The Jordan's Property for Certain Subsets of the Plane

Yatsuka Nakamura
Shinshu University

Nagano

Jarosław Kotowicz
Warsaw University
Białystok

Abstract

Summary. Let S be a subset of the topological Euclidean plane \mathcal{E}_{T}^{2}. We say that S has Jordan's property if there exist two non-empty, disjoint and connected subsets G_{1} and G_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $S^{\mathrm{C}}=G_{1} \cup G_{2}$ and $\overline{G_{1}} \backslash G_{1}=\overline{G_{2}} \backslash G_{2}$ (see [13], [8]). The aim is to prove that the boundaries of some special polygons in $\mathcal{E}_{\mathrm{T}}^{2}$ have this property (see Section 3). Moreover, it is proved that both the interior and the exterior of the boundary of any rectangle in $\mathcal{E}_{\mathrm{T}}^{2}$ is open and connected.

MML Identifier: JORDAN1.
WWW: http://mizar.org/JFM/Vol4/jordan1.html

The articles [14], [16], [1], [9], [17], [4], [5], [3], [12], [11], [10], [2], [15], [7], and [6] provide the notation and terminology for this paper.

1. SELECTED THEOREMS ON CONNECTED SPACES

In this paper G_{1}, G_{2} are non empty topological spaces and x, y are points of G_{1}.
One can prove the following propositions:
(1) For every topological structure G_{1} and for every subset A of G_{1} holds the carrier of $G_{1} \upharpoonright A=$ A.
(2) Let G_{1} be a non empty topological space. Suppose that for all points x, y of G_{1} there exists G_{2} such that G_{2} is connected and there exists a map f from G_{2} into G_{1} such that f is continuous and $x \in \operatorname{rng} f$ and $y \in \operatorname{rng} f$. Then G_{1} is connected.
(4) Let G_{1} be a non empty topological space. Suppose that for all points x, y of G_{1} there exists a map h from \mathbb{I} into G_{1} such that h is continuous and $x=h(0)$ and $y=h(1)$. Then G_{1} is connected.
(5) Let A be a subset of G_{1}. Suppose that for all points x_{1}, y_{1} of G_{1} such that $x_{1} \in A$ and $y_{1} \in A$ and $x_{1} \neq y_{1}$ there exists a map h from \mathbb{I} into $G_{1} \upharpoonright A$ such that h is continuous and $x_{1}=h(0)$ and $y_{1}=h(1)$. Then A is connected.
(6) Let A_{0} be a subset of G_{1} and A_{1} be a subset of G_{1}. Suppose A_{0} is connected and A_{1} is connected and A_{0} meets A_{1}. Then $A_{0} \cup A_{1}$ is connected.
(7) Let A_{0}, A_{1}, A_{2} be subsets of G_{1}. Suppose A_{0} is connected and A_{1} is connected and A_{2} is connected and A_{0} meets A_{1} and A_{1} meets A_{2}. Then $A_{0} \cup A_{1} \cup A_{2}$ is connected.

[^0](8) Let $A_{0}, A_{1}, A_{2}, A_{3}$ be subsets of G_{1}. Suppose that A_{0} is connected and A_{1} is connected and A_{2} is connected and A_{3} is connected and A_{0} meets A_{1} and A_{1} meets A_{2} and A_{2} meets A_{3}. Then $A_{0} \cup A_{1} \cup A_{2} \cup A_{3}$ is connected.

2. Certain connected and open subsets in the Euclidean plane

In the sequel Q, P_{1}, P_{2} denote subsets of $\mathcal{E}_{\mathrm{T}}^{2}$ and P denotes a subset of $\mathcal{E}_{\mathrm{T}}^{2}$.
Let n be a natural number and let P be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. We say that P is convex if and only if:
(Def. 1) For all points w_{1}, w_{2} of $\mathcal{E}_{\mathrm{T}}^{n}$ such that $w_{1} \in P$ and $w_{2} \in P$ holds $\mathcal{L}\left(w_{1}, w_{2}\right) \subseteq P$.
We now state the proposition
(9) For every natural number n and for every subset P of $\mathcal{E}_{\mathrm{T}}^{n}$ such that P is convex holds P is connected.

In the sequel $s_{1}, t_{1}, s_{2}, t_{2}, s, t, s_{3}, t_{3}, s_{4}, t_{4}, s_{5}, t_{5}, s_{6}, t_{6}, l, s_{7}, t_{7}$ denote real numbers.
The following propositions are true:
(10) If $s_{1}<s_{3}$ and $s_{1}<s_{4}$ and $0 \leq l$ and $l \leq 1$, then $s_{1}<(1-l) \cdot s_{3}+l \cdot s_{4}$.
(11) If $s_{3}<s_{1}$ and $s_{4}<s_{1}$ and $0 \leq l$ and $l \leq 1$, then $(1-l) \cdot s_{3}+l \cdot s_{4}<s_{1}$.

In the sequel s_{8}, t_{8} are real numbers.
One can prove the following propositions:
(12) $\left\{[s, t]: s_{1}<s \wedge s<s_{2} \wedge t_{1}<t \wedge t<t_{2}\right\}=\left\{\left[s_{3}, t_{3}\right]: s_{1}<s_{3}\right\} \cap\left\{\left[s_{4}, t_{4}\right]: s_{4}<s_{2}\right\} \cap\left\{\left[s_{5}\right.\right.$, $\left.\left.t_{5}\right]: t_{1}<t_{5}\right\} \cap\left\{\left[s_{6}, t_{6}\right]: t_{6}<t_{2}\right\}$.
(13) $\left\{[s, t]: s_{1} \not \leq s \vee s \not \leq s_{2} \vee t_{1} \not \leq t \vee t \not \leq t_{2}\right\}=\left\{\left[s_{3}, t_{3}\right]: s_{3}<s_{1}\right\} \cup\left\{\left[s_{4}, t_{4}\right]: t_{4}<t_{1}\right\} \cup\left\{\left[s_{5}\right.\right.$, $\left.\left.t_{5}\right]: s_{2}<s_{5}\right\} \cup\left\{\left[s_{6}, t_{6}\right]: t_{2}<t_{6}\right\}$.
(14) For all $s_{1}, t_{1}, s_{2}, t_{2}, P$ such that $P=\left\{[s, t]: s_{1}<s \wedge s<s_{2} \wedge t_{1}<t \wedge t<t_{2}\right\}$ holds P is convex.
(15) For all $s_{1}, t_{1}, s_{2}, t_{2}, P$ such that $P=\left\{[s, t]: s_{1}<s \wedge s<s_{2} \wedge t_{1}<t \wedge t<t_{2}\right\}$ holds P is connected.
(16) For all s_{1}, P such that $P=\left\{[s, t]: s_{1}<s\right\}$ holds P is convex.
(17) For all s_{1}, P such that $P=\left\{[s, t]: s_{1}<s\right\}$ holds P is connected.
(18) For all s_{2}, P such that $P=\left\{[s, t]: s<s_{2}\right\}$ holds P is convex.
(19) For all s_{2}, P such that $P=\left\{[s, t]: s<s_{2}\right\}$ holds P is connected.
(20) For all t_{1}, P such that $P=\left\{[s, t]: t_{1}<t\right\}$ holds P is convex.
(21) For all t_{1}, P such that $P=\left\{[s, t]: t_{1}<t\right\}$ holds P is connected.
(22) For all t_{2}, P such that $P=\left\{[s, t]: t<t_{2}\right\}$ holds P is convex.
(23) For all t_{2}, P such that $P=\left\{[s, t]: t<t_{2}\right\}$ holds P is connected.
(24) For all $s_{1}, t_{1}, s_{2}, t_{2}, P$ such that $P=\left\{[s, t]: s_{1} \not \leq s \vee s \not \leq s_{2} \vee t_{1} \not \leq t \vee t \not \leq t_{2}\right\}$ holds P is connected.
(25) For every s_{1} and for every subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P=\left\{[s, t]: s_{1}<s\right\}$ holds P is open.
(26) For every s_{1} and for every subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P=\left\{[s, t]: s_{1}>s\right\}$ holds P is open.
(27) For every s_{1} and for every subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P=\left\{[s, t]: s_{1}<t\right\}$ holds P is open.
(28) For every s_{1} and for every subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P=\left\{[s, t]: s_{1}>t\right\}$ holds P is open.
(29) For all $s_{1}, t_{1}, s_{2}, t_{2}$ and for every subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P=\left\{[s, t]: s_{1}<s \wedge s<s_{2} \wedge t_{1}<\right.$ $\left.t \wedge t<t_{2}\right\}$ holds P is open.
(30) For all $s_{1}, t_{1}, s_{2}, t_{2}$ and for every subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P=\left\{[s, t]: s_{1} \not \leq s \vee s \not \leq s_{2} \vee t_{1} \not \leq\right.$ $\left.t \vee t \not \leq t_{2}\right\}$ holds P is open.
(31) Let given $s_{1}, t_{1}, s_{2}, t_{2}, P, Q$. Suppose $P=\left\{\left[s_{7}, t_{7}\right]: s_{1}<s_{7} \wedge s_{7}<s_{2} \wedge t_{1}<t_{7} \wedge t_{7}<t_{2}\right\}$ and $Q=\left\{\left[s_{8}, t_{8}\right]: s_{1} \not \leq s_{8} \vee s_{8} \not \leq s_{2} \vee t_{1} \not \leq t_{8} \vee t_{8} \not \leq t_{2}\right\}$. Then P misses Q.
(32) Let $s_{1}, s_{2}, t_{1}, t_{2}$ be real numbers. Then $\left\{p ; p\right.$ ranges over points of $\mathscr{E}_{\mathrm{T}}^{2}: s_{1}<p_{\mathbf{1}} \wedge p_{\mathbf{1}}<$ $\left.s_{2} \wedge t_{1}<p_{2} \wedge p_{2}<t_{2}\right\}=\left\{\left[s_{7}, t_{7}\right]: s_{1}<s_{7} \wedge s_{7}<s_{2} \wedge t_{1}<t_{7} \wedge t_{7}<t_{2}\right\}$.
(33) For all $s_{1}, s_{2}, t_{1}, t_{2}$ holds $\left\{q_{1} ; q_{1}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: s_{1} \not \subset\left(q_{1}\right)_{\mathbf{1}} \vee\left(q_{1}\right)_{\mathbf{1}} \not \leq s_{2} \vee t_{1} \not \leq$ $\left.\left(q_{1}\right)_{\mathbf{2}} \vee\left(q_{1}\right)_{\mathbf{2}} \not \leq t_{2}\right\}=\left\{\left[s_{8}, t_{8}\right]: s_{1} \not \leq s_{8} \vee s_{8} \not \leq s_{2} \vee t_{1} \not \leq t_{8} \vee t_{8} \not \leq t_{2}\right\}$.
(34) For all $s_{1}, s_{2}, t_{1}, t_{2}$ holds $\left\{p_{0} ; p_{0}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: s_{1}<\left(p_{0}\right)_{\mathbf{1}} \wedge\left(p_{0}\right)_{\mathbf{1}}<s_{2} \wedge t_{1}<$ $\left.\left(p_{0}\right)_{\mathbf{2}} \wedge\left(p_{0}\right)_{2}<t_{2}\right\}$ is a subset of $\mathcal{E}_{\mathrm{T}}^{2}$.
(35) For all $s_{1}, s_{2}, t_{1}, t_{2}$ holds $\left\{p_{1} ; p_{1}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: s_{1} \not \subset\left(p_{1}\right)_{\mathbf{1}} \vee\left(p_{1}\right)_{\mathbf{1}} \not \leq s_{2} \vee t_{1} \not \leq$ $\left.\left(p_{1}\right)_{\mathbf{2}} \vee\left(p_{1}\right)_{\mathbf{2}} \not \leq t_{2}\right\}$ is a subset of $\mathcal{E}_{\mathrm{T}}^{2}$.
(36) For all $s_{1}, t_{1}, s_{2}, t_{2}, P$ such that $P=\left\{p_{0} ; p_{0}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: s_{1}<\left(p_{0}\right)_{\mathbf{1}} \wedge\left(p_{0}\right)_{\mathbf{1}}<$ $\left.s_{2} \wedge t_{1}<\left(p_{0}\right)_{2} \wedge\left(p_{0}\right)_{2}<t_{2}\right\}$ holds P is connected.
(37) For all $s_{1}, t_{1}, s_{2}, t_{2}, P$ such that $P=\left\{p_{1} ; p_{1}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: s_{1} \not \subset\left(p_{1}\right)_{\mathbf{1}} \vee\left(p_{1}\right)_{\mathbf{1}} \not \leq$ $\left.s_{2} \vee t_{1} \not \leq\left(p_{1}\right)_{2} \vee\left(p_{1}\right)_{2} \not \leq t_{2}\right\}$ holds P is connected.
(38) Let given $s_{1}, t_{1}, s_{2}, t_{2}$ and P be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p_{0} ; p_{0}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: s_{1}<\left(p_{0}\right)_{\mathbf{1}} \wedge\left(p_{0}\right)_{\mathbf{1}}<s_{2} \wedge t_{1}<\left(p_{0}\right)_{\mathbf{2}} \wedge\left(p_{0}\right)_{\mathbf{2}}<t_{2}\right\}$. Then P is open.
(39) Let given $s_{1}, t_{1}, s_{2}, t_{2}$ and P be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p_{1} ; p_{1}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: s_{1} \not \leq\left(p_{1}\right)_{\mathbf{1}} \vee\left(p_{1}\right)_{\mathbf{1}} \not \leq s_{2} \vee t_{1} \not \leq\left(p_{1}\right)_{\mathbf{2}} \vee\left(p_{1}\right)_{\mathbf{2}} \not \leq t_{2}\right\}$. Then P is open.
(40) Let given $s_{1}, t_{1}, s_{2}, t_{2}, P, Q$. Suppose that
(i) $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: s_{1}<p_{1} \wedge p_{1}<s_{2} \wedge t_{1}<p_{2} \wedge p_{2}<t_{2}\right\}$, and
(ii) $Q=\left\{q_{1} ; q_{1}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: s_{1} \not \subset\left(q_{1}\right)_{\mathbf{1}} \vee\left(q_{1}\right)_{\mathbf{1}} \not \leq s_{2} \vee t_{1} \not \leq\left(q_{1}\right)_{\mathbf{2}} \vee\left(q_{1}\right)_{\mathbf{2}} \not \leq t_{2}\right\}$. Then P misses Q.
(41) Let given $s_{1}, t_{1}, s_{2}, t_{2}$ and P, P_{1}, P_{2} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that
(i) $s_{1}<s_{2}$,
(ii) $t_{1}<t_{2}$,
(iii) $\quad P=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: p_{\mathbf{1}}=s_{1} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq$ $\left.s_{1} \wedge p_{2}=t_{2} \vee p_{1} \leq s_{2} \wedge p_{1} \geq s_{1} \wedge p_{2}=t_{1} \vee p_{1}=s_{2} \wedge p_{2} \leq t_{2} \wedge p_{2} \geq t_{1}\right\}$,
(iv) $\quad P_{1}=\left\{p_{2} ; p_{2}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: s_{1}<\left(p_{2}\right)_{\mathbf{1}} \wedge\left(p_{2}\right)_{\mathbf{1}}<s_{2} \wedge t_{1}<\left(p_{2}\right)_{\mathbf{2}} \wedge\left(p_{2}\right)_{\mathbf{2}}<t_{2}\right\}$, and
(v) $\quad P_{2}=\left\{p_{3} ; p_{3}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: s_{1} \not \leq\left(p_{3}\right)_{\mathbf{1}} \vee\left(p_{3}\right)_{\mathbf{1}} \not \leq s_{2} \vee t_{1} \not \leq\left(p_{3}\right)_{\mathbf{2}} \vee\left(p_{3}\right)_{\mathbf{2}} \not \leq t_{2}\right\}$. Then
(vi) $\quad P^{\mathrm{c}}=P_{1} \cup P_{2}$,
(vii) $P^{\mathrm{c}} \neq \emptyset$,
(viii) $\quad P_{1}$ misses P_{2}, and
(ix) for all subsets P_{3}, P_{4} of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P^{\mathrm{c}}$ such that $P_{3}=P_{1}$ and $P_{4}=P_{2}$ holds P_{3} is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P^{\mathrm{c}}$ and P_{4} is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P^{\mathrm{c}}$.
(42) Let given $s_{1}, t_{1}, s_{2}, t_{2}$ and P, P_{1}, P_{2} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that
(i) $s_{1}<s_{2}$,
(ii) $t_{1}<t_{2}$,
(iii) $\quad P=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: p_{\mathbf{1}}=s_{1} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq$ $\left.s_{1} \wedge p_{2}=t_{2} \vee p_{1} \leq s_{2} \wedge p_{1} \geq s_{1} \wedge p_{2}=t_{1} \vee p_{1}=s_{2} \wedge p_{2} \leq t_{2} \wedge p_{2} \geq t_{1}\right\}$,
(iv) $\quad P_{1}=\left\{p_{2} ; p_{2}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: s_{1}<\left(p_{2}\right)_{\mathbf{1}} \wedge\left(p_{2}\right)_{\mathbf{1}}<s_{2} \wedge t_{1}<\left(p_{2}\right)_{\mathbf{2}} \wedge\left(p_{2}\right)_{\mathbf{2}}<t_{2}\right\}$, and
(v) $\quad P_{2}=\left\{p_{3} ; p_{3}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: s_{1} \not \subset\left(p_{3}\right)_{\mathbf{1}} \vee\left(p_{3}\right)_{\mathbf{1}} \not \leq s_{2} \vee t_{1} \not \leq\left(p_{3}\right)_{\mathbf{2}} \vee\left(p_{3}\right)_{\mathbf{2}} \not \leq t_{2}\right\}$. Then $P=\overline{P_{1}} \backslash P_{1}$ and $P=\overline{P_{2}} \backslash P_{2}$.
(43) Let given $s_{1}, s_{2}, t_{1}, t_{2}, P, P_{1}$. Suppose that
(i) $\quad P=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: p_{1}=s_{1} \wedge p_{2} \leq t_{2} \wedge p_{2} \geq t_{1} \vee p_{1} \leq s_{2} \wedge p_{1} \geq$ $\left.s_{1} \wedge p_{2}=t_{2} \vee p_{1} \leq s_{2} \wedge p_{1} \geq s_{1} \wedge p_{2}=t_{1} \vee p_{1}=s_{2} \wedge p_{2} \leq t_{2} \wedge p_{2} \geq t_{1}\right\}$, and
(ii) $\quad P_{1}=\left\{p_{2} ; p_{2}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: s_{1}<\left(p_{2}\right)_{\mathbf{1}} \wedge\left(p_{2}\right)_{\mathbf{1}}<s_{2} \wedge t_{1}<\left(p_{2}\right)_{\mathbf{2}} \wedge\left(p_{2}\right)_{\mathbf{2}}<t_{2}\right\}$. Then $P_{1} \subseteq \Omega_{\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \mid P^{c}}$.
(44) Let given $s_{1}, s_{2}, t_{1}, t_{2}, P, P_{1}$. Suppose that
(i) $\quad P=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: p_{\mathbf{1}}=s_{1} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq$ $\left.s_{1} \wedge p_{2}=t_{2} \vee p_{1} \leq s_{2} \wedge p_{1} \geq s_{1} \wedge p_{2}=t_{1} \vee p_{1}=s_{2} \wedge p_{2} \leq t_{2} \wedge p_{2} \geq t_{1}\right\}$, and
(ii) $\quad P_{1}=\left\{p_{2} ; p_{2}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: s_{1}<\left(p_{2}\right)_{\mathbf{1}} \wedge\left(p_{2}\right)_{\mathbf{1}}<s_{2} \wedge t_{1}<\left(p_{2}\right)_{\mathbf{2}} \wedge\left(p_{2}\right)_{\mathbf{2}}<t_{2}\right\}$. Then P_{1} is a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P^{\mathrm{c}}$.
(45) Let given $s_{1}, s_{2}, t_{1}, t_{2}, P, P_{2}$. Suppose that
(i) $s_{1}<s_{2}$,
(ii) $t_{1}<t_{2}$,
(iii) $\quad P=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: p_{\mathbf{1}}=s_{1} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq$ $\left.s_{1} \wedge p_{2}=t_{2} \vee p_{1} \leq s_{2} \wedge p_{1} \geq s_{1} \wedge p_{2}=t_{1} \vee p_{1}=s_{2} \wedge p_{2} \leq t_{2} \wedge p_{2} \geq t_{1}\right\}$, and
(iv) $P_{2}=\left\{p_{3} ; p_{3}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: s_{1} \not \subset\left(p_{3}\right)_{\mathbf{1}} \vee\left(p_{3}\right)_{\mathbf{1}} \not \leq s_{2} \vee t_{1} \not \subset\left(p_{3}\right)_{\mathbf{2}} \vee\left(p_{3}\right)_{\mathbf{2}} \not \leq t_{2}\right\}$. Then $P_{2} \subseteq \Omega_{\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \mid P^{c}}$.
(46) Let given $s_{1}, s_{2}, t_{1}, t_{2}, P, P_{2}$. Suppose that
(i) $s_{1}<s_{2}$,
(ii) $t_{1}<t_{2}$,
(iii) $\quad P=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: p_{\mathbf{1}}=s_{1} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1} \vee p_{\mathbf{1}} \leq s_{2} \wedge p_{\mathbf{1}} \geq$ $\left.s_{1} \wedge p_{2}=t_{2} \vee p_{1} \leq s_{2} \wedge p_{1} \geq s_{1} \wedge p_{\mathbf{2}}=t_{1} \vee p_{1}=s_{2} \wedge p_{2} \leq t_{2} \wedge p_{2} \geq t_{1}\right\}$, and
(iv) $P_{2}=\left\{p_{3} ; p_{3}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}: s_{1} \not \subset\left(p_{3}\right)_{\mathbf{1}} \vee\left(p_{3}\right)_{\mathbf{1}} \not \leq s_{2} \vee t_{1} \not \leq\left(p_{3}\right)_{\mathbf{2}} \vee\left(p_{3}\right)_{\mathbf{2}} \not \leq t_{2}\right\}$. Then P_{2} is a subset of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright P^{\mathrm{c}}$.

3. JORDAN'S PROPERTY

Let S be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. We say that S is Jordan if and only if the conditions (Def. 2) are satisfied.
(Def. 2)(i) $\quad S^{\mathrm{c}} \neq \emptyset$, and
(ii) there exist subsets A_{1}, A_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $S^{\mathrm{c}}=A_{1} \cup A_{2}$ and A_{1} misses A_{2} and $\overline{A_{1}} \backslash A_{1}=$ $\overline{A_{2}} \backslash A_{2}$ and for all subsets C_{1}, C_{2} of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \mid S^{\mathrm{c}}$ such that $C_{1}=A_{1}$ and $C_{2}=A_{2}$ holds C_{1} is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash S^{\mathrm{C}}$ and C_{2} is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash S^{\mathrm{C}}$.

We introduce S has Jordan's property as a synonym of S is Jordan.
Next we state two propositions:
(47) Let S be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose S has Jordan's property. Then
(i) $S^{\mathrm{c}} \neq \emptyset$, and
(ii) there exist subsets A_{1}, A_{2} of $\mathcal{E}_{\mathrm{T}}^{2}$ and there exist subsets C_{1}, C_{2} of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right)\left\lceil S^{\mathrm{c}}\right.$ such that $S^{\mathrm{C}}=A_{1} \cup A_{2}$ and A_{1} misses A_{2} and $\overline{A_{1}} \backslash A_{1}=\overline{A_{2}} \backslash A_{2}$ and $C_{1}=A_{1}$ and $C_{2}=A_{2}$ and C_{1} is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash S^{\mathrm{c}}$ and C_{2} is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \backslash S^{\mathrm{c}}$ and for every subset C_{3} of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright S^{\mathrm{c}}$ such that C_{3} is a component of $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \upharpoonright S^{\mathrm{c}}$ holds $C_{3}=C_{1}$ or $C_{3}=C_{2}$.
(48) Let given $s_{1}, s_{2}, t_{1}, t_{2}$ and P be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $s_{1}<s_{2}$ and $t_{1}<t_{2}$ and $P=\{p ; p$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}: p_{1}=s_{1} \wedge p_{2} \leq t_{2} \wedge p_{2} \geq t_{1} \vee p_{1} \leq s_{2} \wedge p_{1} \geq s_{1} \wedge p_{2}=$ $\left.t_{2} \vee p_{1} \leq s_{2} \wedge p_{1} \geq s_{1} \wedge p_{\mathbf{2}}=t_{1} \vee p_{\mathbf{1}}=s_{2} \wedge p_{\mathbf{2}} \leq t_{2} \wedge p_{\mathbf{2}} \geq t_{1}\right\}$. Then P has Jordan's property.

References

[1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
[2] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/ pcomps_1.html
[3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html
[4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[6] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991.http://mizar.org/JFM/Vol3/euclid.html
[7] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreal1.html
[8] Dick Wick Hall and Guilford L.Spencer II. Elementary Topology. John Wiley and Sons Inc., 1955.
[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html
[10] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar. org/JFM/Vol2/metric_1.html
[11] Beata Padlewska. Connected spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/connsp_1.html
[12] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, $1,1989$. http://mizar.org/JFM/Vol1/pre_topc.html
[13] Yukio Takeuchi and Yatsuka Nakamura. On the Jordan curve theorem. Technical Report 19804, Dept. of Information Eng., Shinshu University, 500 Wakasato, Nagano city, Japan, April 1980.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[15] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/ Vol3/borsuk_1.html.
[16] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[17] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

[^0]: ${ }^{1}$ The proposition (3) has been removed.

