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Summary. First, we prove the fact that the circle is the simple closed curve, which
was defined as a curve homeomorphic to the square. For this proof, we introduce a map-
ping which is a homeomorphism from 2-dimensional plane to itself. This mapping maps the
square to the circle. Secondly, we prove the Fashoda meet theorem for the circle using this
homeomorphism.
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The articles([15],[[19],[[1],[[17],[[12],[[9],[[20],[18],[{],[[5], [10],[[2], (1], [[1B],[[15],[[18],[[4],L[6],
[14], and [11] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paper, y, z, u, a are real numbers.
The following propositions are true:

@)
)
©)
(4)
®)
(6)
)
(8)
9)
(10)
(11)
12)

If x> =y?, thenx=yorx= —y.

If x> =1,thenx=1o0rx= —1.

If 0 < xandx < 1, thenx? < x.

Ifa>0and(x—a)-(x+a) <0,then—a<xandx<a.

If x2—1<0,then—1<xandx< 1.

x < yandx < ziff x<min(y,z).

If 0 < x, thenf <xandj <x.

If x> 1, then/x > 1 and ifx > 1, then/x > 1.

If x <yandz<u, then]y,z[ C |x,u[.

For every poinp of £2 holds|p| = v/(p1)2+ (p2)? and|p|?> = (p1)? + (p2)*.
For every functiorf and for all setd3, C holds(f[B)°C = f°(CNB).

LetX be a topological structur®, be a non empty topological structurebe a map from

XintoY, andP be a subset oK. Thenf [P is a map fromX[P into.
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(13) LetX,Y be non empty topological spaces, be a point ofX, D be a non empty subset of
X, E be a non empty subset ¥f and f be a map fronX into Y. Suppose thab® = {po}
andE® = {f(pp)} andX is aT, space and is aT, space and for every poimg of X|D
holds f(p) # f(po) and there exists a mapfrom X[D into Y [E such thath = f[D andh
is continuous and for every subsétof Y such thatf (pg) € V andV is open there exists a
subseW of X such thatpg € W andW is open and°W C V. Thenf is continuous.

2. THE CIRCLE IS A SIMPLE CLOSED CURVE

In the sequep, g denote points ofE2.
The function SqCirc from the carrier &2 into the carrier of£2 is defined by the condition
(Def. 1).

(Def. 1) Letp be a point ofE2. Then
@ ifp= OE%, then SqCir€p) = p,

(i) if pp<prand—pi<pporp,>piandp, < —pgandifp# Ofg, then SqCir¢p) =
[ plp , pzp ]7 and
ViR o B

(iii) if P2 £ Py Or —py £ p2butpz # py or py % —pr andp # Oz, then SqCir¢p) = [——25;

P2 ]
L+(g})

N
N

One can prove the following propositions:

(14) Letpbe a point of£2 such thatp # Og% Then

(i) if pr < pand—p, < pg or pr > pp and p; < —pp, then SqCir¢p) = [——2—,

1+(ph)2
P2
1+(%)2]’ and
(i) if pr £ p2or —pz £ pr and if p1 Z p2 or p1 £ —pz, then SqCir¢p) = [ﬁ,
P2 ] &
L+(32)2

(15) LetX be a non empty topological space afdbe a map fronX into RY. Supposef; is
continuous and for every poigtof X there exists a real numbersuch thatfi(q) = r and
r > 0. Then there exists a maypfrom X into R! such that for every poirp of X and for every
real number such thatf;(p) = r1 holdsg(p) = ,/r1 andg is continuous.

(16) LetX be a non empty topological space afigl f, be maps fronX into RY. Supposef is
continuous and; is continuous and for every poigtof X holds f,(q) # 0. Then there exists
a mapg from X into R* such that

(i) for every pointp of X and for all real numbersy, r» such thatfi(p) =r1 andfa(p) =r2
holdsg(p) = ()% and

(i) gis continuous.
(17) LetX be a non empty topological space afigl f, be maps fronX into RL. Supposef is

continuous andy is continuous and for every poigtof X holds f(q) # 0. Then there exists
a mapg from X into R such that

(i) for every pointp of X and for all real numbens;, r, such thatfi(p) =r1 and fa(p) =r2
holdsg(p) = 1+ (%)%, and

(i) gis continuous.
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(18) LetX be a non empty topological space afid f, be maps fronX into R!. Suppose; is
continuous and; is continuous and for every poigtof X holds f,(q) # 0. Then there exists
a mapg from X into R such that

(i) for every pointp of X and for all real numbens;, r, such thatf;(p) =r1 and fa(p) =r>

holdsg(p) = |/1+ ()2, and

(i) gis continuous.

(19) LetX be a non empty topological space afigl f, be maps fronX into RY. Supposef is
continuous and; is continuous and for every poigtof X holds f2(q) # 0. Then there exists
a mapg from X into R? such that

(i) for every pointp of X and for all real numbens;, r, such thatf,(p) =r1 and fa(p) =r»
holdsg(p) = —1—, and

r
1+(2)2

(i) gis continuous.

(20) LetX be a non empty topological space afigl f, be maps fronX into RL. Supposef is
continuous andy is continuous and for every poigtof X holds f2(q) # 0. Then there exists
a mapg from X into R* such that

(i) for every pointp of X and for all real numbersy, r2 such thatfi(p) =r1 andfa(p) =r2
hol =2
oldsg(p) \/@, and

(i) gis continuous.

(21) LetK; be a non empty subset ﬁt% andf be a map fron(Z%) IKy into RY. Suppose that
(i) for every pointp of 2 such thatp € the carrier of £2) Ky holds f(p) = \/1+p(17p2)2’ and
PL

(i) for every pointq of £2 such thag € the carrier of( £2) [K; holdsq; # 0.
Thenf is continuous.

(22) LetK; be a non empty subset % and f be a map fron{Z2) [K; into RY. Suppose that
(i) for every pointp of z% such thatp € the carrier of(Z%) 'Ky holds f(p) = ——%2_—, and

Y
1+(52)?

(ify  for every pointq of 2 such thag € the carrier of( £2) [K; holdsq; # 0.
Thenf is continuous.

(23) LetK; be a non empty subset @ and f be a map fron{£2) [K; into R. Suppose that

(i) for every pointp of 2 such thatp € the carrier o £2) Ky holds f(p) = 1+p(2p1)2, and
3

(i) for every pointq of £2 such thag € the carrier o £2) [K; holdsg, # 0.
Thenf is continuous.

(24) LetK; be a non empty subset % and f be a map fron{Z2) [K; into RY. Suppose that
(i) for every pointp of z% such thatp € the carrier of(z%) IKy holds f(p) = n plpl ,and

+(,T2)2

(i) for every pointq of E% such thag € the carrier of(E%) K1 holdsqp # O.
Thenf is continuous.
(25) LetKg, By be subsets of2 and f be a map from(E2) [Ko into (£2)[Bo. Supposef =
SqCirc[Kg andBy = (the carrier on%)\{OE%} andKg={p:(p2<p1 A —p1<p2 V p2>
pr A p2<—p1) A pP# Oz%}. Thenf is continuous.

(26) LetKg, By be subsets of2 and f be a map from(’E2) [Ko into (£2)[Bo. Supposef =
SqCirc]Kg andBy = (the carrier on%)\{OE%} andKo={p: (1< P2 A —p2<p1V p1>
P2 A pr<—p2) ApP# OE%}. Thenf is continuous.
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In this article we present several logical schemes. The scHeplaclconcerns a unary predi-
cate?, and states that:
{p:P[p] A p# 042} C (the carrier ofE2) \ {02}
for all values of the parameters.
The schem@oplinterconcerns a unary predicate and states that:
{p:P[p] A p#£ OZ%} = {p7; p7 ranges over points at2: P[p7]} N ((the carrier of

£2)\ {052})
for all values of the parameters.
One can prove the following propositions:

(27) LetByg be a subset of2, Kq be a subset of£2) By, and f be a map from(£2) [Bo Ko
into (£2)[Bo. Supposef = SqCirc[Ko andBg = (the carrier of£2) \ {Ofg} andKg = {p:
(P2<PL A —pr<pPz2V P2=p1 A P2<—p1) A P#Og}. Thenf is continuous anéo
is closed.

(28) LetByg be a subset of2, Kq be a subset of£2) By, and f be a map fron(£2) [Bo Ko
into (£2)[Bo. Supposef = SqCirc[Ko andBg = (the carrier of£2) \ {052} andKo = {p:
(P1<P2 A —P2<P1V pL=p2 A PL<—p2) A P#Og}. Thenf is continuous anéo
is closed.

(29) LetD be a non empty subset . Supposé®°© = {Ozg}- Then there exists a mdpfrom
(Z2)ID into (£2) [D such thah = SqCirc/D andh is continuous.

(30) For every non empty subgetof E% such thaD = (the carrier off%) \ {OZ%} holdsD¢ =
{02}

(31) There exists a mapfrom £2 into £2 such thah = SqCirc anch is continuous.

(32) SqCirc is one-to-one.

Let us note that SqCirc is one-to-one.
We now state four propositions:

(33) LetKy, C; be subsets of2. Suppose that
() K={g:-1=q1 A 1< A @<1Vag=1A-1<@A@<lV-1=
RA-1<p A@p<lVvi=gpA-1<qg Ag<1}and
(i) C1={pz; p2 ranges over points af2: |pp| = 1}.
Then SqCir€Ky = C;.
(34) LetP, K be subsets of2 and f be a map fron{£2)[K; into (£2) [P. Suppose that

) Ke={g:-1l=qp AN 1< A @<1lVa=1A-1<gpA@R<ly -1=
RA-1<mA@<1lVi=gA-1<dq Agq<l}and

(i) fisahomeomorphism.
ThenP is a simple closed curve.
(85) LetK; be a subset OE%. SupposKy ={q:—1=q1 A 1<t A <1V oh =

IN-1<P ARSIV ~1=@A-1<p Aq<1lVi=gA-1<g Ag <1}
ThenkK; is a simple closed curve and compact.

(36) For every subs& of £2 such thaCy = {p; p ranges over points at2: |p| = 1} holdsC,
is a simple closed curve.
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3. THE FASHODA MEET THEOREM FOR THECIRCLE
We now state a number of propositions:

(37) LetKp, Cp be subsets OB% Suppos&o={p: —1<pr A p1<1IA -1<p A pp<1}
andCo = {p1; p1 ranges over points af2: |p;| < 1}. Then SqCirc 1(Co) C Ko.
(38) Letgivenp. Then
() if p=0g, then SqCirct(p) = Ogz,
(i) ifp<prand—pr<porp;>prandp < —pyandifp# Oﬁ, then SqCirc(p) =

[pr- /14 (52)2,p2- | /1+(82)?, and

(i) if p2 £ pyor —py £ Pz but pz # py Or p2 £ —py and p # Oz, then SqCirc*(p) =
[pr- /14 (5)2,p2- /14 (3.

(39) SqCirctis a map fromE?2 into £2.

(40) Letp be a point of'E% such thatp # Ogg. Then

(i) if p1<pzand—p, < pgorp > pzandpy < —pp, then SqCirc(p) = [pr-/1+ (22)2,

P2
P2-y/1+ ()%, and
(ii) if p1 & p2or—pp £ prandifps # pz or p1 £ —pz, then SqCirc*(p) = [pr- | /14 (§2)2,

P2\ [1+(B2)2)

(41) LetX be a non empty topological space afigl f, be maps fronX into RY. Supposef is
continuous and; is continuous and for every poigtof X holds f2(q) # 0. Then there exists
a mapg from X into R such that

(i) for every pointp of X and for all real numbens;, r, such thatf;(p) =r1 and fa(p) =r»
holdsg(p) =r1-,/1+ ({£)2 and
(i) gis continuous.
(42) LetX be a non empty topological space afid f, be maps fronX into R!. Suppose is

continuous and; is continuous and for every poigtof X holds f,(q) # 0. Then there exists
a mapg from X into R! such that

(i) for every pointp of X and for all real numbens;, r, such thatf;(p) =r1 and fa(p) =r>

holdsg(p) =r2-/1+ (;*)?, and

(i) gis continuous.
(43) LetK; be a non empty subset % and f be a map fron{Z2) K, into RY. Suppose that
(i) for every pointp of 2 such thap  the carrier of £2) Ky holdsf(p) = py-,/1+ (%)2,
and

(i)  for every pointq of £2 such thay € the carrier of(Z%) [K1 holdsq; # O.
Thenf is continuous.

(44) LetK; be a non empty subset ﬁi% andf be a map fron{f%) IK1 into RY. Suppose that
(i) for every pointp of £2 such thaip € the carrier of £2) [Ky holdsf(p) = pz-,/1+ ()2,
and

(i) for every pointq of £2 such thag € the carrier o £2) [K; holdsq; # 0.
Thenf is continuous.
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(45) LetK; be a non empty subset @2 and f be a map fron{E2) [K; into R. Suppose that
(i) for every pointp of 2 such thaip € the carrier of £2) [Ky holdsf (p) = pz-,/1+ (%)2,

and
(i)  for every pointq of £2 such tha € the carrier of £2) [K; holdsgs # 0.
Thenf is continuous.

(46) LetK; be a non empty subset % and f be a map fron{Z2) [K; into RY. Suppose that

(i) for every pointp of £2 such thaip € the carrier of £2) [Ky holdsf(p) = py-/1+ (B2,
and

(i) for every pointq of £2 such thag € the carrier o £2) [K; holdsq, # 0.
Thenf is continuous.

(47) LetKq, Bg be subsets of2 and f be a map from(’E2) [Ko into (£2)[Bo. Supposef =
SqCirc1[Kg andBg = (the carrier ofz%)\{og%} andKo={p: (p2<p1 A —p1<p2V p2>
PpL A p2<—p1) A pP# OE%}. Thenf is continuous.

(48) LetKo, By be subsets of=2 and f be a map from(‘E2) [Ko into (£2) [Bo. Supposef =
SqCirc 1[Kg andBg = (the carrier ofB%)\{Og%} andKo={p: (p1<p2 A —p2<pL V p1>
P2 A pL<—p2) A p# Ofg}. Thenf is continuous.

(49) LetBy be a subset of2, Ko be a subset of£2) [By, and f be a map from(E2) [Bo[Ko
into (Z§) [Bo. Supposef = SqCirc *[Ko andBo = (the carrier of£f) \ {02} andKo = {p:
(P2<Pp1 A —p1<p2V P2=p1A P2<—p1) A P70z} Thenf is continuous anto
is closed.

(50) LetBy be a subset of2, Ko be a subset of£2) [Bg, and f be a map from(’E2) [Bo[Ko
into (Z§) [Bo. Supposef = SqCirc *[Ko andBo = (the carrier of£f) \ {02} andKo = {p:
(Pr<pP2 A —P2<prVpr>p2Apr<—p2) AP# Oz%}. Thenf is continuous anég
is closed.

(51) LetD be a non empty subset Gﬁ% Supposd = {OZ%}. Then there exists a mdpfrom
(Z2)ID into (£2) D such thah = SqCirc [D andh is continuous.

52) There exists a mapfrom £2 into £2 such thah = SqCirc ! andh is continuous.
( £t Into E7 q

(54{i)  SqCirc is a map from£2 into 2,
(i)  rngSqCirc= the carrier ofE%, and
(iiiy  for every mapf from £2 into 2 such thatf = SqCirc holdsf is a homeomorphism.

(55) Letf, gbe maps froni into £2, Co, K3, Ky, Ks, Kg be subsets of2, andO, | be points
of I. Suppose thad = 0 andl = 1 andf is continuous and one-to-one agds continuous
and one-to-one anGy = {p: |p| < 1} andKs = {gu;q; ranges over points of2: |qi| =
1A ()2 < (o)1 A (d1)2 > —(a1)1} andKy = {gp; 02 ranges over points oE2: |gp| =
1A (2)2> ()1 A (02)2 < —(02)1} andKs = {qs; gz ranges over points oE2: |gg| =
1A (d3)2 > (gs)1 A (ds)2 > —(as)1} andKe = {cu; 0a ranges over points ofZ: |ou| =
1A (da)2 <(aa)1 A (da)2 < —(aa)1} and f(O) € K4 and f(l) € K3 andg(O) € Kg and
g(l) € Ks and rngf C Cp and rngy C Cp. Then rngf meets rng.

1 The proposition (53) has been removed.
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