor p_{1} \leq s_{2} \land p_{1} \geq s_{1} \land p_{2} = t_{2} \lor p_{1} \leq s_{2} \land p_{1} \geq s_{1} \land p_{2} = t_{1} \lor p_{1} = s_{2} \land p_{2} \leq t_{2} \land p_{2} \geq t_{1} \}, \text{ and}$
- (iv) $P_2 = \{p_3; p_3 \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2: s_1 \not\leq (p_3)_1 \lor (p_3)_1 \not\leq s_2 \lor t_1 \not\leq (p_3)_2 \lor (p_3)_2 \not\leq t_2\}.$ Then $P_2 \subseteq \Omega_{(\mathcal{E}_{\mathrm{T}}^2) \mid P^c}.$
- (46) Let given s_1 , s_2 , t_1 , t_2 , P, P_2 . Suppose that
- (i) $s_1 < s_2$,
- (ii) $t_1 < t_2$,
- (iii) $P = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2}: p_{1} = s_{1} \land p_{2} \leq t_{2} \land p_{2} \geq t_{1} \lor p_{1} \leq s_{2} \land p_{1} \geq s_{1} \land p_{2} = t_{2} \lor p_{1} \leq s_{2} \land p_{1} \geq s_{1} \land p_{2} = t_{1} \lor p_{1} = s_{2} \land p_{2} \leq t_{2} \land p_{2} \geq t_{1} \}, \text{ and}$
- (iv) $P_2 = \{p_3; p_3 \text{ ranges over points of } \mathcal{E}_T^2: s_1 \not\leq (p_3)_1 \lor (p_3)_1 \not\leq s_2 \lor t_1 \not\leq (p_3)_2 \lor (p_3)_2 \not\leq t_2\}.$ Then P_2 is a subset of $(\mathcal{E}_T^2) \upharpoonright \mathcal{P}^c$.

3. JORDAN'S PROPERTY

Let S be a subset of \mathcal{E}^2_{Γ} . We say that S is Jordan if and only if the conditions (Def. 2) are satisfied.

(Def. 2)(i) $S^c \neq \emptyset$, and

(ii) there exist subsets A_1 , A_2 of \mathcal{E}_T^2 such that $S^c = A_1 \cup A_2$ and A_1 misses A_2 and $\overline{A_1} \setminus A_1 = \overline{A_2} \setminus A_2$ and for all subsets C_1 , C_2 of $(\mathcal{E}_T^2) \upharpoonright S^c$ such that $C_1 = A_1$ and $C_2 = A_2$ holds C_1 is a component of $(\mathcal{E}_T^2) \upharpoonright S^c$ and C_2 is a component of $(\mathcal{E}_T^2) \upharpoonright S^c$.

We introduce *S* has Jordan's property as a synonym of *S* is Jordan. Next we state two propositions:

- (47) Let *S* be a subset of \mathcal{E}_{T}^{2} . Suppose *S* has Jordan's property. Then
 - (i) $S^c \neq \emptyset$, and
- (ii) there exist subsets A_1 , A_2 of $\mathcal{E}_{\overline{\Gamma}}^2$ and there exist subsets C_1 , C_2 of $(\mathcal{E}_{\overline{\Gamma}}^2)|S^c$ such that $S^c = A_1 \cup A_2$ and A_1 misses A_2 and $\overline{A_1} \setminus A_1 = \overline{A_2} \setminus A_2$ and $C_1 = A_1$ and $C_2 = A_2$ and C_1 is a component of $(\mathcal{E}_{\overline{\Gamma}}^2)|S^c$ and C_2 is a component of $(\mathcal{E}_{\overline{\Gamma}}^2)|S^c$ and for every subset C_3 of $(\mathcal{E}_{\overline{\Gamma}}^2)|S^c$ such that C_3 is a component of $(\mathcal{E}_{\overline{\Gamma}}^2)|S^c$ holds $C_3 = C_1$ or $C_3 = C_2$.
- (48) Let given s_1 , s_2 , t_1 , t_2 and P be a subset of \mathcal{E}_T^2 such that $s_1 < s_2$ and $t_1 < t_2$ and $P = \{p; p \text{ ranges over points of } \mathcal{E}_T^2$: $p_1 = s_1 \land p_2 \leq t_2 \land p_2 \geq t_1 \lor p_1 \leq s_2 \land p_1 \geq s_1 \land p_2 = t_2 \lor p_1 \leq s_2 \land p_1 \geq s_1 \land p_2 = t_1 \lor p_1 = s_2 \land p_2 \leq t_2 \land p_2 \geq t_1 \}$. Then P has Jordan's property.

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [2] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/ pcomps_1.html.
- [3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [6] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [7] Agata Darmochwał and Yatsuka Nakamura. The topological space Z²_T. Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreall.html.
- [8] Dick Wick Hall and Guilford L.Spencer II. Elementary Topology. John Wiley and Sons Inc., 1955.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html.
- [10] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar. org/JFM/Vol2/metric_1.html.
- [11] Beata Padlewska. Connected spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/connsp_1.html.
- [12] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/pre_topc.html.
- [13] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report 19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan, April 1980.
- [14] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [15] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/ Vol3/borsuk_1.html.
- [16] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [17] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received August 24, 1992

Published January 2, 2004