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The articles [1], [18], [11], [9], [17], [20], [8], [4], [5], [10], [2], [7], [12], [19], [16], [6], [3], [15],
[14], and [13] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paperx, a denote real numbers.
One can prove the following propositions:

(1) If a≥ 0 and(x−a) · (x+a)≥ 0, then−a≥ x or x≥ a.

(2) If a≤ 0 andx < a, thenx2 > a2.

(3) For every pointp of E2
T such that|p| ≤ 1 holds−1≤ p1 and p1 ≤ 1 and−1≤ p2 and

p2 ≤ 1.

(4) For every pointp of E2
T such that|p| ≤ 1 andp1 6= 0 andp2 6= 0 holds−1< p1 andp1 < 1

and−1 < p2 andp2 < 1.

(5) Let a, b, d, e, r3 be real numbers,P1, P2 be non empty metric structures,x be an element
of P1, andx2 be an element ofP2. Supposed ≤ a anda≤ b andb≤ e andP1 = [a, b]M and
P2 = [d, e]M andx = x2 andx∈ the carrier ofP1 andx2 ∈ the carrier ofP2. Then Ball(x, r3)⊆
Ball(x2, r3).

(6) Leta, b, d, ebe real numbers andB be a subset of[d, e]T. If d≤ a anda≤ b andb≤ eand
B = [a,b], then[a, b]T = [d, e]T�B.

(7) For all real numbersa, b and for every subsetB of I such that 0≤ a anda≤ b andb≤ 1
andB = [a,b] holds[a, b]T = I�B.

(8) LetX be a topological structure,Y, Z be non empty topological structures,f be a map from
X into Y, andh be a map fromY into Z. If h is a homeomorphism andf is continuous, then
h· f is continuous.
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(9) Let X, Y, Z be topological structures,f be a map fromX into Y, andh be a map fromY
into Z. If h is a homeomorphism andf is one-to-one, thenh· f is one-to-one.

(10) Let X be a topological structure,S, V be non empty topological structures,B be a non
empty subset ofS, f be a map fromX into S�B, g be a map fromS into V, andh be a map
from X into V. If h = g· f and f is continuous andg is continuous, thenh is continuous.

(11) Leta, b, d, e, s1, s2, t1, t2 be real numbers andh be a map from[a, b]T into [d, e]T. Suppose
h is a homeomorphism andh(s1) = t1 andh(s2) = t2 andh(a) = d andh(b) = e andd ≤ e
andt1 ≤ t2 ands1 ∈ [a,b] ands2 ∈ [a,b]. Thens1 ≤ s2.

(12) Leta, b, d, e, s1, s2, t1, t2 be real numbers andh be a map from[a, b]T into [d, e]T. Suppose
h is a homeomorphism andh(s1) = t1 andh(s2) = t2 andh(a) = e andh(b) = d ande≥ d
andt1 ≥ t2 ands1 ∈ [a,b] ands2 ∈ [a,b]. Thens1 ≤ s2.

(13) For every natural numbern holds−0En
T

= 0En
T
.

2. FASHODA MEET THEOREMS FORCIRCLE IN SPECIAL CASE

One can prove the following propositions:

(14) Let f , g be maps fromI into E2
T, a, b, c, d be real numbers, andO, I be points ofI. Suppose

thatO = 0 andI = 1 and f is continuous and one-to-one andg is continuous and one-to-one
anda 6= b andc 6= d and f (O)1 = a andc≤ f (O)2 and f (O)2≤ d and f (I)1 = b andc≤ f (I)2
and f (I)2 ≤ d andg(O)2 = c anda≤ g(O)1 andg(O)1 ≤ b andg(I)2 = d anda≤ g(I)1 and
g(I)1 ≤ b and for every pointr of I holdsa≥ f (r)1 or f (r)1 ≥ b or c≥ f (r)2 or f (r)2 ≥ d
buta≥ g(r)1 or g(r)1 ≥ b or c≥ g(r)2 or g(r)2 ≥ d. Then rngf meets rngg.

(15) Let f be a map fromI into E2
T. Supposef is continuous and one-to-one. Then there exists

a mapf2 from I into E2
T such thatf2(0) = f (1) and f2(1) = f (0) and rngf2 = rng f and f2 is

continuous and one-to-one.

In the sequelp, q are points ofE2
T.

The following propositions are true:

(16) Let f , g be maps fromI into E2
T, C0, K1, K2, K3, K4 be subsets ofE2

T, andO, I be points
of I. Suppose thatO = 0 andI = 1 and f is continuous and one-to-one andg is continuous
and one-to-one andC0 = {p : |p| ≤ 1} andK1 = {q1;q1 ranges over points ofE2

T: |q1| =
1 ∧ (q1)2 ≤ (q1)1 ∧ (q1)2 ≥ −(q1)1} andK2 = {q2;q2 ranges over points ofE2

T: |q2| =
1 ∧ (q2)2 ≥ (q2)1 ∧ (q2)2 ≤ −(q2)1} andK3 = {q3;q3 ranges over points ofE2

T: |q3| =
1 ∧ (q3)2 ≥ (q3)1 ∧ (q3)2 ≥ −(q3)1} andK4 = {q4;q4 ranges over points ofE2

T: |q4| =
1 ∧ (q4)2 ≤ (q4)1 ∧ (q4)2 ≤ −(q4)1} and f (O) ∈ K2 and f (I) ∈ K1 andg(O) ∈ K3 and
g(I) ∈ K4 and rngf ⊆C0 and rngg⊆C0. Then rngf meets rngg.

(17) Let f , g be maps fromI into E2
T, C0, K1, K2, K3, K4 be subsets ofE2

T, andO, I be points
of I. Suppose thatO = 0 andI = 1 and f is continuous and one-to-one andg is continuous
and one-to-one andC0 = {p : |p| ≥ 1} andK1 = {q1;q1 ranges over points ofE2

T: |q1| =
1 ∧ (q1)2 ≤ (q1)1 ∧ (q1)2 ≥ −(q1)1} andK2 = {q2;q2 ranges over points ofE2

T: |q2| =
1 ∧ (q2)2 ≥ (q2)1 ∧ (q2)2 ≤ −(q2)1} andK3 = {q3;q3 ranges over points ofE2

T: |q3| =
1 ∧ (q3)2 ≥ (q3)1 ∧ (q3)2 ≥ −(q3)1} andK4 = {q4;q4 ranges over points ofE2

T: |q4| =
1 ∧ (q4)2 ≤ (q4)1 ∧ (q4)2 ≤ −(q4)1} and f (O) ∈ K2 and f (I) ∈ K1 andg(O) ∈ K4 and
g(I) ∈ K3 and rngf ⊆C0 and rngg⊆C0. Then rngf meets rngg.

(18) Let f , g be maps fromI into E2
T, C0, K1, K2, K3, K4 be subsets ofE2

T, andO, I be points
of I. Suppose thatO = 0 andI = 1 and f is continuous and one-to-one andg is continuous
and one-to-one andC0 = {p : |p| ≥ 1} andK1 = {q1;q1 ranges over points ofE2

T: |q1| =
1 ∧ (q1)2 ≤ (q1)1 ∧ (q1)2 ≥ −(q1)1} andK2 = {q2;q2 ranges over points ofE2

T: |q2| =
1 ∧ (q2)2 ≥ (q2)1 ∧ (q2)2 ≤ −(q2)1} andK3 = {q3;q3 ranges over points ofE2

T: |q3| =
1 ∧ (q3)2 ≥ (q3)1 ∧ (q3)2 ≥ −(q3)1} andK4 = {q4;q4 ranges over points ofE2

T: |q4| =
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1 ∧ (q4)2 ≤ (q4)1 ∧ (q4)2 ≤ −(q4)1} and f (O) ∈ K2 and f (I) ∈ K1 andg(O) ∈ K3 and
g(I) ∈ K4 and rngf ⊆C0 and rngg⊆C0. Then rngf meets rngg.

(19) Let f , g be maps fromI into E2
T andC0 be a subset ofE2

T. Suppose thatC0 = {q : |q| ≥ 1}
and f is continuous and one-to-one andg is continuous and one-to-one andf (0) = [−1,0]
and f (1) = [1,0] andg(1) = [0,1] andg(0) = [0,−1] and rngf ⊆C0 and rngg⊆C0. Then
rng f meets rngg.

(20) Let p1, p2, p3, p4 be points ofE2
T andC0 be a subset ofE2

T. Suppose that

(i) C0 = {p : |p| ≥ 1},
(ii) |p1|= 1,

(iii) |p2|= 1,

(iv) |p3|= 1,

(v) |p4|= 1, and

(vi) there exists a maph from E2
T into E2

T such thath is a homeomorphism andh◦C0 ⊆C0 and
h(p1) = [−1,0] andh(p2) = [0,1] andh(p3) = [1,0] andh(p4) = [0,−1].

Let f , g be maps fromI into E2
T. Suppose thatf is continuous and one-to-one andg is

continuous and one-to-one andf (0) = p1 and f (1) = p3 andg(0) = p4 andg(1) = p2 and
rng f ⊆C0 and rngg⊆C0. Then rngf meets rngg.

3. PROPERTIES OFFAN MORPHISMS

One can prove the following propositions:

(21) Letc1 be a real number andq be a point ofE2
T. Suppose−1 < c1 andc1 < 1 andq2 > 0.

Let p be a point ofE2
T. If p = c1 -FanMorphN(q), thenp2 > 0.

(22) Letc1 be a real number andq be a point ofE2
T. Suppose−1 < c1 andc1 < 1 andq2 ≥ 0.

Let p be a point ofE2
T. If p = c1 -FanMorphN(q), thenp2 ≥ 0.

(23) Letc1 be a real number andq be a point ofE2
T. Suppose−1 < c1 andc1 < 1 andq2 ≥ 0

and q1
|q| < c1 and|q| 6= 0. Let p be a point ofE2

T. If p = c1 -FanMorphN(q), thenp2 ≥ 0 and
p1 < 0.

(24) Let c1 be a real number andq1, q2 be points ofE2
T. Suppose−1 < c1 andc1 < 1 and

(q1)2 ≥ 0 and(q2)2 ≥ 0 and|q1| 6= 0 and|q2| 6= 0 and (q1)1
|q1| < (q2)1

|q2| . Let p1, p2 be points of

E2
T. If p1 = c1 -FanMorphN(q1) andp2 = c1 -FanMorphN(q2), then (p1)1

|p1| < (p2)1
|p2| .

(25) Lets3 be a real number andq be a point ofE2
T. Suppose−1 < s3 ands3 < 1 andq1 > 0.

Let p be a point ofE2
T. If p = s3 -FanMorphE(q), thenp1 > 0.

(26) Lets3 be a real number andq be a point ofE2
T. Suppose−1 < s3 ands3 < 1 andq1 ≥ 0

and q2
|q| < s3 and|q| 6= 0. Let p be a point ofE2

T. If p = s3 -FanMorphE(q), thenp1 ≥ 0 and
p2 < 0.

(27) Let s3 be a real number andq1, q2 be points ofE2
T. Suppose−1 < s3 ands3 < 1 and

(q1)1 ≥ 0 and(q2)1 ≥ 0 and|q1| 6= 0 and|q2| 6= 0 and (q1)2
|q1| < (q2)2

|q2| . Let p1, p2 be points of

E2
T. If p1 = s3 -FanMorphE(q1) andp2 = s3 -FanMorphE(q2), then (p1)2

|p1| < (p2)2
|p2| .

(28) Letc1 be a real number andq be a point ofE2
T. Suppose−1 < c1 andc1 < 1 andq2 < 0.

Let p be a point ofE2
T. If p = c1 -FanMorphS(q), thenp2 < 0.

(29) Letc1 be a real number andq be a point ofE2
T. Suppose−1 < c1 andc1 < 1 andq2 < 0

and q1
|q| > c1. Let p be a point ofE2

T. If p = c1 -FanMorphS(q), thenp2 < 0 andp1 > 0.
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(30) Let c1 be a real number andq1, q2 be points ofE2
T. Suppose−1 < c1 andc1 < 1 and

(q1)2 ≤ 0 and(q2)2 ≤ 0 and|q1| 6= 0 and|q2| 6= 0 and (q1)1
|q1| < (q2)1

|q2| . Let p1, p2 be points of

E2
T. If p1 = c1 -FanMorphS(q1) andp2 = c1 -FanMorphS(q2), then (p1)1

|p1| < (p2)1
|p2| .

4. ORDER OFPOINTS ON CIRCLE

We now state a number of propositions:

(31) For every compact non empty subsetP of E2
T such thatP = {q : |q| = 1} holds

W-bound(P) =−1 and E-bound(P) = 1 and S-bound(P) =−1 and N-bound(P) = 1.

(32) For every compact non empty subsetP of E2
T such thatP = {q : |q|= 1} holds Wmin(P) =

[−1,0].

(33) For every compact non empty subsetPof E2
T such thatP= {q : |q|= 1} holds Emax(P) = [1,

0].

(34) For every mapf from E2
T into R1 such that for every pointp of E2

T holds f (p) = proj1(p)
holds f is continuous.

(35) For every mapf from E2
T into R1 such that for every pointp of E2

T holds f (p) = proj2(p)
holds f is continuous.

(36) For every compact non empty subsetP of E2
T such thatP = {q;q ranges over points ofE2

T:
|q|= 1} holds UpperArc(P)⊆ P and LowerArc(P)⊆ P.

(37) LetP be a compact non empty subset ofE2
T. SupposeP = {q;q ranges over points ofE2

T:
|q|= 1}. Then UpperArc(P) = {p; p ranges over points ofE2

T: p∈ P ∧ p2 ≥ 0}.

(38) LetP be a compact non empty subset ofE2
T. SupposeP = {q;q ranges over points ofE2

T:
|q|= 1}. Then LowerArc(P) = {p; p ranges over points ofE2

T: p∈ P ∧ p2 ≤ 0}.

(39) Leta, b, d, e be real numbers. Supposea≤ b ande> 0. Then there exists a mapf from
[a, b]T into [e·a+d, e·b+d]T such thatf is a homeomorphism and for every real numberr
such thatr ∈ [a,b] holds f (r) = e· r +d.

(40) Leta, b, d, e be real numbers. Supposea≤ b ande< 0. Then there exists a mapf from
[a, b]T into [e·b+d, e·a+d]T such thatf is a homeomorphism and for every real numberr
such thatr ∈ [a,b] holds f (r) = e· r +d.

(41) There exists a mapf from I into [−1, 1]T such thatf is a homeomorphism and for every
real numberr such thatr ∈ [0,1] holds f (r) = (−2) · r +1 and f (0) = 1 and f (1) =−1.

(42) There exists a mapf from I into [−1, 1]T such thatf is a homeomorphism and for every
real numberr such thatr ∈ [0,1] holds f (r) = 2· r−1 and f (0) =−1 and f (1) = 1.

(43) LetP be a compact non empty subset ofE2
T. SupposeP = {p; p ranges over points ofE2

T:
|p| = 1}. Then there exists a mapf from [−1, 1]T into (E2

T)�LowerArc(P) such thatf is a
homeomorphism and for every pointq of E2

T such thatq∈ LowerArc(P) holds f (q1) = q and
f (−1) = Wmin(P) and f (1) = Emax(P).

(44) LetP be a compact non empty subset ofE2
T. SupposeP = {p; p ranges over points ofE2

T:
|p| = 1}. Then there exists a mapf from [−1, 1]T into (E2

T)�UpperArc(P) such thatf is a
homeomorphism and for every pointq of E2

T such thatq∈UpperArc(P) holds f (q1) = q and
f (−1) = Wmin(P) and f (1) = Emax(P).

(45) LetP be a compact non empty subset ofE2
T. SupposeP = {p; p ranges over points ofE2

T:
|p|= 1}. Then there exists a mapf from I into (E2

T)�LowerArc(P) such that

(i) f is a homeomorphism,
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(ii) for all pointsq1, q2 of E2
T and for all real numbersr1, r2 such thatf (r1) = q1 and f (r2) = q2

andr1 ∈ [0,1] andr2 ∈ [0,1] holdsr1 < r2 iff (q1)1 > (q2)1,

(iii) f (0) = Emax(P), and

(iv) f (1) = Wmin(P).

(46) LetP be a compact non empty subset ofE2
T. SupposeP = {p; p ranges over points ofE2

T:
|p|= 1}. Then there exists a mapf from I into (E2

T)�UpperArc(P) such that

(i) f is a homeomorphism,

(ii) for all pointsq1, q2 of E2
T and for all real numbersr1, r2 such thatf (r1) = q1 and f (r2) = q2

andr1 ∈ [0,1] andr2 ∈ [0,1] holdsr1 < r2 iff (q1)1 < (q2)1,

(iii) f (0) = Wmin(P), and

(iv) f (1) = Emax(P).

(47) Letp1, p2 be points ofE2
T andP be a compact non empty subset ofE2

T. If P= {p; p ranges
over points ofE2

T: |p|= 1} andp2 ∈ UpperArc(P) andp1 ≤P p2, thenp1 ∈ UpperArc(P).

(48) Letp1, p2 be points ofE2
T andP be a compact non empty subset ofE2

T. SupposeP= {p; p
ranges over points ofE2

T: |p| = 1} and p1 ≤P p2 and p1 6= p2 and(p1)1 < 0 and(p2)1 < 0
and(p1)2 < 0 and(p2)2 < 0. Then(p1)1 > (p2)1 and(p1)2 < (p2)2.

(49) Letp1, p2 be points ofE2
T andP be a compact non empty subset ofE2

T. SupposeP= {p; p
ranges over points ofE2

T: |p| = 1} and p1 ≤P p2 and p1 6= p2 and(p1)1 < 0 and(p2)1 < 0
and(p1)2 ≥ 0 and(p2)2 ≥ 0. Then(p1)1 < (p2)1 and(p1)2 < (p2)2.

(50) Letp1, p2 be points ofE2
T andP be a compact non empty subset ofE2

T. SupposeP= {p; p
ranges over points ofE2

T: |p| = 1} andp1 ≤P p2 andp1 6= p2 and(p1)2 ≥ 0 and(p2)2 ≥ 0.
Then(p1)1 < (p2)1.

(51) Letp1, p2 be points ofE2
T andP be a compact non empty subset ofE2

T. SupposeP= {p; p
ranges over points ofE2

T: |p| = 1} and p1 ≤P p2 and p1 6= p2 and(p1)2 ≤ 0 and(p2)2 ≤ 0
andp1 6= Wmin(P). Then(p1)1 > (p2)1.

(52) Letp1, p2 be points ofE2
T andP be a compact non empty subset ofE2

T. SupposeP= {p; p
ranges over points ofE2

T: |p|= 1} but (p2)2 ≥ 0 or (p2)1 ≥ 0 but p1 ≤P p2. Then(p1)2 ≥ 0
or (p1)1 ≥ 0.

(53) Letp1, p2 be points ofE2
T andP be a compact non empty subset ofE2

T. SupposeP= {p; p
ranges over points ofE2

T: |p| = 1} andp1 ≤P p2 andp1 6= p2 and(p1)1 ≥ 0 and(p2)1 ≥ 0.
Then(p1)2 > (p2)2.

(54) Letp1, p2 be points ofE2
T andP be a compact non empty subset ofE2

T. SupposeP= {p; p
ranges over points ofE2

T: |p| = 1} andp1 ∈ P andp2 ∈ P and(p1)1 < 0 and(p2)1 < 0 and
(p1)2 < 0 and(p2)2 < 0 and(p1)1 ≥ (p2)1 or (p1)2 ≤ (p2)2. Thenp1 ≤P p2.

(55) Letp1, p2 be points ofE2
T andP be a compact non empty subset ofE2

T. SupposeP= {p; p
ranges over points ofE2

T: |p| = 1} andp1 ∈ P andp2 ∈ P and(p1)1 > 0 and(p2)1 > 0 and
(p1)2 < 0 and(p2)2 < 0 and(p1)1 ≥ (p2)1 or (p1)2 ≥ (p2)2. Thenp1 ≤P p2.

(56) Letp1, p2 be points ofE2
T andP be a compact non empty subset ofE2

T. SupposeP= {p; p
ranges over points ofE2

T: |p| = 1} andp1 ∈ P andp2 ∈ P and(p1)1 < 0 and(p2)1 < 0 and
(p1)2 ≥ 0 and(p2)2 ≥ 0 and(p1)1 ≤ (p2)1 or (p1)2 ≤ (p2)2. Thenp1 ≤P p2.

(57) Letp1, p2 be points ofE2
T andP be a compact non empty subset ofE2

T. SupposeP= {p; p
ranges over points ofE2

T: |p| = 1} andp1 ∈ P andp2 ∈ P and(p1)2 ≥ 0 and(p2)2 ≥ 0 and
(p1)1 ≤ (p2)1. Thenp1 ≤P p2.

(58) Letp1, p2 be points ofE2
T andP be a compact non empty subset ofE2

T. SupposeP= {p; p
ranges over points ofE2

T: |p| = 1} andp1 ∈ P andp2 ∈ P and(p1)1 ≥ 0 and(p2)1 ≥ 0 and
(p1)2 ≥ (p2)2. Thenp1 ≤P p2.
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(59) Letp1, p2 be points ofE2
T andP be a compact non empty subset ofE2

T. SupposeP= {p; p
ranges over points ofE2

T: |p| = 1} andp1 ∈ P andp2 ∈ P and(p1)2 ≤ 0 and(p2)2 ≤ 0 and
p2 6= Wmin(P) and(p1)1 ≥ (p2)1. Thenp1 ≤P p2.

(60) Letc1 be a real number andq be a point ofE2
T. Suppose−1 < c1 andc1 < 1 andq2 ≤ 0.

Let p be a point ofE2
T. If p = c1 -FanMorphS(q), thenp2 ≤ 0.

(61) Let c1 be a real number,p1, p2, q1, q2 be points ofE2
T, andP be a compact non empty

subset ofE2
T. Suppose−1 < c1 andc1 < 1 andP = {p; p ranges over points ofE2

T: |p|= 1}
andp1 ≤P p2 andq1 = c1 -FanMorphS(p1) andq2 = c1 -FanMorphS(p2). Thenq1 ≤P q2.

(62) Let p1, p2, p3, p4 be points ofE2
T andP be a compact non empty subset ofE2

T. Suppose
thatP = {p; p ranges over points ofE2

T: |p| = 1} andp1 ≤P p2 andp2 ≤P p3 andp3 ≤P p4

and(p1)1 < 0 and(p1)2 ≥ 0 and(p2)1 < 0 and(p2)2 ≥ 0 and(p3)1 < 0 and(p3)2 ≥ 0 and
(p4)1 < 0 and(p4)2 ≥ 0. Then there exists a mapf from E2

T into E2
T and there exist points

q1, q2, q3, q4 of E2
T such that

f is a homeomorphism and for every pointq of E2
T holds | f (q)| = |q| andq1 = f (p1) and

q2 = f (p2) andq3 = f (p3) andq4 = f (p4) and(q1)1 < 0 and(q1)2 < 0 and(q2)1 < 0 and
(q2)2 < 0 and(q3)1 < 0 and(q3)2 < 0 and(q4)1 < 0 and(q4)2 < 0 andq1≤P q2 andq2≤P q3

andq3 ≤P q4.

(63) Let p1, p2, p3, p4 be points ofE2
T andP be a compact non empty subset ofE2

T. Suppose
P = {p; p ranges over points ofE2

T: |p| = 1} andp1 ≤P p2 andp2 ≤P p3 andp3 ≤P p4 and
(p1)2 ≥ 0 and(p2)2 ≥ 0 and(p3)2 ≥ 0 and(p4)2 > 0. Then there exists a mapf from E2

T
into E2

T and there exist pointsq1, q2, q3, q4 of E2
T such that

f is a homeomorphism and for every pointq of E2
T holds | f (q)| = |q| andq1 = f (p1) and

q2 = f (p2) andq3 = f (p3) andq4 = f (p4) and(q1)1 < 0 and(q1)2 ≥ 0 and(q2)1 < 0 and
(q2)2≥ 0 and(q3)1 < 0 and(q3)2≥ 0 and(q4)1 < 0 and(q4)2≥ 0 andq1≤P q2 andq2≤P q3

andq3 ≤P q4.

(64) Let p1, p2, p3, p4 be points ofE2
T andP be a compact non empty subset ofE2

T. Suppose
P = {p; p ranges over points ofE2

T: |p| = 1} andp1 ≤P p2 andp2 ≤P p3 andp3 ≤P p4 and
(p1)2 ≥ 0 and(p2)2 ≥ 0 and(p3)2 ≥ 0 and(p4)2 > 0. Then there exists a mapf from E2

T
into E2

T and there exist pointsq1, q2, q3, q4 of E2
T such that

f is a homeomorphism and for every pointq of E2
T holds | f (q)| = |q| andq1 = f (p1) and

q2 = f (p2) andq3 = f (p3) andq4 = f (p4) and(q1)1 < 0 and(q1)2 < 0 and(q2)1 < 0 and
(q2)2 < 0 and(q3)1 < 0 and(q3)2 < 0 and(q4)1 < 0 and(q4)2 < 0 andq1≤P q2 andq2≤P q3

andq3 ≤P q4.

(65) Let p1, p2, p3, p4 be points ofE2
T andP be a compact non empty subset ofE2

T. Suppose
thatP = {p; p ranges over points ofE2

T: |p| = 1} andp1 ≤P p2 andp2 ≤P p3 andp3 ≤P p4

and (p1)2 ≥ 0 or (p1)1 ≥ 0 and(p2)2 ≥ 0 or (p2)1 ≥ 0 and(p3)2 ≥ 0 or (p3)1 ≥ 0 and
(p4)2 > 0 or (p4)1 > 0. Then there exists a mapf from E2

T into E2
T and there exist pointsq1,

q2, q3, q4 of E2
T such that

f is a homeomorphism and for every pointq of E2
T holds | f (q)| = |q| andq1 = f (p1) and

q2 = f (p2) andq3 = f (p3) andq4 = f (p4) and(q1)2 ≥ 0 and(q2)2 ≥ 0 and(q3)2 ≥ 0 and
(q4)2 > 0 andq1 ≤P q2 andq2 ≤P q3 andq3 ≤P q4.

(66) Let p1, p2, p3, p4 be points ofE2
T andP be a compact non empty subset ofE2

T. Suppose
thatP = {p; p ranges over points ofE2

T: |p| = 1} andp1 ≤P p2 andp2 ≤P p3 andp3 ≤P p4

and (p1)2 ≥ 0 or (p1)1 ≥ 0 and(p2)2 ≥ 0 or (p2)1 ≥ 0 and(p3)2 ≥ 0 or (p3)1 ≥ 0 and
(p4)2 > 0 or (p4)1 > 0. Then there exists a mapf from E2

T into E2
T and there exist pointsq1,

q2, q3, q4 of E2
T such that

f is a homeomorphism and for every pointq of E2
T holds | f (q)| = |q| andq1 = f (p1) and

q2 = f (p2) andq3 = f (p3) andq4 = f (p4) and(q1)1 < 0 and(q1)2 < 0 and(q2)1 < 0 and
(q2)2 < 0 and(q3)1 < 0 and(q3)2 < 0 and(q4)1 < 0 and(q4)2 < 0 andq1≤P q2 andq2≤P q3

andq3 ≤P q4.
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(67) Let p1, p2, p3, p4 be points ofE2
T andP be a compact non empty subset ofE2

T. Suppose
P = {p; p ranges over points ofE2

T: |p|= 1} andp4 = Wmin(P) andp1 ≤P p2 andp2 ≤P p3

andp3 ≤P p4. Then there exists a mapf from E2
T into E2

T and there exist pointsq1, q2, q3, q4

of E2
T such that

f is a homeomorphism and for every pointq of E2
T holds | f (q)| = |q| andq1 = f (p1) and

q2 = f (p2) andq3 = f (p3) andq4 = f (p4) and(q1)1 < 0 and(q1)2 < 0 and(q2)1 < 0 and
(q2)2 < 0 and(q3)1 < 0 and(q3)2 < 0 and(q4)1 < 0 and(q4)2 < 0 andq1≤P q2 andq2≤P q3

andq3 ≤P q4.

(68) Let p1, p2, p3, p4 be points ofE2
T andP be a compact non empty subset ofE2

T. Suppose
P= {p; p ranges over points ofE2

T: |p|= 1} andp1 ≤P p2 andp2 ≤P p3 andp3 ≤P p4. Then
there exists a mapf from E2

T into E2
T and there exist pointsq1, q2, q3, q4 of E2

T such that

f is a homeomorphism and for every pointq of E2
T holds | f (q)| = |q| andq1 = f (p1) and

q2 = f (p2) andq3 = f (p3) andq4 = f (p4) and(q1)1 < 0 and(q1)2 < 0 and(q2)1 < 0 and
(q2)2 < 0 and(q3)1 < 0 and(q3)2 < 0 and(q4)1 < 0 and(q4)2 < 0 andq1≤P q2 andq2≤P q3

andq3 ≤P q4.

5. GENERAL FASHODA THEOREMS

We now state several propositions:

(69) Letp1, p2, p3, p4 be points ofE2
T andP be a compact non empty subset ofE2

T. Suppose that
P = {p; p ranges over points ofE2

T: |p| = 1} andp1 ≤P p2 andp2 ≤P p3 andp3 ≤P p4 and
p1 6= p2 andp2 6= p3 andp3 6= p4 and(p1)1 < 0 and(p2)1 < 0 and(p3)1 < 0 and(p4)1 < 0
and(p1)2 < 0 and(p2)2 < 0 and(p3)2 < 0 and(p4)2 < 0. Then there exists a mapf from
E2

T into E2
T such thatf is a homeomorphism and for every pointq of E2

T holds| f (q)| = |q|
and[−1,0] = f (p1) and[0,1] = f (p2) and[1,0] = f (p3) and[0,−1] = f (p4).

(70) Let p1, p2, p3, p4 be points ofE2
T andP be a compact non empty subset ofE2

T. Suppose
P = {p; p ranges over points ofE2

T: |p| = 1} andp1 ≤P p2 andp2 ≤P p3 andp3 ≤P p4 and
p1 6= p2 andp2 6= p3 andp3 6= p4. Then there exists a mapf from E2

T into E2
T such thatf is

a homeomorphism and for every pointq of E2
T holds| f (q)|= |q| and[−1,0] = f (p1) and[0,

1] = f (p2) and[1,0] = f (p3) and[0,−1] = f (p4).

(71) Let p1, p2, p3, p4 be points ofE2
T, P be a compact non empty subset ofE2

T, andC0 be
a subset ofE2

T. SupposeP = {p; p ranges over points ofE2
T: |p| = 1} and p1 ≤P p2 and

p2 ≤P p3 andp3 ≤P p4. Let f , g be maps fromI into E2
T. Suppose thatf is continuous and

one-to-one andg is continuous and one-to-one andC0 = {p : |p| ≤ 1} and f (0) = p1 and
f (1) = p3 andg(0) = p2 andg(1) = p4 and rngf ⊆ C0 and rngg⊆ C0. Then rngf meets
rngg.

(72) Let p1, p2, p3, p4 be points ofE2
T, P be a compact non empty subset ofE2

T, andC0 be
a subset ofE2

T. SupposeP = {p; p ranges over points ofE2
T: |p| = 1} and p1 ≤P p2 and

p2 ≤P p3 andp3 ≤P p4. Let f , g be maps fromI into E2
T. Suppose thatf is continuous and

one-to-one andg is continuous and one-to-one andC0 = {p : |p| ≤ 1} and f (0) = p1 and
f (1) = p3 andg(0) = p4 andg(1) = p2 and rngf ⊆ C0 and rngg⊆ C0. Then rngf meets
rngg.

(73) Let p1, p2, p3, p4 be points ofE2
T, P be a compact non empty subset ofE2

T, andC0 be
a subset ofE2

T. SupposeP = {p; p ranges over points ofE2
T: |p| = 1} and p1 ≤P p2 and

p2 ≤P p3 andp3 ≤P p4. Let f , g be maps fromI into E2
T. Suppose thatf is continuous and

one-to-one andg is continuous and one-to-one andC0 = {p : |p| ≥ 1} and f (0) = p1 and
f (1) = p3 andg(0) = p4 andg(1) = p2 and rngf ⊆ C0 and rngg⊆ C0. Then rngf meets
rngg.

(74) Let p1, p2, p3, p4 be points ofE2
T, P be a compact non empty subset ofE2

T, andC0 be
a subset ofE2

T. SupposeP = {p; p ranges over points ofE2
T: |p| = 1} and p1 ≤P p2 and



GENERAL FASHODA MEET THEOREM. . . 8

p2 ≤P p3 andp3 ≤P p4. Let f , g be maps fromI into E2
T. Suppose thatf is continuous and

one-to-one andg is continuous and one-to-one andC0 = {p : |p| ≥ 1} and f (0) = p1 and
f (1) = p3 andg(0) = p2 andg(1) = p4 and rngf ⊆ C0 and rngg⊆ C0. Then rngf meets
rngg.
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