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The articlesl[1],[18],[[11],[10],[17],[1201,[18],14],[[5], [10],[12], 071, [22],[[18],116],16],[18],115],
[14], and [13] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this papex, a denote real numbers.
One can prove the following propositions:

(1) Ifa>0and(x—a)-(x+a)>0,then—a>xorx> a.
(2) Ifa<0andx< a, thenx? > a2.

(3) For every pointp of £2 such that/p| < 1 holds—1 < p; andp; < 1 and—1 < p, and
P2 <1

(4) For every poinp of £2 such thatp| < 1 andp; # 0 andp, # 0 holds—1 < p; andp; < 1
and—l< ppandp, < 1.

(5) Leta, b, d, g r3 be real numbers;, P, be non empty metric structurespe an element
of P1, andx, be an element df,. Supposeal < aanda <bandb <eandP; = [a, bjm and
P, = [d, €] andx = x, andx € the carrier ofP; andx; € the carrier of?,. Then Bal(x,r3) C
Ball(x2,r3).

(6) Leta, b, d, ebe real numbers ariBibe a subset dfl, €]1. If d <aanda < bandb <eand
B = [a,b], then[a, b]t = [d, €]7|B.

(7) For all real numbers, b and for every subsé? of I such that 6< aanda<bandb<1
andB = [a,b] holds|a, b]t = I|B.

(8) LetX be atopological structur¥, Z be non empty topological structurefshe a map from
X intoY, andh be a map fronY into Z. If his a homeomorphism anflis continuous, then
h- f is continuous.
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(9) LetX,Y, Z be topological structured, be a map fronX into Y, andh be a map fron¥
into Z. If his a homeomorphism anfdis one-to-one, theh- f is one-to-one.

(10) LetX be a topological structures, V be non empty topological structured,be a non
empty subset 0§, f be a map fronX into S|B, g be a map fronSinto V, andh be a map
from X intoV. If h=g- f andf is continuous and is continuous, theh is continuous.

(11) Leta, b, d, e s1, s, t1, t2 be real numbers artdbe a map fronfa, bjt into [d, €]t. Suppose

h is a homeomorphism arti(s;) = t; andh(sz) =t andh(a) = d andh(b) = eandd < e
andt; <ty ands; € [a,b] ands; € [a,b]. Thens; < sp.

(12) Leta, b, d, g s1, s, 11, t2 be real numbers artdbe a map froma, bt into [d, €]1. Suppose
h is a homeomorphism art(s;) = t; andh(s;) =t; andh(a) = eandh(b) = d ande > d
andt; >ty ands; € [a,b] ands; € [a,b]. Thens; < s,.

(13) For every natural numberholds—Ogzn = Og».

2. FAsSHODA MEET THEOREMS FORCIRCLE IN SPECIAL CASE

One can prove the following propositions:

(14) Letf, gbe maps froniinto £2, a, b, ¢, d be real numbers, ar@, | be points ofl. Suppose
thatO = 0 andl = 1 andf is continuous and one-to-one agds continuous and one-to-one
anda# bandc#dandf(O); =aandc< f(0); andf(O), <dandf(l)y =bandc< f(I),
andf(l), < dandg(O), = canda < g(0); andg(O)1 < b andg(l), =d anda < g(l); and
g(1)1 < b and for every point of T holdsa > f(r); or f(r); >borc> f(r)z or f(r), > d
buta>g(r); org(r); >borc>g(r); org(r)2 > d. Then rngf meets rng.

(15) Letf be a map frond into £2. Suppose is continuous and one-to-one. Then there exists

a mapf, from I into £2 such thatf,(0) = f(1) andf(1) = f(0) and rngf, = rngf andf, is
continuous and one-to-one.

In the sequep, g are points ofE2.
The following propositions are true:

(16) Letf, g be maps froni into E2, Co, K1, Kz, K3, K4 be subsets of2, andO, | be points
of I. Suppose thad = 0 andl = 1 andf is continuous and one-to-one agds continuous
and one-to-one an@y = {p: |p| < 1} andK; = {q1;q1 ranges over points of2: |ou| =
1A (ar)2 < (d)1 A (d1)2 > —(an)1} andKo = {dz; 02 ranges over points of7: [gp| =
1 A (G)2> (G2)1 A (G2)2 < —(d2)1} andKz = {ds;ds ranges over points ofs: |dg|
1 A (g3)2 > (a3)1 A (ag)2 > —(as)1} andKy = {a4; g4 ranges over points of,%: lag| =
1A (Ga)2<(da)1 A (da)2 < —(as)1} and f(O) € K and f(l) € K; andg(O) € Kz and
g(l) € Kg and rngf C Cp and rngy C Cp. Then rngf meets rng.

(17) Letf, g be maps froni into £2, Co, K1, Kz, K3, K4 be subsets o2, andO, | be points
of I. Suppose thad = 0 andl = 1 andf is continuous and one-to-one agds continuous
and one-to-one anGp = {p: |p| > 1} andKy = {a1; 1 ranges over points of2: |on| =
1A ()2 < (o)1 A (d1)2 > —(a1)1} andKz = {gp; 0 ranges over points oE2: |gp| =
1A ()2 > (Go)1 A (d2)2 < —(d)1} andKs = {gs; g3 ranges over points ofZ: |gs| =
1 A (03)2 > (03)1 A (ds)2 > —(ds)1} andKs = {da; 04 ranges over points ofZ: |gs| =
1A (da)2 <(aa)1 A (da)2 < —(ga)1} and f(O) € Ky and f(l) € K1 andg(O) € K4 and
o(l) € Kz and rngf C Cp and rngy C Cp. Then rngf meets rng.

(18) Letf, g be maps froni into E2, Co, K1, Kz, K3, K4 be subsets of2, andO, | be points
of I. Suppose thad = 0 andl = 1 andf is continuous and one-to-one agds continuous
and one-to-one anGg = {p: |p| > 1} andK; = {g1;q; ranges over points of2: |q| =
1A ()2 < ()1 A (d1)2> —(au)1} andKz = {d2; 0 ranges over points ofZ: || =
1A (G)2> (G2)1 A ()2 < —(d)1} andKs = {z; g3 ranges over points of?: [ds| =
1 A (g3)2> (03)1 A (d3)2 > —(gs)1} andKy = {aa; 04 ranges over points oE2: |gs| =
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A (Ga)2 < (Aa)1 A (da)2 < —(ga)1} and f(O) € Ky and f(l) € K; andg(O) € K3 and
g(l) € Kg and rngf C Cp and rngy C Cp. Then rngf meets rng.

(19) Letf, gbe maps froni into £2 andCo be a subset of2. Suppose thaty = {q: |q| > 1}
and f is continuous and one-to-one agds continuous and one-to-one af(D) = [—1,0]
and f(1) = [1,0] andg(1) = [0,1] andg(0) = [0,—1] and rngf C Cy and rngy C Co. Then
rngf meets rng.

(20) Letps, p2, p3, p4 be points 01"5% andCyp be a subset ofE% Suppose that
) Co={p:lpl=1},

(i) |paf=1,
(i) [pe[ =1,
(v) [ps[=1,

(v) |paj=1,and

(vi) there exists a map from ‘E% into @12_ such thah is a homeomorphism artttCy C Cy and
h(p1) = [~1,0] andh(pz) = [0, 1] andh(ps) = [1,0] andh(pa4) = [0,—1].

Let f, g be maps froni into £2. Suppose thaf is continuous and one-to-one agds
continuous and one-to-one af{0) = p; and f(1) = p3 andg(0) = ps andg(1) = p, and
rngf C Cp and rngg C Cy. Then rngf meets rngj.

3. PROPERTIES OFFAN MORPHISMS
One can prove the following propositions:

(21) Letcy be a real number amglbe a point of‘E?. Suppose-1 < ¢; andcy < 1 andgp > 0.
Let p be a point of£2. If p = ¢;-FanMorphNg), thenp, > 0.

(22) Letcy be a real number armgibe a point ofE%. Suppose-1 < ¢; andc; < 1 andgp > 0.
Let p be a point ofE%. If p=c;-FanMorphNq), thenp, > 0.

(23) Letcy be a real number anglbe a point on%. Suppose-1 < ¢; andc; < 1 andge >0
andﬁql‘ < ¢y and|q| # 0. Let p be a point of£2. If p = c;-FanMorphNg), thenp, > 0 and
P1 < 0.

(24) Letcy be a real number angy, g, be points of £2. Suppose-1 < ¢; andc; < 1 and
(cu)2 > 0 and(gp)2 > 0 and|ay| # 0 and|dg| # 0 and &L < @1 | et p;, p, be points of

AR
E2. If pr = ¢1-FanMorphNg;) andp; = ¢; -FanMorphNgp), then (‘%)‘1 < (lpgz)‘

(25) Letss be a real number angibe a point of£2. Suppose-1 < s3 ands; < 1 andg; > 0.
Let p be a point of£2. If p = s3-FanMorphEq), thenp; > 0.

(26) Letss be a real number angibe a point 01‘2%. Suppose-1 < sz andsg < 1 andg; > 0
andquz‘ < sz and|q| # 0. Let p be a point of‘E%. If p=s3-FanMorphKEq), thenp; > 0 and
p2 <O.

(27) Letsz be a real number angy, gz be points ofET Suppose—l <szands3 < 1and

1)1 > 0 and(gp); > 0 and|qy| # 0 and|gg| # 0 and 82 <« @22 | et p,  p, be points of
ol Y el

E2. If p1 = s3-FanMorphEq; ) and p; = s3-FanMorphEgy), then (ﬁ})‘z < (fgz)l
(28) Letcy be a real number anglbe a point of£2. Suppose-1 < ¢; andc; < 1 andgp < 0.
Let p be a point ofE2. If p = c;-FanMorph$q), thenp, < 0.

(29) Letc; be a real number angibe a point of£2. Suppose-1 < ¢; andc; < 1 andgp < 0

and%‘ > ¢;. Let p be a point of£2. If p = ¢;-FanMorph$q), thenp, < 0 andp; > 0.
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(30) Letcy be a real number angy, g, be points of £2. Suppose-1 < ¢; andc; < 1 and

(a1)2 <0 and(g)2 < 0 and|g;| # 0 and|gp| # 0 and(‘%l < %. Let p1, p2 be points of

E%. If pp = c1-FanMorph%q;) andp; = c1-FanMorph$%qy), then% < %.

4, ORDER OFPOINTS ONCIRCLE

We now state a number of propositions:

(31) For every compact non empty subgetof E£Z such thatP = {q: |q = 1} holds
W-boundP) = —1 and E-boun@P) = 1 and S-boun(P) = —1 and N-boun¢P) = 1.

(32) For every compact non empty subBeif z% such thaP = {q: |q| = 1} holds Wqin(P) =
[—1,0].

(33) Forevery compact non empty subBeif 2 such thaP = {q: |g| = 1} holds Enax(P) = [1,
0l.

(34) For every mag from £2 into R? such that for every poirp of Z2 holds f (p) = proj1(p)
holds f is continuous.

(35) For every magf from E2 into R such that for every poirp of £2 holds f (p) = proj2(p)
holds f is continuous.

(36) For every compact non empty subBetif Z% such thaP = {q; q ranges over points Gf%:
|g| = 1} holds UpperAr¢P) C P and LowerAr¢P) C P.

(37) LetP be a compact non empty subse@. Supposé® = {q; g ranges over points cﬁ:%:
|g) = 1}. Then UpperAr¢P) = { p; p ranges over points at2: pe P A pp > 0}.

(838) LetP be a compact non empty subseﬂq?. Supposé® = {q; q ranges over points 02:%:
|g| = 1}. Then LowerAr¢P) = {p; p ranges over points a£2: pe P A p, < 0}.

(39) Leta, b, d, e be real numbers. Suppoae< b ande > 0. Then there exists a mapfrom
[a, bt into [e-a+d, e-b+d]t such thatf is a homeomorphism and for every real number
such that € [a,b] holdsf(r) =e-r+d.

(40) Leta, b, d, e be real numbers. Suppoae< b ande < 0. Then there exists a mafpfrom
[a, b7 into [e-b+d, e-a+d]t such thatf is a homeomorphism and for every real number
such thar € [a,b] holdsf(r) =e-r+d.

(41) There exists a mapfrom I into [—1, 1]t such thatf is a homeomorphism and for every
real number such that € [0,1] holdsf(r) = (=2)-r+1 andf(0) =1 andf(1) = —1.

(42) There exists a mapfrom I into [—1, 1]y such thatf is a homeomorphism and for every
real number such that € [0,1] holdsf(r) =2-r—1andf(0) = -1 andf(1) = 1.

(43) LetP be a compact non empty subse&q?r. Supposeé® = {p; p ranges over points cﬁ;’%:
|p| = 1}. Then there exists a mapfrom [—1, 1]t into (£2) | LowerArc(P) such thatf is a
homeomorphism and for every poimbf £2 such thag € LowerArc(P) holdsf (g;) = gand
f(—1) = Wpin(P) and f (1) = Eqnax(P).

(44) LetP be a compact non empty subse@. Supposé® = {p; p ranges over points o?:%:
|p| = 1}. Then there exists a mapfrom [—1, 1)1 into (£2)[ UpperArqP) such thatf is a
homeomorphism and for every poupbf E% such that € UpperArdP) holdsf(g;) = qand
f(=1) = Wnin(P) and f (1) = Emax(P).

(45) LetP be a compact non empty subsetzq%. Supposeé® = {p; p ranges over points of%:
|p| = 1}. Then there exists a mapfrom I into (£2) [ LowerArc(P) such that

(i) fisahomeomorphism,
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(i) forall pointsqs, gz of £2 and for all real numbens, r, such thatf (r1) = gq andf (r2) = gp
andr; € [0,1] andr, € [0,1] holdsry < rz iff (g1)1 > (02)1,

(46) LetP be a compact non empty subsetEﬁ. Suppose® = {p; p ranges over points cﬁi%:
|p| = 1}. Then there exists a mapfrom I into (£2) | UpperArdP) such that

(i) fisahomeomorphism,

(i) for all pointsqy, gz of £2 and for all real numbens, r, such thatf (r1) = gp andf (r2) = gp
andr; € [0,1] andr, € [0,1] holdsry < rz iff (g1)1 < (02)1,

(i) f(0) = Wmin(P), and
(iv) (1) = Emax(P).

(47) Letps, p2 be points off% andP be a compact nhon empty subsetzcﬁ‘. If P={p; pranges
over points ofE2: |p| = 1} andp; € UpperArdP) andp; <p p, thenp; € UpperArqP).

(48) Letpy, p2 be points off% andP be a compact non empty subsetzcﬁ. Supposd® = {p; p
ranges over points aE2: |p| = 1} andp; <p pz andp; # pz and(p1)1 < 0 and(pz); < 0
and(p1)2 < 0 and(pz)2 < 0. Then(p1)1 > (p2)1 and(p1)2 < (p2)2-

(49) Letpy, p2 be points ofE% andP be a compact non empty subsetEﬁ. Suppos® = {p; p
ranges over points aE2: |p| = 1} andp; <p pz andp; # pz and(p1)1 < 0 and(pz)1 < O
and(p1)2 > 0 and(pz)2 > 0. Then(p1)1 < (p2)1 and(p1)2 < (p2)2.

(50) Letpy, p2 be points off% andP be a compact non empty subsetﬁ. Supposd® = {p; p
ranges over points aE2: |p| = 1} andpy <p pz andpy # pz and(p1)2 > 0 and(pz)2 > 0.
Then(p1)1 < (P2)1.

(51) Letps, p2 be points of£Z andP be a compact non empty subset&f. Suppos® = {p; p
ranges over points of%: |p| =1} andpy <p p2 andpy # pz and(p1)2 <0 and(p2)2 <0
andpy # Whin(P). Then(p1)1 > (p2)1.

(52) Letpy, p2 be points off% andP be a compact non empty subsetﬁ. Suppos® = {p; p
ranges over points o}.’%: |p| =1} but(p2)2 > 0 or (pz2)1 > 0 butps <p p2. Then(p1)2 >0
or(p1)1 >0.

(53) Letps, p2 be points of£Z andP be a compact non empty subset&f. Suppos® = {p; p
ranges over points af2: |p| = 1} andp; <p pz andp; # pz and(p1)1 > 0 and(pz); > 0.
Then(p1)2 > (P2)2.

(54) Letpy, p2 be points of@% andP be a compact non empty subsetﬁ. Suppos® = {p; p
ranges over points aE2: |p| = 1} andp; € P andp, € P and(p1)1 < 0 and(pz)1 < 0 and
(P1)2 <0and(pz)z2 < 0and(p1)1 > (P2)1 Or (P1)2 < (P2)2- Thenpy <p p.

(55) Letpy, p2 be points off% andP be a compact non empty subsetzcﬁ. Supposd® = {p; p
ranges over points af2: |p| = 1} andp; € P andp; € P and(p;); > 0 and(pz); > 0 and
(p1)2 <0and(pz)2 < 0and(p1)1 > (P2)1 0r (P1)2 > (P2)2- Thenpy <p pz.

(56) Letpy, p2 be points ofE% andP be a compact non empty subsetEﬁ. Suppos® = {p; p
ranges over points aE2: |p| = 1} andp; € P andp, € P and(p1)1 < 0 and(pz)1 < 0 and
(P1)2 > 0 and(pz)2 > 0 and(p1)1 < (P2)1 Or (P1)2 < (P2)2- Thenpy <p pz.

(57) Letpa, pz be points of£Z andP be a compact non empty subsetZf. Supposé® = {p; p
ranges over points at2: |p| = 1} andp; € P andp, € P and(p1)2 > 0 and(pz)2 > 0 and
(P1)1 < (P2)1- Thenpy <p pe.

(58) Letps, p2 be points of£Z andP be a compact non empty subset&f. Suppos® = {p; p
ranges over points aE2: |p| = 1} andp; € P andp, € P and(p1); > 0 and(pz); > 0 and
(P1)2 = (p2)2- Thenpy <p po.
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(59) Letps, p2 be points of£Z andP be a compact non empty subset&f. Suppos® = {p; p
ranges over points aE2: |p| = 1} andp; € P andp, € P and(p1)2 < 0 and(pz), < 0 and
P2 # Wmin(P) and(p1)1 > (p2)1. Thenpy <p p.

(60) Letcy be a real number anglbe a point of‘E%. Suppose-1 < ¢; andc; < 1 andgp < 0.
Let p be a point of£2. If p = c;-FanMorph$q), thenp, < 0.

(61) Letcy be a real numberps, pz, 01, Gz be points of£2, andP be a compact non empty
subset of£2. Suppose-1 < ¢; andc; < 1 andP = {p; p ranges over points aE2: |p| = 1}
andp; <p pz andq; = ¢;-FanMorph$ps) andg, = ¢; -FanMorph$p,). Thends <p 0.

(62) Letp1, p2, p3, pa be points of‘E% andP be a compact non empty subset‘l@ﬁ. Suppose
thatP = {p; p ranges over points 013%: |p| =1} andp; <p pz andpz <p pz andps <p p4
and(p1)1 < 0 and(p1)2 > 0 and(p2)1 < 0 and(p2)2 > 0 and(pz)1 < 0 and(pz)2 > 0 and
(pa)1 < 0 and(p4)2 > 0. Then there exists a mapfrom Z£2 into £2 and there exist points
01, G2, O3, 04 Of 2 such that

f is a homeomorphism and for every poibf £2 holds|f(q)| = |q] andg; = f(p1) and
02 = f(p2) andgs = f(ps) andas = f(ps) and(qy)1 < 0 and(qy)2 < 0 and(gz)1 < 0 and
(02)2 < 0and(gs)1 < 0 and(gz)2 < 0 and(gs)1 < 0 and(gs)2 < 0 anday <p g2 andagy <p Oz
andas <p 0.

(63) Letpi, p2, p3, pa be points off;% andP be a compact non empty subset@ﬁ. Suppose
P = {p; pranges over points at?: |p| = 1} andp <p pz andpz <p ps andps <p ps and
(p1)2 > 0 and(pz)2 > 0 and(pz)2 > 0 and(p4)2 > 0. Then there exists a mapfrom £2
into £2 and there exist pointg, 2, g, g4 Of £2 such that

f is a homeomorphism and for every pombf £2 holds|f(q)| = |q] andg; = f(p1) and
gz = f(p2) andgs = f(ps) andas = f(ps) and(qgs)1 < 0 and(g1)2 > 0 and(ge)1 < 0 and
(d2)2 > 0 and(gsz)1 < 0 and(gs)2 > 0 and(da)1 < 0 and(da)2 > 0 anddx <p gz anddz <p g3
andas <p Qa.

(64) Letpi, pz2, ps, P4 be points of£Z andP be a compact non empty subset@}. Suppose
P = {p; p ranges over points af2: |p| = 1} andp; <p pz andp, <p p3 andpz <p ps and
(p1)2 > 0 and(pz)2 > 0 and(ps)2 > 0 and(pa)2 > 0. Then there exists a mapfrom Z%
into £2 and there exist pointg, 2, g, g4 Of £2 such that

f is @ homeomorphism and for every pombf £2 holds|f(q)| = |q] andg; = f(p1) and
g2 = f(p2) andgs = f(ps) andgs = f(ps) and(ds)1 < 0 and(dy)2 < 0 and(gz)1 < 0 and
(d2)2 < 0and(gz)1 < 0 and(gs)2 < 0 and(ds)1 < 0 and(ga)2 < 0 andgs <p gz andg, <p g3
andgs <p 0.

(65) Letps, pz2, p3, ps be points ofE2 andP be a compact non empty subset®f. Suppose
thatP = {p; p ranges over points at%: |p| =1} andp: <p pz andpz <p pz andps <p p4
and (p1)2 > 0 or (p1)1 > 0 and(p2)2 > 0 or (p2)1 > 0 and(ps)2 > 0 or (p3); > 0 and
(pa)2 > 0 or (psa)1 > 0. Then there exists a mapfrom £2 into £2 and there exist poinis,
02, G, G4 Of E2 such that

f is a homeomorphism and for every poimbf £2 holds|f(q)| = |q] andg; = f(p1) and
G2 = f(p2) andgs = f(ps) andas = f(psa) and(ar)2 > 0 and(dz)2 > 0 and(qs)2 > 0 and
(q4)2 > 0 anday <p gz andgz <p g3 andgz <p Ga.

(66) Letp1, p2, p3, pa be points of’E% andP be a compact non empty subsetieﬁ. Suppose
thatP = {p; p ranges over points at2: |p| = 1} andpy <p pz andpz <p ps andps <p pPa
and(p1)2 >0 or (p1)1 > 0 and(p2)2 > 0 or (p2)1 > 0 and(p3)2 > 0 or (p3)1 > 0 and
(pa)2 > 0 or(ps)1 > 0. Then there exists a mapfrom Z% into Z% and there exist pointg,
02, g3, G4 Of E2 such that

f is a homeomorphism and for every pombf £2 holds|f(q)| = |q] andg; = f(p1) and
g2 = f(p2) andgs = f(ps3) andgs = f(ps) and(q1)1 < 0 and(qgp)2 < 0 and(gp); < 0 and
(g2)2 < 0 and(gz)1 < 0 and(gs)2 < 0 and(gs)1 < 0 and(aa)2 < 0 andg; <p gz anddz <p g3
andas <p 0.
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(67) Letpi, pz2, ps, P4 be points of£Z andP be a compact non empty subset®@}. Suppose
P = {p; p ranges over points atZ: |p| = 1} andps = Wmin(P) andpy <p pz andp, <p p3
andps <p ps. Then there exists a mapfrom £2 into £2 and there exist pointg, gy, 03, da
of £2 such that

f is a homeomorphism and for every poinbf £2 holds|f(q)| = |q] andg; = f(p1) and
02 = f(p2) andgs = f(ps) andas = f(ps) and(ar)1 < 0 and(qy)2 < 0 and(gz)1 < 0 and
(g2)2 < 0and(gz)1 < 0 and(gs)2 < 0 and(ags)1 < 0 and(ga)2 < 0 andags <p gz andg, <p g3
andgz <p a.

(68) Letp1, p2, p3, pa be points of@% andP be a compact non empty subsemﬁ. Suppose
P = {p; pranges over points a@f2: |p| = 1} andp; <p pz andp, <p ps andps <p ps. Then
there exists a map from £2 into £2 and there exist poinis, 0z, gz, g4 of £2 such that

f is a homeomorphism and for every pombf £2 holds|f(q)| = |q] andg; = f(p1) and
gz = f(p2) andgs = f(ps) andas = f(ps) and(qgs)1 < 0 and(gi1)2 < 0 and(ge)1 < 0 and
(92)2 < 0 and(gs)1 < 0 and(gs)2 < 0 and(ds)1 < 0 and(qa)2 < 0 andgy <p 0z anddz <p 03
andds <p Qa.

5. GENERAL FASHODA THEOREMS
We now state several propositions:

(69) Letpy, p2, p3, pa be points of£2 andP be a compact non empty subset@f. Suppose that
P = {p; p ranges over points afZ: |p| = 1} andp; <p pz andp, <p p3 andpz <p ps and
P17 P2 andpz # ps andps # pa and(p)1 < 0 and(pz)1 < 0 and(ps)1 < 0 and(ps)1 <O
and(p1)2 < 0 and(pz)2 < 0 and(ps)2 < 0 and(ps)2 < 0. Then there exists a mapfrom
£2 into £2 such thatf is a homeomorphism and for every pombf £2 holds|f(q)| = |q|
and[—1,0] = f(py) and[0,1] = f(pz) and[1,0] = f(psz) and[0,—1] = f(pa).

(70) Letpi, pz2, ps, P4 be points of£Z andP be a compact non empty subset®@}. Suppose
P = {p; p ranges over points af2: |p| = 1} andp; <p pz andp; <p ps andpz <p ps and
p1 # p2 andpy # pz andps # ps. Then there exists a mafpfrom @TZ- into Z% such thatf is
a homeomorphism and for every pomof £2 holds|f(q)| = |q| and[—1,0] = f(p1) and|0,
1] = f(p2) and[1,0] = f(p3) and[0,—1] = f(ps).

(71) Letps, p2, p3, P4 be points ofz%, P be a compact non empty subsetﬁ%, andCy be
a subset of£2. SupposeP = {p; p ranges over points o£2: |p| = 1} and p; <p p, and
P2 <p ps andps <p ps. Let f, g be maps froni into £2. Suppose that is continuous and
one-to-one ang is continuous and one-to-one a@gd= {p: |p| < 1} and f(0) = p; and
f(1) = pz andg(0) = p andg(1) = ps and rngf C Cy and rngy C Cp. Then rngf meets
rngg.

(72) Letps, p2, p3, P4 be points ofz%, P be a compact non empty subsetﬁf, andCy be
a subset of£2. SupposeP = {p; p ranges over points o£2: |p| = 1} and p; <p p, and
P2 <p ps andps <p ps. Let f, g be maps froni into £2. Suppose that is continuous and
one-to-one ang is continuous and one-to-one a@gd= {p: |p| < 1} and f(0) = p; and
f(1) = pz andg(0) = ps andg(1) = pp and rngf C Cy and rng C Cp. Then rngf meets
rngg.

(73) Letps, p2, p3, pa be points ofz%, P be a compact non empty subset@%, andCy be
a subset of£2. SupposeP = {p; p ranges over points oE2: |p| = 1} and p; <p p, and
p2 <p p3 andps <p ps. Let f, g be maps froni into E% Suppose that is continuous and
one-to-one andj is continuous and one-to-one aéd = {p: |p| > 1} and f(0) = p; and
f(1) = pz andg(0) = ps andg(1) = pp and rngf C Cy and rng C Cp. Then rngf meets
rngg.

(74) Letpy, p2, p3, pa be points on%, P be a compact non empty subsetfﬁ, andCy be
a subset on%. SupposeP = {p; p ranges over points 01—3%: |p| = 1} and p1 <p pz and
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P2 <p ps andps <p ps. Let f, g be maps froni into 2. Suppose that is continuous and
one-to-one ang is continuous and one-to-one a@gd = {p: |p| > 1} and f(0) = p; and

f(1) = ps andg(0) = p2 andg(1) = ps and rngf C Co and rngy C Cy. Then rngf meets
rngg.
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