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The articles [1], [9], [22], [27], [8], [4], [5], [26], [2], [10], [3], [7], [14], [24], [20], [19], [17], [18],
[12], [25], [15], [16], [23], [21], [11], [6], and [13] provide the notation and terminology for this
paper.

1. PRELIMINARIES

One can prove the following propositions:

(2)1 For all real numbersa, b, r such that 0≤ r andr ≤ 1 anda≤ b holdsa≤ (1− r) ·a+ r ·b
and(1− r) ·a+ r ·b≤ b.

(3) For all real numbersa, b such thata≥ 0 andb > 0 ora > 0 andb≥ 0 holdsa+b > 0.

(4) For all real numbersa, b such that−1≤ a anda≤ 1 and−1≤ b andb≤ 1 holdsa2 ·b2≤ 1.

(5) For all real numbersa, b such thata≥ 0 andb≥ 0 holdsa·
√

b =
√

a2 ·b.

(6) For all real numbersa, b such that−1≤ a anda≤ 1 and−1≤ b andb≤ 1 holds(−b) ·√
1+a2 ≤

√
1+b2 and−

√
1+b2 ≤ b·

√
1+a2.

(7) For all real numbersa, b such that−1 ≤ a anda ≤ 1 and−1 ≤ b andb ≤ 1 holdsb ·√
1+a2 ≤

√
1+b2.

(8) For all real numbersa, b such thata≥ b holdsa·
√

1+b2 ≥ b·
√

1+a2.

(9) Let a, c, d be real numbers andp be a point ofE2
T. If c≤ d andp∈ L([a,c], [a,d]), then

p1 = a andc≤ p2 andp2 ≤ d.

(10) For all real numbersa, c, d and for every pointp of E2
T such thatc < d and p1 = a and

c≤ p2 andp2 ≤ d holdsp∈ L([a,c], [a,d]).

1 The proposition (1) has been removed.
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(11) Leta, b, d be real numbers andp be a point ofE2
T. If a≤ b andp∈ L([a,d], [b,d]), then

p2 = d anda≤ p1 andp1 ≤ b.

(12) For all real numbersa, b and for every subsetB of I such thatB = [a,b] holdsB is closed.

(13) LetX be a topological structure,Y, Z be non empty topological structures,f be a map from
X into Y, andg be a map fromX into Z. Then domf = domg and domf = the carrier ofX
and domf = ΩX.

(14) Let X be a non empty topological space andB be a non empty subset ofX. Then there
exists a mapf from X�B into X such that for every pointp of X�B holds f (p) = p and f is
continuous.

(15) Let X be a non empty topological space,f1 be a map fromX into R1, anda be a real
number. Supposef1 is continuous. Then there exists a mapg from X into R1 such that for
every pointp of X and for every real numberr1 such thatf1(p) = r1 holdsg(p) = r1−a and
g is continuous.

(16) Let X be a non empty topological space,f1 be a map fromX into R1, anda be a real
number. Supposef1 is continuous. Then there exists a mapg from X into R1 such that for
every pointp of X and for every real numberr1 such thatf1(p) = r1 holdsg(p) = a− r1 and
g is continuous.

(17) LetX be a non empty topological space,n be a natural number,p be a point ofEn
T, and f

be a map fromX into R1. Supposef is continuous. Then there exists a mapg from X into
En

T such that for every pointr of X holdsg(r) = f (r) · p andg is continuous.

(18) SqCirc([−1,0]) = [−1,0].

(19) For every compact non empty subsetP of E2
T such thatP= {p; p ranges over points ofE2

T:
|p|= 1} holds SqCirc([−1,0]) = Wmin(P).

(20) LetX be a non empty topological space,n be a natural number, andg1, g2 be maps from
X into En

T. Supposeg1 is continuous andg2 is continuous. Then there exists a mapg from X
into En

T such that for every pointr of X holdsg(r) = g1(r)+g2(r) andg is continuous.

(21) LetX be a non empty topological space,n be a natural number,p1, p2 be points ofEn
T, and

f1, f2 be maps fromX into R1. Supposef1 is continuous andf2 is continuous. Then there
exists a mapg from X into En

T such that for every pointr of X holdsg(r) = f1(r) · p1+ f2(r) ·
p2 andg is continuous.

(22) For every functionf and for every setA such thatf is one-to-one andA⊆ dom f holds
( f−1)◦ f ◦A = A.

2. GENERAL FASHODA THEOREM FORUNIT CIRCLE

In the sequelp, p1, p2, p3, q, q1, q2 denote points ofE2
T.

The following propositions are true:

(23) Let f , g be maps fromI into E2
T, C0, K1, K2, K3, K4 be subsets ofE2

T, andO, I be points
of I. Suppose thatO = 0 andI = 1 and f is continuous and one-to-one andg is continuous
and one-to-one andC0 = {p : |p| ≤ 1} andK1 = {q1;q1 ranges over points ofE2

T: |q1| =
1 ∧ (q1)2 ≤ (q1)1 ∧ (q1)2 ≥ −(q1)1} andK2 = {q2;q2 ranges over points ofE2

T: |q2| =
1 ∧ (q2)2 ≥ (q2)1 ∧ (q2)2 ≤ −(q2)1} andK3 = {q3;q3 ranges over points ofE2

T: |q3| =
1 ∧ (q3)2 ≥ (q3)1 ∧ (q3)2 ≥ −(q3)1} andK4 = {q4;q4 ranges over points ofE2

T: |q4| =
1 ∧ (q4)2 ≤ (q4)1 ∧ (q4)2 ≤ −(q4)1} and f (O) ∈ K1 and f (I) ∈ K2 andg(O) ∈ K3 and
g(I) ∈ K4 and rngf ⊆C0 and rngg⊆C0. Then rngf meets rngg.
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(24) Let f , g be maps fromI into E2
T, C0, K1, K2, K3, K4 be subsets ofE2

T, andO, I be points
of I. Suppose thatO = 0 andI = 1 and f is continuous and one-to-one andg is continuous
and one-to-one andC0 = {p : |p| ≤ 1} andK1 = {q1;q1 ranges over points ofE2

T: |q1| =
1 ∧ (q1)2 ≤ (q1)1 ∧ (q1)2 ≥ −(q1)1} andK2 = {q2;q2 ranges over points ofE2

T: |q2| =
1 ∧ (q2)2 ≥ (q2)1 ∧ (q2)2 ≤ −(q2)1} andK3 = {q3;q3 ranges over points ofE2

T: |q3| =
1 ∧ (q3)2 ≥ (q3)1 ∧ (q3)2 ≥ −(q3)1} andK4 = {q4;q4 ranges over points ofE2

T: |q4| =
1 ∧ (q4)2 ≤ (q4)1 ∧ (q4)2 ≤ −(q4)1} and f (O) ∈ K1 and f (I) ∈ K2 andg(O) ∈ K4 and
g(I) ∈ K3 and rngf ⊆C0 and rngg⊆C0. Then rngf meets rngg.

(25) Let p1, p2, p3, p4 be points ofE2
T, P be a compact non empty subset ofE2

T, andC0 be
a subset ofE2

T. SupposeP = {p; p ranges over points ofE2
T: |p| = 1} and p1 ≤P p2 and

p2 ≤P p3 andp3 ≤P p4. Let f , g be maps fromI into E2
T. Suppose thatf is continuous and

one-to-one andg is continuous and one-to-one andC0 = {p8; p8 ranges over points ofE2
T:

|p8| ≤ 1} and f (0) = p3 and f (1) = p1 andg(0) = p2 andg(1) = p4 and rngf ⊆ C0 and
rngg⊆C0. Then rngf meets rngg.

(26) Let p1, p2, p3, p4 be points ofE2
T, P be a compact non empty subset ofE2

T, andC0 be
a subset ofE2

T. SupposeP = {p; p ranges over points ofE2
T: |p| = 1} and p1 ≤P p2 and

p2 ≤P p3 andp3 ≤P p4. Let f , g be maps fromI into E2
T. Suppose thatf is continuous and

one-to-one andg is continuous and one-to-one andC0 = {p8; p8 ranges over points ofE2
T:

|p8| ≤ 1} and f (0) = p3 and f (1) = p1 andg(0) = p4 andg(1) = p2 and rngf ⊆ C0 and
rngg⊆C0. Then rngf meets rngg.

(27) Let p1, p2, p3, p4 be points ofE2
T, P be a compact non empty subset ofE2

T, andC0 be a
subset ofE2

T. SupposeP = {p; p ranges over points ofE2
T: |p|= 1} andp1, p2, p3, p4 are in

this order onP. Let f , g be maps fromI into E2
T. Suppose thatf is continuous and one-to-one

andg is continuous and one-to-one andC0 = {p8; p8 ranges over points ofE2
T: |p8| ≤ 1} and

f (0) = p1 and f (1) = p3 andg(0) = p2 andg(1) = p4 and rngf ⊆C0 and rngg⊆C0. Then
rng f meets rngg.

3. GENERAL RECTANGLES AND CIRCLES

Let a, b, c, d be real numbers. The functor Rectangle(a,b,c,d) yields a subset ofE2
T and is defined

by the condition (Def. 1).

(Def. 1) Rectangle(a,b,c,d) = {p : p1 = a ∧ c ≤ p2 ∧ p2 ≤ d ∨ p2 = d ∧ a ≤ p1 ∧ p1 ≤
b ∨ p1 = b ∧ c≤ p2 ∧ p2 ≤ d ∨ p2 = c ∧ a≤ p1 ∧ p1 ≤ b}.

The following proposition is true

(28) Let a, b, c, d be real numbers andp be a point ofE2
T. If a ≤ b and c ≤ d and

p∈ Rectangle(a,b,c,d), thena≤ p1 andp1 ≤ b andc≤ p2 andp2 ≤ d.

Let a, b, c, d be real numbers. The functor InsideOfRectangle(a,b,c,d) yielding a subset ofE2
T

is defined as follows:

(Def. 2) InsideOfRectangle(a,b,c,d) = {p : a < p1 ∧ p1 < b ∧ c < p2 ∧ p2 < d}.

Let a, b, c, d be real numbers. The functor ClosedInsideOfRectangle(a,b,c,d) yields a subset
of E2

T and is defined by:

(Def. 3) ClosedInsideOfRectangle(a,b,c,d) = {p : a≤ p1 ∧ p1 ≤ b ∧ c≤ p2 ∧ p2 ≤ d}.

Let a, b, c, d be real numbers. The functor OutsideOfRectangle(a,b,c,d) yields a subset ofE2
T

and is defined by:

(Def. 4) OutsideOfRectangle(a,b,c,d) = {p : a 6≤ p1 ∨ p1 6≤ b ∨ c 6≤ p2 ∨ p2 6≤ d}.

Let a, b, c, d be real numbers. The functor ClosedOutsideOfRectangle(a,b,c,d) yielding a
subset ofE2

T is defined by:
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(Def. 5) ClosedOutsideOfRectangle(a,b,c,d) = {p : a 6< p1 ∨ p1 6< b ∨ c 6< p2 ∨ p2 6< d}.

We now state four propositions:

(29) Let a, b, r be real numbers andK5, C1 be subsets ofE2
T. Supposer ≥ 0 and

K5 = {q : |q| = 1} and C1 = {p2; p2 ranges over points ofE2
T: |p2 − [a,b]| = r}. Then

(AffineMap(r,a, r,b))◦K5 = C1.

(30) LetP, Q be subsets ofE2
T. Suppose there exists a map fromE2

T�P into E2
T�Q which is a

homeomorphism andP is a simple closed curve. ThenQ is a simple closed curve.

(31) For every subsetP of E2
T such thatP satisfies conditions of simple closed curve holdsP is

compact.

(32) Leta, b, r be real numbers andC1 be a subset ofE2
T. Supposer > 0 andC1 = {p; p ranges

over points ofE2
T: |p− [a,b]|= r}. ThenC1 is a simple closed curve.

Let a, b, r be real numbers. Let us assume thatr > 0. The functor Circle(a,b, r) yielding a
compact non empty subset ofE2

T is defined by:

(Def. 6) Circle(a,b, r) = {p; p ranges over points ofE2
T: |p− [a,b]|= r}.

Let a, b, r be real numbers. The functor InsideOfCircle(a,b, r) yields a subset ofE2
T and is

defined by:

(Def. 7) InsideOfCircle(a,b, r) = {p; p ranges over points ofE2
T: |p− [a,b]|< r}.

Let a, b, r be real numbers. The functor ClosedInsideOfCircle(a,b, r) yields a subset ofE2
T and

is defined as follows:

(Def. 8) ClosedInsideOfCircle(a,b, r) = {p; p ranges over points ofE2
T: |p− [a,b]| ≤ r}.

Let a, b, r be real numbers. The functor OutsideOfCircle(a,b, r) yielding a subset ofE2
T is

defined by:

(Def. 9) OutsideOfCircle(a,b, r) = {p; p ranges over points ofE2
T: |p− [a,b]|> r}.

Let a, b, r be real numbers. The functor ClosedOutsideOfCircle(a,b, r) yielding a subset ofE2
T

is defined by:

(Def. 10) ClosedOutsideOfCircle(a,b, r) = {p; p ranges over points ofE2
T: |p− [a,b]| ≥ r}.

One can prove the following propositions:

(33) Let r be a real number. Then InsideOfCircle(0,0, r) = {p : |p| < r} and if r > 0,
then Circle(0,0, r) = {p2 : |p2| = r} and OutsideOfCircle(0,0, r) = {p3 : |p3| > r} and
ClosedInsideOfCircle(0,0, r) = {q : |q| ≤ r} and ClosedOutsideOfCircle(0,0, r) = {q2 :
|q2| ≥ r}.

(34) LetK5, C1 be subsets ofE2
T. SupposeK5 = {p :−1< p1 ∧ p1 < 1 ∧ −1< p2 ∧ p2 < 1}

andC1 = {p2; p2 ranges over points ofE2
T: |p2|< 1}. Then SqCirc◦K5 = C1.

(35) LetK5, C1 be subsets ofE2
T. SupposeK5 = {p :−1 6≤ p1 ∨ p1 6≤ 1 ∨ −1 6≤ p2 ∨ p2 6≤ 1}

andC1 = {p2; p2 ranges over points ofE2
T: |p2|> 1}. Then SqCirc◦K5 = C1.

(36) LetK5, C1 be subsets ofE2
T. SupposeK5 = {p :−1≤ p1 ∧ p1 ≤ 1 ∧ −1≤ p2 ∧ p2 ≤ 1}

andC1 = {p2; p2 ranges over points ofE2
T: |p2| ≤ 1}. Then SqCirc◦K5 = C1.

(37) LetK5, C1 be subsets ofE2
T. SupposeK5 = {p :−1 6< p1 ∨ p1 6< 1 ∨ −1 6< p2 ∨ p2 6< 1}

andC1 = {p2; p2 ranges over points ofE2
T: |p2| ≥ 1}. Then SqCirc◦K5 = C1.
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(38) Let P0, P1, P2, P11, K0, K6, K7, K11 be subsets ofE2
T, P, K be non empty

compact subsets ofE2
T, and f be a map fromE2

T into E2
T. Suppose thatP =

Circle(0,0,1) and P0 = InsideOfCircle(0,0,1) and P1 = OutsideOfCircle(0,0,1) and
P2 = ClosedInsideOfCircle(0,0,1) and P11 = ClosedOutsideOfCircle(0,0,1) and K =
Rectangle(−1,1,−1,1) andK0 = InsideOfRectangle(−1,1,−1,1) andK6 = OutsideOfRectangle(−1,1,−1,1)
andK7 = ClosedInsideOfRectangle(−1,1,−1,1) andK11= ClosedOutsideOfRectangle(−1,1,−1,1)
and f = SqCirc. Then f ◦K = P and( f−1)◦P = K and f ◦K0 = P0 and( f−1)◦P0 = K0 and
f ◦K6 = P1 and ( f−1)◦P1 = K6 and f ◦K7 = P2 and f ◦K11 = P11 and ( f−1)◦P2 = K7 and
( f−1)◦P11 = K11.

4. ORDER OFPOINTS ON RECTANGLE

One can prove the following propositions:

(39) Leta, b, c, d be real numbers. Supposea≤ b andc≤ d. Then

(i) L([a,c], [a,d]) = {p1 : (p1)1 = a ∧ (p1)2 ≤ d ∧ (p1)2 ≥ c},
(ii) L([a,d], [b,d]) = {p2 : (p2)1 ≤ b ∧ (p2)1 ≥ a ∧ (p2)2 = d},

(iii) L([a,c], [b,c]) = {q1 : (q1)1 ≤ b ∧ (q1)1 ≥ a ∧ (q1)2 = c}, and

(iv) L([b,c], [b,d]) = {q2 : (q2)1 = b ∧ (q2)2 ≤ d ∧ (q2)2 ≥ c}.

(40) Leta, b, c, d be real numbers. Supposea≤ b andc≤ d. Then{p : p1 = a ∧ c≤ p2 ∧ p2≤
d ∨ p2 = d ∧ a≤ p1 ∧ p1 ≤ b ∨ p1 = b ∧ c≤ p2 ∧ p2 ≤ d ∨ p2 = c ∧ a≤ p1 ∧ p1 ≤
b}= L([a,c], [a,d])∪L([a,d], [b,d])∪ (L([a,c], [b,c])∪L([b,c], [b,d])).

(41) For all real numbersa, b, c, d such thata≤ b andc≤ d holdsL([a,c], [a,d])∩L([a,c], [b,
c]) = {[a,c]}.

(42) For all real numbersa, b, c, d such thata≤ b andc≤ d holdsL([a,c], [b,c])∩L([b,c], [b,
d]) = {[b,c]}.

(43) For all real numbersa, b, c, d such thata≤ b andc≤ d holdsL([a,d], [b,d])∩L([b,c], [b,
d]) = {[b,d]}.

(44) For all real numbersa, b, c, d such thata≤ b andc≤ d holdsL([a,c], [a,d])∩L([a,d], [b,
d]) = {[a,d]}.

(45) {q : −1 = q1 ∧ −1≤ q2 ∧ q2 ≤ 1 ∨ q1 = 1 ∧ −1≤ q2 ∧ q2 ≤ 1 ∨ −1 = q2 ∧ −1≤
q1 ∧ q1 ≤ 1 ∨ 1 = q2 ∧ −1≤ q1 ∧ q1 ≤ 1}= {p : p1 =−1 ∧ −1≤ p2 ∧ p2 ≤ 1 ∨ p2 =
1 ∧ −1≤ p1 ∧ p1 ≤ 1 ∨ p1 = 1 ∧ −1≤ p2 ∧ p2 ≤ 1 ∨ p2 =−1 ∧ −1≤ p1 ∧ p1 ≤ 1}.

(46) Let K be a non empty compact subset ofE2
T and a, b, c, d be real numbers. IfK =

Rectangle(a,b,c,d) anda≤ b andc≤ d, then W-bound(K) = a.

(47) Let K be a non empty compact subset ofE2
T and a, b, c, d be real numbers. IfK =

Rectangle(a,b,c,d) anda≤ b andc≤ d, then N-bound(K) = d.

(48) Let K be a non empty compact subset ofE2
T and a, b, c, d be real numbers. IfK =

Rectangle(a,b,c,d) anda≤ b andc≤ d, then E-bound(K) = b.

(49) Let K be a non empty compact subset ofE2
T and a, b, c, d be real numbers. IfK =

Rectangle(a,b,c,d) anda≤ b andc≤ d, then S-bound(K) = c.

(50) Let K be a non empty compact subset ofE2
T and a, b, c, d be real numbers. IfK =

Rectangle(a,b,c,d) anda≤ b andc≤ d, then NW-corner(K) = [a,d].

(51) Let K be a non empty compact subset ofE2
T and a, b, c, d be real numbers. IfK =

Rectangle(a,b,c,d) anda≤ b andc≤ d, then NE-corner(K) = [b,d].
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(52) Let K be a non empty compact subset ofE2
T and a, b, c, d be real numbers. IfK =

Rectangle(a,b,c,d) anda≤ b andc≤ d, then SW-corner(K) = [a,c].

(53) Let K be a non empty compact subset ofE2
T and a, b, c, d be real numbers. IfK =

Rectangle(a,b,c,d) anda≤ b andc≤ d, then SE-corner(K) = [b,c].

(54) Let K be a non empty compact subset ofE2
T and a, b, c, d be real numbers. IfK =

Rectangle(a,b,c,d) anda≤ b andc≤ d, then Wmost(K) = L([a,c], [a,d]).

(55) Let K be a non empty compact subset ofE2
T and a, b, c, d be real numbers. IfK =

Rectangle(a,b,c,d) anda≤ b andc≤ d, then Emost(K) = L([b,c], [b,d]).

(56) Let K be a non empty compact subset ofE2
T and a, b, c, d be real numbers. IfK =

Rectangle(a,b,c,d) anda≤ b andc≤ d, then Wmin(K) = [a,c] and Emax(K) = [b,d].

(57) Let K be a non empty compact subset ofE2
T and a, b, c, d be real numbers. Suppose

K = Rectangle(a,b,c,d) anda < b andc < d. Then L([a,c], [a,d])∪L([a,d], [b,d]) is an
arc from Wmin(K) to Emax(K) andL([a,c], [b,c])∪L([b,c], [b,d]) is an arc from Emax(K) to
Wmin(K).

(58) Let P, P1, P3 be subsets ofE2
T, a, b, c, d be real numbers,f1, f2 be finite sequences

of elements ofE2
T, andp0, p1, p5, p10 be points ofE2

T. Suppose thata < b andc < d and
P= {p : p1 = a ∧ c≤ p2 ∧ p2≤ d ∨ p2 = d ∧ a≤ p1 ∧ p1≤ b ∨ p1 = b ∧ c≤ p2 ∧ p2≤
d ∨ p2 = c ∧ a≤ p1 ∧ p1 ≤ b} andp0 = [a,c] andp1 = [b,d] andp5 = [a,d] andp10 = [b,

c] and f1 = 〈p0, p5, p1〉 and f2 = 〈p0, p10, p1〉. Then f1 is a special sequence and̃L( f1) =
L(p0, p5)∪L(p5, p1) and f2 is a special sequence andL̃( f2) = L(p0, p10)∪L(p10, p1) and
P = L̃( f1)∪ L̃( f2) and L̃( f1)∩ L̃( f2) = {p0, p1} and ( f1)1 = p0 and ( f1)len f1 = p1 and
( f2)1 = p0 and( f2)len f2 = p1.

(59) Let P, P1, P3 be subsets ofE2
T, a, b, c, d be real numbers,f1, f2 be finite sequences of

elements ofE2
T, and p1, p2 be points ofE2

T. Suppose thata < b andc < d andP = {p :
p1 = a ∧ c≤ p2 ∧ p2 ≤ d ∨ p2 = d ∧ a≤ p1 ∧ p1 ≤ b ∨ p1 = b ∧ c≤ p2 ∧ p2 ≤
d ∨ p2 = c ∧ a≤ p1 ∧ p1 ≤ b} andp1 = [a,c] andp2 = [b,d] and f1 = 〈[a,c], [a,d], [b,d]〉
and f2 = 〈[a,c], [b,c], [b,d]〉 andP1 = L̃( f1) andP3 = L̃( f2). ThenP1 is an arc fromp1 to p2

andP3 is an arc fromp1 to p2 andP1 is non empty andP3 is non empty andP = P1∪P3 and
P1∩P3 = {p1, p2}.

(60) For all real numbersa, b, c, d such thata < b andc < d holds Rectangle(a,b,c,d) is a
simple closed curve.

(61) Let K be a non empty compact subset ofE2
T and a, b, c, d be real numbers. IfK =

Rectangle(a,b,c,d) anda < b andc < d, then UpperArc(K) = L([a,c], [a,d])∪L([a,d], [b,
d]).

(62) Let K be a non empty compact subset ofE2
T and a, b, c, d be real numbers. IfK =

Rectangle(a,b,c,d) anda < b andc < d, then LowerArc(K) = L([a,c], [b,c])∪L([b,c], [b,
d]).

(63) Let K be a non empty compact subset ofE2
T, a, b, c, d be real numbers, andp1, p2 be

points ofE2
T. SupposeK = Rectangle(a,b,c,d) anda< b andc< d. Then there exists a map

f from I into (E2
T)�UpperArc(K) such that

f is a homeomorphism andf (0) = Wmin(K) and f (1) = Emax(K) and rngf = UpperArc(K)
and for every real numberr such thatr ∈ [0, 1

2] holds f (r) = (1−2· r) · [a,c]+2· r · [a,d] and
for every real numberr such thatr ∈ [1

2,1] holds f (r) = (1−(2· r−1)) · [a,d]+(2· r−1) · [b,

d] and for every pointp of E2
T such thatp∈ L([a,c], [a,d]) holds 0≤

p2−c
d−c
2 and

p2−c
d−c
2 ≤ 1 and

f (
p2−c
d−c
2 ) = p and for every pointp of E2

T such thatp∈ L([a,d], [b,d]) holds 0≤
p1−a
b−a
2 + 1

2 and
p1−a
b−a
2 + 1

2 ≤ 1 and f (
p1−a
b−a
2 + 1

2) = p.
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(64) Let K be a non empty compact subset ofE2
T, a, b, c, d be real numbers, andp1, p2 be

points ofE2
T. SupposeK = Rectangle(a,b,c,d) anda< b andc< d. Then there exists a map

f from I into (E2
T)�LowerArc(K) such that

f is a homeomorphism andf (0) = Emax(K) and f (1) = Wmin(K) and rngf = LowerArc(K)
and for every real numberr such thatr ∈ [0, 1

2] holds f (r) = (1−2· r) · [b,d]+2· r · [b,c] and
for every real numberr such thatr ∈ [1

2,1] holds f (r) = (1− (2· r−1)) · [b,c]+(2· r−1) · [a,

c] and for every pointp of E2
T such thatp∈ L([b,d], [b,c]) holds 0≤

p2−d
c−d
2 and

p2−d
c−d
2 ≤ 1 and

f (
p2−d
c−d
2 ) = p and for every pointp of E2

T such thatp∈ L([b,c], [a,c]) holds 0≤
p1−b
a−b
2 + 1

2 and
p1−b
a−b
2 + 1

2 ≤ 1 and f (
p1−b
a−b
2 + 1

2) = p.

(65) Let K be a non empty compact subset ofE2
T, a, b, c, d be real numbers, andp1, p2 be

points ofE2
T. SupposeK = Rectangle(a,b,c,d) anda < b andc < d andp1 ∈ L([a,c], [a,d])

andp2 ∈ L([a,c], [a,d]). Thenp1 ≤K p2 if and only if (p1)2 ≤ (p2)2.

(66) Let K be a non empty compact subset ofE2
T, a, b, c, d be real numbers, andp1, p2 be

points ofE2
T. SupposeK = Rectangle(a,b,c,d) anda < b andc < d andp1 ∈ L([a,d], [b,d])

andp2 ∈ L([a,d], [b,d]). Thenp1 ≤K p2 if and only if (p1)1 ≤ (p2)1.

(67) Let K be a non empty compact subset ofE2
T, a, b, c, d be real numbers, andp1, p2 be

points ofE2
T. SupposeK = Rectangle(a,b,c,d) anda < b andc < d andp1 ∈ L([b,c], [b,d])

andp2 ∈ L([b,c], [b,d]). Thenp1 ≤K p2 if and only if (p1)2 ≥ (p2)2.

(68) Let K be a non empty compact subset ofE2
T, a, b, c, d be real numbers, andp1, p2 be

points ofE2
T. SupposeK = Rectangle(a,b,c,d) anda < b andc < d andp1 ∈ L([a,c], [b,c])

andp2 ∈ L([a,c], [b,c]). Thenp1 ≤K p2 andp1 6= Wmin(K) if and only if (p1)1 ≥ (p2)1 and
p2 6= Wmin(K).

(69) LetK be a non empty compact subset ofE2
T, a, b, c, d be real numbers, andp1, p2 be points

of E2
T. SupposeK = Rectangle(a,b,c,d) anda < b andc < d andp1 ∈ L([a,c], [a,d]). Then

p1 ≤K p2 if and only if one of the following conditions is satisfied:

(i) p2 ∈ L([a,c], [a,d]) and(p1)2 ≤ (p2)2, or

(ii) p2 ∈ L([a,d], [b,d]), or

(iii) p2 ∈ L([b,d], [b,c]), or

(iv) p2 ∈ L([b,c], [a,c]) andp2 6= Wmin(K).

(70) LetK be a non empty compact subset ofE2
T, a, b, c, d be real numbers, andp1, p2 be points

of E2
T. SupposeK = Rectangle(a,b,c,d) anda < b andc < d andp1 ∈ L([a,d], [b,d]). Then

p1 ≤K p2 if and only if one of the following conditions is satisfied:

(i) p2 ∈ L([a,d], [b,d]) and(p1)1 ≤ (p2)1, or

(ii) p2 ∈ L([b,d], [b,c]), or

(iii) p2 ∈ L([b,c], [a,c]) andp2 6= Wmin(K).

(71) LetK be a non empty compact subset ofE2
T, a, b, c, d be real numbers, andp1, p2 be points

of E2
T. SupposeK = Rectangle(a,b,c,d) anda < b andc < d andp1 ∈ L([b,d], [b,c]). Then

p1 ≤K p2 if and only if one of the following conditions is satisfied:

(i) p2 ∈ L([b,d], [b,c]) and(p1)2 ≥ (p2)2, or

(ii) p2 ∈ L([b,c], [a,c]) andp2 6= Wmin(K).

(72) Let K be a non empty compact subset ofE2
T, a, b, c, d be real numbers, andp1, p2 be

points ofE2
T. SupposeK = Rectangle(a,b,c,d) anda < b andc < d andp1 ∈ L([b,c], [a,c])

andp1 6= Wmin(K). Thenp1 ≤K p2 if and only if the following conditions are satisfied:

(i) p2 ∈ L([b,c], [a,c]),

(ii) (p1)1 ≥ (p2)1, and

(iii) p2 6= Wmin(K).
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(73) Letx be a set anda, b, c, d be real numbers. Supposex∈ Rectangle(a,b,c,d) anda < b
andc < d. Thenx∈ L([a,c], [a,d]) or x∈ L([a,d], [b,d]) or x∈ L([b,d], [b,c]) or x∈ L([b,
c], [a,c]).

5. GENERAL FASHODA THEOREM FORSQUARE

One can prove the following propositions:

(74) Let p1, p2 be points ofE2
T and K be a non empty compact subset ofE2

T. Suppose
K = Rectangle(−1,1,−1,1) andp1 ≤K p2 andp1 ∈ L([−1,−1], [−1,1]). Thenp2 ∈ L([−1,
−1], [−1,1]) and (p2)2 ≥ (p1)2 or p2 ∈ L([−1,1], [1,1]) or p2 ∈ L([1,1], [1,−1]) or p2 ∈
L([1,−1], [−1,−1]) andp2 6= [−1,−1].

(75) Letp1, p2 be points ofE2
T, P, K be non empty compact subsets ofE2

T, and f be a map from
E2

T into E2
T. SupposeP = Circle(0,0,1) andK = Rectangle(−1,1,−1,1) and f = SqCirc

andp1 ∈ L([−1,−1], [−1,1]) and(p1)2 ≥ 0 andp1 ≤K p2. Then f (p1)≤P f (p2).

(76) Let p1, p2, p3 be points ofE2
T, P, K be non empty compact subsets ofE2

T, and f be
a map fromE2

T into E2
T. SupposeP = Circle(0,0,1) andK = Rectangle(−1,1,−1,1) and

f = SqCirc andp1 ∈ L([−1,−1], [−1,1]) and(p1)2 ≥ 0 andp1 ≤K p2 andp2 ≤K p3. Then
f (p2)≤P f (p3).

(77) Let p be a point ofE2
T and f be a map fromE2

T into E2
T. If f = SqCirc andp1 = −1 and

p2 < 0, then f (p)1 < 0 and f (p)2 < 0.

(78) Let p be a point ofE2
T, P, K be non empty compact subsets ofE2

T, and f be a map from
E2

T into E2
T. If P = Circle(0,0,1) and K = Rectangle(−1,1,−1,1) and f = SqCirc, then

f (p)1 ≥ 0 iff p1 ≥ 0.

(79) Let p be a point ofE2
T, P, K be non empty compact subsets ofE2

T, and f be a map from
E2

T into E2
T. If P = Circle(0,0,1) and K = Rectangle(−1,1,−1,1) and f = SqCirc, then

f (p)2 ≥ 0 iff p2 ≥ 0.

(80) Let p, q be points ofE2
T and f be a map fromE2

T into E2
T. If f = SqCirc andp∈ L([−1,

−1], [−1,1]) andq∈ L([1,−1], [−1,−1]), then f (p)1 ≤ f (q)1.

(81) Let p, q be points ofE2
T and f be a map fromE2

T into E2
T. Supposef = SqCirc and

p∈ L([−1,−1], [−1,1]) andq∈ L([−1,−1], [−1,1]) andp2 ≥ q2 andp2 < 0. Then f (p)2 ≥
f (q)2.

(82) Let p1, p2, p3, p4 be points ofE2
T, P, K be non empty compact subsets ofE2

T, and f be
a map fromE2

T into E2
T. SupposeP = Circle(0,0,1) andK = Rectangle(−1,1,−1,1) and

f = SqCirc. Supposep1 ≤K p2 and p2 ≤K p3 and p3 ≤K p4. Then f (p1), f (p2), f (p3),
f (p4) are in this order onP.

(83) Let p1, p2 be points ofE2
T andP be a non empty compact subset ofE2

T. If P is a simple
closed curve andp1 ∈ P andp2 ∈ P andp1 �P p2, thenp2 ≤P p1.

(84) Let p1, p2, p3 be points ofE2
T andP be a non empty compact subset ofE2

T. SupposeP
is a simple closed curve andp1 ∈ P andp2 ∈ P andp3 ∈ P. Thenp1 ≤P p2 andp2 ≤P p3 or
p1 ≤P p3 andp3 ≤P p2 or p2 ≤P p1 andp1 ≤P p3 or p2 ≤P p3 andp3 ≤P p1 or p3 ≤P p1 and
p1 ≤P p2 or p3 ≤P p2 andp2 ≤P p1.

(85) Let p1, p2, p3 be points ofE2
T andP be a non empty compact subset ofE2

T. SupposeP is
a simple closed curve andp1 ∈ P and p2 ∈ P and p3 ∈ P and p2 ≤P p3. Then p1 ≤P p2 or
p2 ≤P p1 andp1 ≤P p3 or p3 ≤P p1.

(86) Let p1, p2, p3, p4 be points ofE2
T andP be a non empty compact subset ofE2

T. Suppose
P is a simple closed curve andp1 ∈ P andp2 ∈ P andp3 ∈ P andp4 ∈ P andp2 ≤P p3 and
p3 ≤P p4. Thenp1 ≤P p2 or p2 ≤P p1 andp1 ≤P p3 or p3 ≤P p1 andp1 ≤P p4 or p4 ≤P p1.
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(87) Let p1, p2, p3, p4 be points ofE2
T, P, K be non empty compact subsets ofE2

T, and f be
a map fromE2

T into E2
T. SupposeP = Circle(0,0,1) andK = Rectangle(−1,1,−1,1) and

f = SqCirc andf (p1) ≤P f (p2) and f (p2) ≤P f (p3) and f (p3) ≤P f (p4). Thenp1, p2, p3,
p4 are in this order onK.

(88) Let p1, p2, p3, p4 be points ofE2
T, P, K be non empty compact subsets ofE2

T, and f be
a map fromE2

T into E2
T. SupposeP = Circle(0,0,1) andK = Rectangle(−1,1,−1,1) and

f = SqCirc. Then p1, p2, p3, p4 are in this order onK if and only if f (p1), f (p2), f (p3),
f (p4) are in this order onP.

(89) Let p1, p2, p3, p4 be points ofE2
T, K be a compact non empty subset ofE2

T, andK0 be a
subset ofE2

T. SupposeK = Rectangle(−1,1,−1,1) and p1, p2, p3, p4 are in this order on
K. Let f , g be maps fromI into E2

T. Suppose thatf is continuous and one-to-one andg is
continuous and one-to-one andK0 = ClosedInsideOfRectangle(−1,1,−1,1) and f (0) = p1

and f (1) = p3 andg(0) = p2 andg(1) = p4 and rngf ⊆ K0 and rngg⊆ K0. Then rngf meets
rngg.

REFERENCES

[1] Grzegorz Bancerek. The ordinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/ordinal1.
html.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.Journal of Formalized Mathematics,
1, 1989.http://mizar.org/JFM/Vol1/finseq_1.html.

[3] Leszek Borys. Paracompact and metrizable spaces.Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/
pcomps_1.html.
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