General Fashoda Meet Theorem for Unit Circle and Square

Yatsuka Nakamura
Shinshu University
Nagano

Abstract

Summary. Here we will prove Fashoda meet theorem for the unit circle and for a square, when 4 points on the boundary are ordered cyclically. Also, the concepts of general rectangle and general circle are defined.

MML Identifier: JGRAPH_6.
WWW:http://mizar.org/JFM/Vol15/jgraph_6.html

The articles [1], [9], [22], [27], [8], [4], [5], [26], [2], [10], [3], [7], [14], [24], [20], [19], [17], [18], [12], [25], [15], [16], [23], [21], [11], [6], and [13] provide the notation and terminology for this paper.

1. PRELIMINARIES

One can prove the following propositions:
(2) For all real numbers a, b, r such that $0 \leq r$ and $r \leq 1$ and $a \leq b$ holds $a \leq(1-r) \cdot a+r \cdot b$ and $(1-r) \cdot a+r \cdot b \leq b$.
(3) For all real numbers a, b such that $a \geq 0$ and $b>0$ or $a>0$ and $b \geq 0$ holds $a+b>0$.
(4) For all real numbers a, b such that $-1 \leq a$ and $a \leq 1$ and $-1 \leq b$ and $b \leq 1$ holds $a^{2} \cdot b^{2} \leq 1$.
(5) For all real numbers a, b such that $a \geq 0$ and $b \geq 0$ holds $a \cdot \sqrt{b}=\sqrt{a^{2} \cdot b}$.
(6) For all real numbers a, b such that $-1 \leq a$ and $a \leq 1$ and $-1 \leq b$ and $b \leq 1$ holds $(-b)$. $\sqrt{1+a^{2}} \leq \sqrt{1+b^{2}}$ and $-\sqrt{1+b^{2}} \leq b \cdot \sqrt{1+a^{2}}$.
(7) For all real numbers a, b such that $-1 \leq a$ and $a \leq 1$ and $-1 \leq b$ and $b \leq 1$ holds b. $\sqrt{1+a^{2}} \leq \sqrt{1+b^{2}}$.
(8) For all real numbers a, b such that $a \geq b$ holds $a \cdot \sqrt{1+b^{2}} \geq b \cdot \sqrt{1+a^{2}}$.
(9) Let a, c, d be real numbers and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $c \leq d$ and $p \in \mathcal{L}([a, c],[a, d])$, then $p_{1}=a$ and $c \leq p_{2}$ and $p_{2} \leq d$.
(10) For all real numbers a, c, d and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $c<d$ and $p_{\mathbf{1}}=a$ and $c \leq p_{\mathbf{2}}$ and $p_{\mathbf{2}} \leq d$ holds $p \in \mathcal{L}([a, c],[a, d])$.

[^0](11) Let a, b, d be real numbers and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $a \leq b$ and $p \in \mathcal{L}([a, d],[b, d])$, then $p_{2}=d$ and $a \leq p_{1}$ and $p_{1} \leq b$.
(12) For all real numbers a, b and for every subset B of \mathbb{I} such that $B=[a, b]$ holds B is closed.
(13) Let X be a topological structure, Y, Z be non empty topological structures, f be a map from X into Y, and g be a map from X into Z. Then $\operatorname{dom} f=\operatorname{dom} g$ and $\operatorname{dom} f=$ the carrier of X and $\operatorname{dom} f=\Omega_{X}$.
(14) Let X be a non empty topological space and B be a non empty subset of X. Then there exists a map f from $X \upharpoonright B$ into X such that for every point p of $X \upharpoonright B$ holds $f(p)=p$ and f is continuous.
(15) Let X be a non empty topological space, f_{1} be a map from X into $\mathbb{R}^{\mathbf{1}}$, and a be a real number. Suppose f_{1} is continuous. Then there exists a map g from X into \mathbb{R}^{1} such that for every point p of X and for every real number r_{1} such that $f_{1}(p)=r_{1}$ holds $g(p)=r_{1}-a$ and g is continuous.
(16) Let X be a non empty topological space, f_{1} be a map from X into $\mathbb{R}^{\mathbf{1}}$, and a be a real number. Suppose f_{1} is continuous. Then there exists a map g from X into \mathbb{R}^{1} such that for every point p of X and for every real number r_{1} such that $f_{1}(p)=r_{1}$ holds $g(p)=a-r_{1}$ and g is continuous.
(17) Let X be a non empty topological space, n be a natural number, p be a point of $\mathscr{E}_{\mathrm{T}}^{n}$, and f be a map from X into \mathbb{R}^{1}. Suppose f is continuous. Then there exists a map g from X into $\mathcal{E}_{\mathrm{T}}^{n}$ such that for every point r of X holds $g(r)=f(r) \cdot p$ and g is continuous.
(18) $\operatorname{SqCirc}([-1,0])=[-1,0]$.
(19) For every compact non empty subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $P=\left\{p ; p\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $|p|=1\}$ holds $\operatorname{SqCirc}([-1,0])=\mathrm{W}_{\text {min }}(P)$.
(20) Let X be a non empty topological space, n be a natural number, and g_{1}, g_{2} be maps from X into $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose g_{1} is continuous and g_{2} is continuous. Then there exists a map g from X into $\mathscr{E}_{\mathrm{T}}^{n}$ such that for every point r of X holds $g(r)=g_{1}(r)+g_{2}(r)$ and g is continuous.
(21) Let X be a non empty topological space, n be a natural number, p_{1}, p_{2} be points of $\mathscr{E}_{\mathrm{T}}^{n}$, and f_{1}, f_{2} be maps from X into $\mathbb{R}^{\mathbf{1}}$. Suppose f_{1} is continuous and f_{2} is continuous. Then there exists a map g from X into $\mathscr{E}_{\mathrm{T}}^{n}$ such that for every point r of X holds $g(r)=f_{1}(r) \cdot p_{1}+f_{2}(r)$. p_{2} and g is continuous.
(22) For every function f and for every set A such that f is one-to-one and $A \subseteq \operatorname{dom} f$ holds $\left(f^{-1}\right)^{\circ} f^{\circ} A=A$.

2. General Fashoda Theorem for Unit Circle

In the sequel $p, p_{1}, p_{2}, p_{3}, q, q_{1}, q_{2}$ denote points of $\mathcal{E}_{\mathrm{T}}^{2}$.
The following propositions are true:
(23) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}, C_{0}, K_{1}, K_{2}, K_{3}, K_{4}$ be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose that $O=0$ and $I=1$ and f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=\{p:|p| \leq 1\}$ and $K_{1}=\left\{q_{1} ; q_{1}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{1}\right|=$ $\left.1 \wedge\left(q_{1}\right)_{\mathbf{2}} \leq\left(q_{1}\right)_{\mathbf{1}} \wedge\left(q_{1}\right)_{\mathbf{2}} \geq-\left(q_{1}\right)_{1}\right\}$ and $K_{2}=\left\{q_{2} ; q_{2}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{2}\right|=$ $\left.1 \wedge\left(q_{2}\right)_{\mathbf{2}} \geq\left(q_{2}\right)_{\mathbf{1}} \wedge\left(q_{2}\right)_{\mathbf{2}} \leq-\left(q_{2}\right)_{\mathbf{1}}\right\}$ and $K_{3}=\left\{q_{3} ; q_{3}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{3}\right|=$ $\left.1 \wedge\left(q_{3}\right)_{\mathbf{2}} \geq\left(q_{3}\right)_{\mathbf{1}} \wedge\left(q_{3}\right)_{\mathbf{2}} \geq-\left(q_{3}\right)_{\mathbf{1}}\right\}$ and $K_{4}=\left\{q_{4} ; q_{4}\right.$ ranges over points of $\mathscr{E}_{\mathrm{T}}^{2}:\left|q_{4}\right|=$ $\left.1 \wedge\left(q_{4}\right)_{\mathbf{2}} \leq\left(q_{4}\right)_{\mathbf{1}} \wedge\left(q_{4}\right)_{\mathbf{2}} \leq-\left(q_{4}\right)_{\mathbf{1}}\right\}$ and $f(O) \in K_{1}$ and $f(I) \in K_{2}$ and $g(O) \in K_{3}$ and $g(I) \in K_{4}$ and $\operatorname{rng} f \subseteq C_{0}$ and rng $g \subseteq C_{0}$. Then rng f meets rng g.
(24) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}, C_{0}, K_{1}, K_{2}, K_{3}, K_{4}$ be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and O, I be points of \mathbb{I}. Suppose that $O=0$ and $I=1$ and f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=\{p:|p| \leq 1\}$ and $K_{1}=\left\{q_{1} ; q_{1}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{1}\right|=$ $\left.1 \wedge\left(q_{1}\right)_{\mathbf{2}} \leq\left(q_{1}\right)_{\mathbf{1}} \wedge\left(q_{1}\right)_{\mathbf{2}} \geq-\left(q_{1}\right)_{\mathbf{1}}\right\}$ and $K_{2}=\left\{q_{2} ; q_{2}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{2}\right|=$ $\left.1 \wedge\left(q_{2}\right)_{\mathbf{2}} \geq\left(q_{2}\right)_{\mathbf{1}} \wedge\left(q_{2}\right)_{\mathbf{2}} \leq-\left(q_{2}\right)_{1}\right\}$ and $K_{3}=\left\{q_{3} ; q_{3}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{3}\right|=$ $\left.1 \wedge\left(q_{3}\right)_{\mathbf{2}} \geq\left(q_{3}\right)_{\mathbf{1}} \wedge\left(q_{3}\right)_{\mathbf{2}} \geq-\left(q_{3}\right)_{\mathbf{1}}\right\}$ and $K_{4}=\left\{q_{4} ; q_{4}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}:\left|q_{4}\right|=$ $\left.1 \wedge\left(q_{4}\right)_{\mathbf{2}} \leq\left(q_{4}\right)_{\mathbf{1}} \wedge\left(q_{4}\right)_{\mathbf{2}} \leq-\left(q_{4}\right)_{\mathbf{1}}\right\}$ and $f(O) \in K_{1}$ and $f(I) \in K_{2}$ and $g(O) \in K_{4}$ and $g(I) \in K_{3}$ and rng $f \subseteq C_{0}$ and rng $g \subseteq C_{0}$. Then rng f meets rng g.
(25) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, P$ be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and C_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $p_{1} \leq_{P} p_{2}$ and $p_{2} \leq_{P} p_{3}$ and $p_{3} \leq_{P} p_{4}$. Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=\left\{p_{8} ; p_{8}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $\left.\left|p_{8}\right| \leq 1\right\}$ and $f(0)=p_{3}$ and $f(1)=p_{1}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and rng $f \subseteq C_{0}$ and $\operatorname{rng} g \subseteq C_{0}$. Then $\operatorname{rng} f$ meets rng g.
(26) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, P$ be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and C_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $p_{1} \leq_{P} p_{2}$ and $p_{2} \leq_{P} p_{3}$ and $p_{3} \leq_{P} p_{4}$. Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=\left\{p_{8} ; p_{8}\right.$ ranges over points of $\mathcal{E}_{\mathrm{T}}^{2}$: $\left.\left|p_{8}\right| \leq 1\right\}$ and $f(0)=p_{3}$ and $f(1)=p_{1}$ and $g(0)=p_{4}$ and $g(1)=p_{2}$ and $\operatorname{rng} f \subseteq C_{0}$ and rng $g \subseteq C_{0}$. Then rng f meets rng g.
(27) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, P$ be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and C_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p|=1\right\}$ and $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on P. Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $C_{0}=\left\{p_{8} ; p_{8}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|p_{8}\right| \leq 1\right\}$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and $\operatorname{rng} f \subseteq C_{0}$ and rng $g \subseteq C_{0}$. Then $\operatorname{rng} f$ meets rng g.

3. General Rectangles and Circles

Let a, b, c, d be real numbers. The functor Rectangle (a, b, c, d) yields a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by the condition (Def. 1).
(Def. 1) Rectangle $(a, b, c, d)=\left\{p: p_{1}=a \wedge c \leq p_{2} \wedge p_{2} \leq d \vee p_{2}=d \wedge a \leq p_{1} \wedge p_{1} \leq\right.$ $\left.b \vee p_{1}=b \wedge c \leq p_{2} \wedge p_{2} \leq d \vee p_{2}=c \wedge a \leq p_{1} \wedge p_{1} \leq b\right\}$.

The following proposition is true
(28) Let a, b, c, d be real numbers and p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. If $a \leq b$ and $c \leq d$ and $p \in \operatorname{Rectangle}(a, b, c, d)$, then $a \leq p_{1}$ and $p_{1} \leq b$ and $c \leq p_{2}$ and $p_{2} \leq d$.

Let a, b, c, d be real numbers. The functor InsideOfRectangle (a, b, c, d) yielding a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined as follows:
(Def. 2) InsideOfRectangle $(a, b, c, d)=\left\{p: a<p_{1} \wedge p_{1}<b \wedge c<p_{2} \wedge p_{2}<d\right\}$.
Let a, b, c, d be real numbers. The functor ClosedInsideOfRectangle (a, b, c, d) yields a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by:
(Def. 3) ClosedInsideOfRectangle $(a, b, c, d)=\left\{p: a \leq p_{1} \wedge p_{1} \leq b \wedge c \leq p_{2} \wedge p_{2} \leq d\right\}$.
Let a, b, c, d be real numbers. The functor OutsideOfRectangle (a, b, c, d) yields a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by:
(Def. 4) OutsideOfRectangle $(a, b, c, d)=\left\{p: a \not \leq p_{1} \vee p_{1} \not \leq b \vee c \not \leq p_{2} \vee p_{2} \not \leq d\right\}$.
Let a, b, c, d be real numbers. The functor ClosedOutsideOfRectangle (a, b, c, d) yielding a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by:
(Def. 5) ClosedOutsideOfRectangle $(a, b, c, d)=\left\{p: a \nless p_{1} \vee p_{1} \nless b \vee c \nless p_{2} \vee p_{2} \nless d\right\}$.
We now state four propositions:
(29) Let a, b, r be real numbers and K_{5}, C_{1} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $r \geq 0$ and $K_{5}=\{q:|q|=1\}$ and $C_{1}=\left\{p_{2} ; p_{2}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|p_{2}-[a, b]\right|=r\right\}$. Then $(\operatorname{AffineMap}(r, a, r, b))^{\circ} K_{5}=C_{1}$.
(30) Let P, Q be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose there exists a map from $\mathcal{E}_{\mathrm{T}}^{2} \upharpoonright P$ into $\mathcal{E}_{\mathrm{T}}^{2} \upharpoonright Q$ which is a homeomorphism and P is a simple closed curve. Then Q is a simple closed curve.
(31) For every subset P of $\mathcal{E}_{\mathrm{T}}^{2}$ such that P satisfies conditions of simple closed curve holds P is compact.
(32) Let a, b, r be real numbers and C_{1} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $r>0$ and $C_{1}=\{p ; p$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p-[a, b]|=r\right\}$. Then C_{1} is a simple closed curve.

Let a, b, r be real numbers. Let us assume that $r>0$. The functor $\operatorname{Circle}(a, b, r)$ yielding a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by:
(Def. 6) $\operatorname{Circle}(a, b, r)=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p-[a, b]|=r\right\}$.
Let a, b, r be real numbers. The functor $\operatorname{InsideOfCircle}(a, b, r)$ yields a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined by:
(Def. 7) InsideOfCircle $(a, b, r)=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p-[a, b]|<r\right\}$.
Let a, b, r be real numbers. The functor ClosedInsideOfCircle (a, b, r) yields a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and is defined as follows:
(Def. 8) ClosedInsideOfCircle $(a, b, r)=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p-[a, b]| \leq r\right\}$.
Let a, b, r be real numbers. The functor OutsideOfCircle (a, b, r) yielding a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by:
(Def. 9) OutsideOfCircle $(a, b, r)=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p-[a, b]|>r\right\}$.
Let a, b, r be real numbers. The functor ClosedOutsideOfCircle (a, b, r) yielding a subset of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by:
(Def. 10) ClosedOutsideOfCircle $(a, b, r)=\left\{p ; p\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:|p-[a, b]| \geq r\right\}$.
One can prove the following propositions:
(33) Let r be a real number. Then InsideOfCircle $(0,0, r)=\{p:|p|<r\}$ and if $r>0$, then $\operatorname{Circle}(0,0, r)=\left\{p_{2}:\left|p_{2}\right|=r\right\}$ and OutsideOfCircle $(0,0, r)=\left\{p_{3}:\left|p_{3}\right|>r\right\}$ and ClosedInsideOfCircle $(0,0, r)=\{q:|q| \leq r\}$ and ClosedOutsideOfCircle $(0,0, r)=\left\{q_{2}\right.$: $\left.\left|q_{2}\right| \geq r\right\}$.
(34) Let K_{5}, C_{1} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K_{5}=\left\{p:-1<p_{1} \wedge p_{1}<1 \wedge-1<p_{2} \wedge p_{2}<1\right\}$ and $C_{1}=\left\{p_{2} ; p_{2}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|p_{2}\right|<1\right\}$. Then $\mathrm{SqCirc}^{\circ} K_{5}=C_{1}$.
(35) Let K_{5}, C_{1} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K_{5}=\left\{p:-1 \not \leq p_{1} \vee p_{1} \not \leq 1 \vee-1 \not \leq p_{2} \vee p_{2} \not \leq 1\right\}$ and $C_{1}=\left\{p_{2} ; p_{2}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|p_{2}\right|>1\right\}$. Then $\mathrm{SqCirc}^{\circ} K_{5}=C_{1}$.
(36) Let K_{5}, C_{1} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K_{5}=\left\{p:-1 \leq p_{1} \wedge p_{1} \leq 1 \wedge-1 \leq p_{2} \wedge p_{2} \leq 1\right\}$ and $C_{1}=\left\{p_{2} ; p_{2}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|p_{2}\right| \leq 1\right\}$. Then $\operatorname{SqCirc}^{\circ} K_{5}=C_{1}$.
(37) Let K_{5}, C_{1} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K_{5}=\left\{p:-1 \nless p_{1} \vee p_{1} \nless 1 \vee-1 \nless p_{2} \vee p_{2} \nless 1\right\}$ and $C_{1}=\left\{p_{2} ; p_{2}\right.$ ranges over points of $\left.\mathcal{E}_{\mathrm{T}}^{2}:\left|p_{2}\right| \geq 1\right\}$. Then $\mathrm{SqCirc}^{\circ} K_{5}=C_{1}$.
(38) Let $P_{0}, P_{1}, P_{2}, P_{11}, K_{0}, K_{6}, K_{7}, K_{11}$ be subsets of $\mathcal{E}_{\mathrm{T}}^{2}, P, K$ be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $P=$ $\operatorname{Circle}(0,0,1)$ and $P_{0}=$ InsideOfCircle $(0,0,1)$ and $P_{1}=\operatorname{OutsideOfCircle}(0,0,1)$ and $P_{2}=$ ClosedInsideOfCircle $(0,0,1)$ and $P_{11}=$ ClosedOutsideOfCircle $(0,0,1)$ and $K=$ Rectangle $(-1,1,-1,1)$ and $K_{0}=\operatorname{InsideOfRectangle}(-1,1,-1,1)$ and $K_{6}=\operatorname{OutsideOfRectangle}(-1,1,-1,1)$ and $K_{7}=$ ClosedInsideOfRectangle $(-1,1,-1,1)$ and $K_{11}=$ ClosedOutsideOfRectangle $(-1,1,-1,1)$ and $f=$ SqCirc. Then $f^{\circ} K=P$ and $\left(f^{-1}\right)^{\circ} P=K$ and $f^{\circ} K_{0}=P_{0}$ and $\left(f^{-1}\right)^{\circ} P_{0}=K_{0}$ and $f^{\circ} K_{6}=P_{1}$ and $\left(f^{-1}\right)^{\circ} P_{1}=K_{6}$ and $f^{\circ} K_{7}=P_{2}$ and $f^{\circ} K_{11}=P_{11}$ and $\left(f^{-1}\right)^{\circ} P_{2}=K_{7}$ and $\left(f^{-1}\right)^{\circ} P_{11}=K_{11}$.

4. Order of Points on Rectangle

One can prove the following propositions:
(39) Let a, b, c, d be real numbers. Suppose $a \leq b$ and $c \leq d$. Then
(i) $\mathcal{L}([a, c],[a, d])=\left\{p_{1}:\left(p_{1}\right)_{\mathbf{1}}=a \wedge\left(p_{1}\right)_{\mathbf{2}} \leq d \wedge\left(p_{1}\right)_{\mathbf{2}} \geq c\right\}$,
(ii) $\mathcal{L}([a, d],[b, d])=\left\{p_{2}:\left(p_{2}\right)_{\mathbf{1}} \leq b \wedge\left(p_{2}\right)_{\mathbf{1}} \geq a \wedge\left(p_{2}\right)_{\mathbf{2}}=d\right\}$,
(iii) $\mathcal{L}([a, c],[b, c])=\left\{q_{1}:\left(q_{1}\right)_{\mathbf{1}} \leq b \wedge\left(q_{1}\right)_{\mathbf{1}} \geq a \wedge\left(q_{1}\right)_{\mathbf{2}}=c\right\}$, and
(iv) $\mathcal{L}([b, c],[b, d])=\left\{q_{2}:\left(q_{2}\right)_{\mathbf{1}}=b \wedge\left(q_{2}\right)_{\mathbf{2}} \leq d \wedge\left(q_{2}\right)_{\mathbf{2}} \geq c\right\}$.
(40) Let a, b, c, d be real numbers. Suppose $a \leq b$ and $c \leq d$. Then $\left\{p: p_{1}=a \wedge c \leq p_{\mathbf{2}} \wedge p_{2} \leq\right.$ $d \vee p_{2}=d \wedge a \leq p_{1} \wedge p_{1} \leq b \vee p_{1}=b \wedge c \leq p_{2} \wedge p_{2} \leq d \vee p_{2}=c \wedge a \leq p_{1} \wedge p_{1} \leq$ $b\}=\mathcal{L}([a, c],[a, d]) \cup \mathcal{L}([a, d],[b, d]) \cup(\mathcal{L}([a, c],[b, c]) \cup \mathcal{L}([b, c],[b, d]))$.
(41) For all real numbers a, b, c, d such that $a \leq b$ and $c \leq d$ holds $\mathcal{L}([a, c],[a, d]) \cap \mathcal{L}([a, c],[b$, $c])=\{[a, c]\}$.
(42) For all real numbers a, b, c, d such that $a \leq b$ and $c \leq d$ holds $\mathcal{L}([a, c],[b, c]) \cap \mathcal{L}([b, c],[b$, $d])=\{[b, c]\}$.
(43) For all real numbers a, b, c, d such that $a \leq b$ and $c \leq d$ holds $\mathcal{L}([a, d],[b, d]) \cap \mathcal{L}([b, c],[b$, $d])=\{[b, d]\}$.
(44) For all real numbers a, b, c, d such that $a \leq b$ and $c \leq d$ holds $\mathcal{L}([a, c],[a, d]) \cap \mathcal{L}([a, d],[b$, $d])=\{[a, d]\}$.
(45) $\quad\left\{q:-1=q_{1} \wedge-1 \leq q_{2} \wedge q_{2} \leq 1 \vee q_{1}=1 \wedge-1 \leq q_{2} \wedge q_{2} \leq 1 \vee-1=q_{2} \wedge-1 \leq\right.$ $\left.q_{1} \wedge q_{1} \leq 1 \vee 1=q_{2} \wedge-1 \leq q_{1} \wedge q_{1} \leq 1\right\}=\left\{p: p_{1}=-1 \wedge-1 \leq p_{2} \wedge p_{2} \leq 1 \vee p_{2}=\right.$ $\left.1 \wedge-1 \leq p_{1} \wedge p_{1} \leq 1 \vee p_{1}=1 \wedge-1 \leq p_{2} \wedge p_{2} \leq 1 \vee p_{2}=-1 \wedge-1 \leq p_{1} \wedge p_{1} \leq 1\right\}$.
(46) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=$ Rectangle (a, b, c, d) and $a \leq b$ and $c \leq d$, then W -bound $(K)=a$.
(47) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=$ Rectangle (a, b, c, d) and $a \leq b$ and $c \leq d$, then N -bound $(K)=d$.
(48) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=$ Rectangle (a, b, c, d) and $a \leq b$ and $c \leq d$, then E-bound $(K)=b$.
(49) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=$ Rectangle (a, b, c, d) and $a \leq b$ and $c \leq d$, then $\operatorname{S-bound}(K)=c$.
(50) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=$ Rectangle (a, b, c, d) and $a \leq b$ and $c \leq d$, then NW-corner $(K)=[a, d]$.
(51) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=$ Rectangle (a, b, c, d) and $a \leq b$ and $c \leq d$, then NE-corner $(K)=[b, d]$.
(52) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=$ Rectangle (a, b, c, d) and $a \leq b$ and $c \leq d$, then SW-corner $(K)=[a, c]$.
(53) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=$ Rectangle (a, b, c, d) and $a \leq b$ and $c \leq d$, then $\operatorname{SE}-\operatorname{corner}(K)=[b, c]$.
(54) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=$ Rectangle (a, b, c, d) and $a \leq b$ and $c \leq d$, then $\mathrm{W}_{\text {most }}(K)=\mathcal{L}([a, c],[a, d])$.
(55) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=$ $\operatorname{Rectangle}(a, b, c, d)$ and $a \leq b$ and $c \leq d$, then $\mathrm{E}_{\text {most }}(K)=\mathcal{L}([b, c],[b, d])$.
(56) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=$ Rectangle (a, b, c, d) and $a \leq b$ and $c \leq d$, then $\mathrm{W}_{\text {min }}(K)=[a, c]$ and $\mathrm{E}_{\max }(K)=[b, d]$.
(57) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$. Then $\mathcal{L}([a, c],[a, d]) \cup \mathcal{L}([a, d],[b, d])$ is an arc from $\mathrm{W}_{\min }(K)$ to $\mathrm{E}_{\text {max }}(K)$ and $\mathcal{L}([a, c],[b, c]) \cup \mathcal{L}([b, c],[b, d])$ is an arc from $\mathrm{E}_{\max }(K)$ to $\mathrm{W}_{\text {min }}(K)$.
(58) Let P, P_{1}, P_{3} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, f_{1}, f_{2} be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and $p_{0}, p_{1}, p_{5}, p_{10}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $P=\left\{p: p_{1}=a \wedge c \leq p_{2} \wedge p_{2} \leq d \vee p_{2}=d \wedge a \leq p_{1} \wedge p_{1} \leq b \vee p_{1}=b \wedge c \leq p_{2} \wedge p_{2} \leq\right.$ $\left.d \vee p_{\mathbf{2}}=c \wedge a \leq p_{\mathbf{1}} \wedge p_{\mathbf{1}} \leq b\right\}$ and $p_{0}=[a, c]$ and $p_{1}=[b, d]$ and $p_{5}=[a, d]$ and $p_{10}=[b$, $c]$ and $f_{1}=\left\langle p_{0}, p_{5}, p_{1}\right\rangle$ and $f_{2}=\left\langle p_{0}, p_{10}, p_{1}\right\rangle$. Then f_{1} is a special sequence and $\widetilde{\mathcal{L}}\left(f_{1}\right)=$ $\mathcal{L}\left(p_{0}, p_{5}\right) \cup \mathcal{L}\left(p_{5}, p_{1}\right)$ and f_{2} is a special sequence and $\widetilde{\mathcal{L}}\left(f_{2}\right)=\mathcal{L}\left(p_{0}, p_{10}\right) \cup \mathcal{L}\left(p_{10}, p_{1}\right)$ and $P=\widetilde{\mathcal{L}}\left(f_{1}\right) \cup \widetilde{\mathcal{L}}\left(f_{2}\right)$ and $\widetilde{\mathcal{L}}\left(f_{1}\right) \cap \widetilde{\mathcal{L}}\left(f_{2}\right)=\left\{p_{0}, p_{1}\right\}$ and $\left(f_{1}\right)_{1}=p_{0}$ and $\left(f_{1}\right)_{\operatorname{len} f_{1}}=p_{1}$ and $\left(f_{2}\right)_{1}=p_{0}$ and $\left(f_{2}\right)_{\operatorname{len} f_{2}}=p_{1}$.
(59) Let P, P_{1}, P_{3} be subsets of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, f_{1}, f_{2} be finite sequences of elements of $\mathcal{E}_{\mathrm{T}}^{2}$, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that $a<b$ and $c<d$ and $P=\{p$: $p_{1}=a \wedge c \leq p_{2} \wedge p_{2} \leq d \vee p_{2}=d \wedge a \leq p_{1} \wedge p_{1} \leq b \vee p_{1}=b \wedge c \leq p_{2} \wedge p_{2} \leq$ $\left.d \vee p_{\mathbf{2}}=c \wedge a \leq p_{\mathbf{1}} \wedge p_{\mathbf{1}} \leq b\right\}$ and $p_{1}=[a, c]$ and $p_{2}=[b, d]$ and $f_{1}=\langle[a, c],[a, d],[b, d]\rangle$ and $f_{2}=\langle[a, c],[b, c],[b, d]\rangle$ and $P_{1}=\widetilde{\mathcal{L}}\left(f_{1}\right)$ and $P_{3}=\widetilde{\mathcal{L}}\left(f_{2}\right)$. Then P_{1} is an arc from p_{1} to p_{2} and P_{3} is an arc from p_{1} to p_{2} and P_{1} is non empty and P_{3} is non empty and $P=P_{1} \cup P_{3}$ and $P_{1} \cap P_{3}=\left\{p_{1}, p_{2}\right\}$.
(60) For all real numbers a, b, c, d such that $a<b$ and $c<d$ holds Rectangle (a, b, c, d) is a simple closed curve.
(61) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=$ $\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$, then $\operatorname{UpperArc}(K)=\mathcal{L}([a, c],[a, d]) \cup \mathcal{L}([a, d],[b$, $d]$).
(62) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$ and a, b, c, d be real numbers. If $K=$ $\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$, then LowerArc $(K)=\mathcal{L}([a, c],[b, c]) \cup \mathcal{L}([b, c],[b$, $d]$).
(63) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$. Then there exists a map f from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \mid \operatorname{UpperArc}(K)$ such that
f is a homeomorphism and $f(0)=\mathrm{W}_{\min }(K)$ and $f(1)=\mathrm{E}_{\text {max }}(K)$ and $\operatorname{rng} f=\operatorname{UpperArc}(K)$ and for every real number r such that $r \in\left[0, \frac{1}{2}\right]$ holds $f(r)=(1-2 \cdot r) \cdot[a, c]+2 \cdot r \cdot[a, d]$ and for every real number r such that $r \in\left[\frac{1}{2}, 1\right]$ holds $f(r)=(1-(2 \cdot r-1)) \cdot[a, d]+(2 \cdot r-1) \cdot[b$, $d]$ and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in \mathcal{L}([a, c],[a, d])$ holds $0 \leq \frac{\frac{p_{2}-c}{d-c}}{2}$ and $\frac{\frac{p_{2}-c}{d-c}}{2} \leq 1$ and $f\left(\frac{\frac{p_{2}-c}{d-c}}{2}\right)=p$ and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in \mathcal{L}([a, d],[b, d])$ holds $0 \leq \frac{\frac{p_{1}-a}{b-a}}{2}+\frac{1}{2}$ and $\frac{\frac{p_{1}-a}{b-a}}{2}+\frac{1}{2} \leq 1$ and $f\left(\frac{\frac{p_{1}-a}{b-a}}{2}+\frac{1}{2}\right)=p$.
(64) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$. Then there exists a map f from \mathbb{I} into $\left(\mathcal{E}_{\mathrm{T}}^{2}\right) \mid$ LowerArc (K) such that
f is a homeomorphism and $f(0)=\mathrm{E}_{\max }(K)$ and $f(1)=\mathrm{W}_{\min }(K)$ and $\operatorname{rng} f=\operatorname{LowerArc}(K)$ and for every real number r such that $r \in\left[0, \frac{1}{2}\right]$ holds $f(r)=(1-2 \cdot r) \cdot[b, d]+2 \cdot r \cdot[b, c]$ and for every real number r such that $r \in\left[\frac{1}{2}, 1\right]$ holds $f(r)=(1-(2 \cdot r-1)) \cdot[b, c]+(2 \cdot r-1) \cdot[a$, $c]$ and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in \mathcal{L}([b, d],[b, c])$ holds $0 \leq \frac{\frac{p_{2}-d}{c-d}}{2}$ and $\frac{\frac{p_{2}-d}{c-d}}{2} \leq 1$ and $f\left(\frac{\frac{p_{2}-d}{c-d}}{2}\right)=p$ and for every point p of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $p \in \mathcal{L}([b, c],[a, c])$ holds $0 \leq \frac{\frac{p_{1}-b}{a-b}}{2}+\frac{1}{2}$ and $\frac{\frac{p_{1}-b}{a-b}}{2}+\frac{1}{2} \leq 1$ and $f\left(\frac{\frac{p_{1}-b}{a-b}}{2}+\frac{1}{2}\right)=p$.
(65) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$ and $p_{1} \in \mathcal{L}([a, c],[a, d])$ and $p_{2} \in \mathcal{L}([a, c],[a, d])$. Then $p_{1} \leq_{K} p_{2}$ if and only if $\left(p_{1}\right)_{\mathbf{2}} \leq\left(p_{2}\right)_{\mathbf{2}}$.
(66) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$ and $p_{1} \in \mathcal{L}([a, d],[b, d])$ and $p_{2} \in \mathcal{L}([a, d],[b, d])$. Then $p_{1} \leq_{K} p_{2}$ if and only if $\left(p_{1}\right)_{\mathbf{1}} \leq\left(p_{2}\right)_{\mathbf{1}}$.
(67) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$ and $p_{1} \in \mathcal{L}([b, c],[b, d])$ and $p_{2} \in \mathcal{L}([b, c],[b, d])$. Then $p_{1} \leq_{K} p_{2}$ if and only if $\left(p_{1}\right)_{\mathbf{2}} \geq\left(p_{2}\right)_{\mathbf{2}}$.
(68) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$ and $p_{1} \in \mathcal{L}([a, c],[b, c])$ and $p_{2} \in \mathcal{L}([a, c],[b, c])$. Then $p_{1} \leq_{K} p_{2}$ and $p_{1} \neq \mathrm{W}_{\min }(K)$ if and only if $\left(p_{1}\right)_{1} \geq\left(p_{2}\right)_{\mathbf{1}}$ and $p_{2} \neq \mathrm{W}_{\text {min }}(K)$.
(69) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$ and $p_{1} \in \mathcal{L}([a, c],[a, d])$. Then $p_{1} \leq_{K} p_{2}$ if and only if one of the following conditions is satisfied:
(i) $p_{2} \in \mathcal{L}([a, c],[a, d])$ and $\left(p_{1}\right)_{\mathbf{2}} \leq\left(p_{2}\right)_{\mathbf{2}}$, or
(ii) $\quad p_{2} \in \mathcal{L}([a, d],[b, d])$, or
(iii) $\quad p_{2} \in \mathcal{L}([b, d],[b, c])$, or
(iv) $\quad p_{2} \in \mathcal{L}([b, c],[a, c])$ and $p_{2} \neq \mathrm{W}_{\text {min }}(K)$.
(70) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$ and $p_{1} \in \mathcal{L}([a, d],[b, d])$. Then $p_{1} \leq_{K} p_{2}$ if and only if one of the following conditions is satisfied:
(i) $p_{2} \in \mathcal{L}([a, d],[b, d])$ and $\left(p_{1}\right)_{\mathbf{1}} \leq\left(p_{2}\right)_{\mathbf{1}}$, or
(ii) $\quad p_{2} \in \mathcal{L}([b, d],[b, c])$, or
(iii) $\quad p_{2} \in \mathcal{L}([b, c],[a, c])$ and $p_{2} \neq \mathrm{W}_{\text {min }}(K)$.
(71) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$ and $p_{1} \in \mathcal{L}([b, d],[b, c])$. Then $p_{1} \leq_{K} p_{2}$ if and only if one of the following conditions is satisfied:
(i) $p_{2} \in \mathcal{L}([b, d],[b, c])$ and $\left(p_{1}\right)_{\mathbf{2}} \geq\left(p_{2}\right)_{\mathbf{2}}$, or
(ii) $\quad p_{2} \in \mathcal{L}([b, c],[a, c])$ and $p_{2} \neq \mathrm{W}_{\text {min }}(K)$.
(72) Let K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}, a, b, c, d$ be real numbers, and p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$ and $p_{1} \in \mathcal{L}([b, c],[a, c])$ and $p_{1} \neq \mathrm{W}_{\min }(K)$. Then $p_{1} \leq_{K} p_{2}$ if and only if the following conditions are satisfied:
(i) $p_{2} \in \mathcal{L}([b, c],[a, c])$,
(ii) $\left(p_{1}\right)_{\mathbf{1}} \geq\left(p_{2}\right)_{\mathbf{1}}$, and
(iii) $\quad p_{2} \neq \mathrm{W}_{\min }(K)$.
(73) Let x be a set and a, b, c, d be real numbers. Suppose $x \in \operatorname{Rectangle}(a, b, c, d)$ and $a<b$ and $c<d$. Then $x \in \mathcal{L}([a, c],[a, d])$ or $x \in \mathcal{L}([a, d],[b, d])$ or $x \in \mathcal{L}([b, d],[b, c])$ or $x \in \mathcal{L}([b$, $c],[a, c])$.

5. General Fashoda Theorem for Square

One can prove the following propositions:
(74) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and K be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(-1,1,-1,1)$ and $p_{1} \leq_{K} p_{2}$ and $p_{1} \in \mathcal{L}([-1,-1],[-1,1])$. Then $p_{2} \in \mathcal{L}([-1$, $-1],[-1,1])$ and $\left(p_{2}\right)_{2} \geq\left(p_{1}\right)_{2}$ or $p_{2} \in \mathcal{L}([-1,1],[1,1])$ or $p_{2} \in \mathcal{L}([1,1],[1,-1])$ or $p_{2} \in$ $\mathcal{L}([1,-1],[-1,-1])$ and $p_{2} \neq[-1,-1]$.
(75) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}, P, K$ be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\operatorname{Circle}(0,0,1)$ and $K=\operatorname{Rectangle}(-1,1,-1,1)$ and $f=\operatorname{SqCirc}$ and $p_{1} \in \mathcal{L}([-1,-1],[-1,1])$ and $\left(p_{1}\right)_{2} \geq 0$ and $p_{1} \leq_{K} p_{2}$. Then $f\left(p_{1}\right) \leq_{P} f\left(p_{2}\right)$.
(76) Let p_{1}, p_{2}, p_{3} be points of $\mathcal{E}_{\mathrm{T}}^{2}, P, K$ be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\operatorname{Circle}(0,0,1)$ and $K=\operatorname{Rectangle}(-1,1,-1,1)$ and $f=\operatorname{SqCirc}$ and $p_{1} \in \mathcal{L}([-1,-1],[-1,1])$ and $\left(p_{1}\right)_{2} \geq 0$ and $p_{1} \leq_{K} p_{2}$ and $p_{2} \leq_{K} p_{3}$. Then $f\left(p_{2}\right) \leq_{P} f\left(p_{3}\right)$.
(77) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. If $f=\operatorname{SqCirc}$ and $p_{\mathbf{1}}=-1$ and $p_{\mathbf{2}}<0$, then $f(p)_{\mathbf{1}}<0$ and $f(p)_{\mathbf{2}}<0$.
(78) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}, P, K$ be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. If $P=\operatorname{Circle}(0,0,1)$ and $K=\operatorname{Rectangle}(-1,1,-1,1)$ and $f=\operatorname{SqCirc}$, then $f(p)_{\mathbf{1}} \geq 0$ iff $p_{\mathbf{1}} \geq 0$.
(79) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}, P, K$ be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. If $P=\operatorname{Circle}(0,0,1)$ and $K=\operatorname{Rectangle}(-1,1,-1,1)$ and $f=\operatorname{SqCirc}$, then $f(p)_{\mathbf{2}} \geq 0$ iff $p_{2} \geq 0$.
(80) Let p, q be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. If $f=\mathrm{SqCirc}$ and $p \in \mathcal{L}([-1$, $-1],[-1,1])$ and $q \in \mathcal{L}([1,-1],[-1,-1])$, then $f(p)_{\mathbf{1}} \leq f(q)_{\mathbf{1}}$.
(81) Let p, q be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $f=$ SqCirc and $p \in \mathcal{L}([-1,-1],[-1,1])$ and $q \in \mathcal{L}([-1,-1],[-1,1])$ and $p_{2} \geq q_{2}$ and $p_{2}<0$. Then $f(p)_{2} \geq$ $f(q) \mathbf{2}$.
(82) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, P, K$ be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\operatorname{Circle}(0,0,1)$ and $K=\operatorname{Rectangle}(-1,1,-1,1)$ and $f=$ SqCirc. Suppose $p_{1} \leq_{K} p_{2}$ and $p_{2} \leq_{K} p_{3}$ and $p_{3} \leq_{K} p_{4}$. Then $f\left(p_{1}\right), f\left(p_{2}\right), f\left(p_{3}\right)$, $f\left(p_{4}\right)$ are in this order on P.
(83) Let p_{1}, p_{2} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$. If P is a simple closed curve and $p_{1} \in P$ and $p_{2} \in P$ and $p_{1} \not \leq_{P} p_{2}$, then $p_{2} \leq_{P} p_{1}$.
(84) Let p_{1}, p_{2}, p_{3} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P is a simple closed curve and $p_{1} \in P$ and $p_{2} \in P$ and $p_{3} \in P$. Then $p_{1} \leq_{P} p_{2}$ and $p_{2} \leq_{P} p_{3}$ or $p_{1} \leq_{P} p_{3}$ and $p_{3} \leq_{P} p_{2}$ or $p_{2} \leq_{P} p_{1}$ and $p_{1} \leq_{P} p_{3}$ or $p_{2} \leq_{P} p_{3}$ and $p_{3} \leq_{P} p_{1}$ or $p_{3} \leq_{P} p_{1}$ and $p_{1} \leq_{P} p_{2}$ or $p_{3} \leq_{P} p_{2}$ and $p_{2} \leq_{P} p_{1}$.
(85) Let p_{1}, p_{2}, p_{3} be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P is a simple closed curve and $p_{1} \in P$ and $p_{2} \in P$ and $p_{3} \in P$ and $p_{2} \leq_{P} p_{3}$. Then $p_{1} \leq_{P} p_{2}$ or $p_{2} \leq_{P} p_{1}$ and $p_{1} \leq_{P} p_{3}$ or $p_{3} \leq_{P} p_{1}$.
(86) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}$ and P be a non empty compact subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose P is a simple closed curve and $p_{1} \in P$ and $p_{2} \in P$ and $p_{3} \in P$ and $p_{4} \in P$ and $p_{2} \leq_{P} p_{3}$ and $p_{3} \leq_{P} p_{4}$. Then $p_{1} \leq_{P} p_{2}$ or $p_{2} \leq_{P} p_{1}$ and $p_{1} \leq_{P} p_{3}$ or $p_{3} \leq_{P} p_{1}$ and $p_{1} \leq_{P} p_{4}$ or $p_{4} \leq_{P} p_{1}$.
(87) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, P, K$ be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\operatorname{Circle}(0,0,1)$ and $K=\operatorname{Rectangle}(-1,1,-1,1)$ and $f=\operatorname{SqCirc}$ and $f\left(p_{1}\right) \leq_{P} f\left(p_{2}\right)$ and $f\left(p_{2}\right) \leq_{P} f\left(p_{3}\right)$ and $f\left(p_{3}\right) \leq_{P} f\left(p_{4}\right)$. Then p_{1}, p_{2}, p_{3}, p_{4} are in this order on K.
(88) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, P, K$ be non empty compact subsets of $\mathcal{E}_{\mathrm{T}}^{2}$, and f be a map from $\mathcal{E}_{\mathrm{T}}^{2}$ into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $P=\operatorname{Circle}(0,0,1)$ and $K=\operatorname{Rectangle}(-1,1,-1,1)$ and $f=$ SqCirc. Then $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on K if and only if $f\left(p_{1}\right), f\left(p_{2}\right), f\left(p_{3}\right)$, $f\left(p_{4}\right)$ are in this order on P.
(89) Let $p_{1}, p_{2}, p_{3}, p_{4}$ be points of $\mathcal{E}_{\mathrm{T}}^{2}, K$ be a compact non empty subset of $\mathcal{E}_{\mathrm{T}}^{2}$, and K_{0} be a subset of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $K=\operatorname{Rectangle}(-1,1,-1,1)$ and $p_{1}, p_{2}, p_{3}, p_{4}$ are in this order on K. Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose that f is continuous and one-to-one and g is continuous and one-to-one and $K_{0}=$ ClosedInsideOfRectangle $(-1,1,-1,1)$ and $f(0)=p_{1}$ and $f(1)=p_{3}$ and $g(0)=p_{2}$ and $g(1)=p_{4}$ and $\operatorname{rng} f \subseteq K_{0}$ and $\operatorname{rng} g \subseteq K_{0}$. Then rng f meets rng g.

References

[1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[3] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/ pcomps_1.html
[4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Journal of Formalized Mathematics, 9, 1997. http: //mizar.org/JFM/Vol9/pscomp_1.html
[7] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html
[8] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html
[9] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991.http://mizar.org/JFM/Vol3/euclid.html
[10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Journal of Formalized Mathematics, 3, 1991.http://mizar.org/JFM/Vol3/topmetr.html
[11] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991.http://mizar.org/JFM/Vol3/topreal1.html.
[12] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Simple closed curves. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreal2.html
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html
[14] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar. org/JFM/Vol2/metric_1.html
[15] Artur Korniłowicz. The ordering of points on a curve, part III. Journal of Formalized Mathematics, 14, 2002. http://mizar.org/ JFM/Vol14/jordan17.html
[16] Yatsuka Nakamura. On Outside Fashoda Meet Theorem. Journal of Formalized Mathematics, 13, 2001. http://mizar.org/JFM/ Vol13/jgraph_2.html
[17] Yatsuka Nakamura. On the simple closed curve property of the circle and the Fashoda Meet Theorem for it. Journal of Formalized Mathematics, 13, 2001.http://mizar.org/JFM/Vol13/jgraph_3.html
[18] Yatsuka Nakamura and Andrzej Trybulec. A decomposition of simple closed curves and the order of their points. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/jordan6.html
[19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, $1,1989$. http://mizar.org/JFM/Vol1/pre_topc.html
[20] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
[21] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in $\mathcal{E}_{\mathrm{T}}^{N}$. Journal of Formalized Mathematics, 6, 1994. http: //mizar.org/JFM/Vol6/toprns_1.html
[22] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[23] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[24] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/square_1.html.
[25] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_ 4.html
[26] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[27] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

Received February 25, 2003

Published January 2, 2004

[^0]: ${ }^{1}$ The proposition (1) has been removed.

