On the Simple Closed Curve Property of the Circle and the Fashoda Meet Theorem for It

Yatsuka Nakamura Shinshu University Nagano

Summary. First, we prove the fact that the circle is the simple closed curve, which was defined as a curve homeomorphic to the square. For this proof, we introduce a mapping which is a homeomorphism from 2-dimensional plane to itself. This mapping maps the square to the circle. Secondly, we prove the Fashoda meet theorem for the circle using this homeomorphism.

MML Identifier: JGRAPH_3.

WWW: http://mizar.org/JFM/Vol13/jgraph_3.html

The articles [16], [19], [1], [17], [12], [9], [20], [8], [3], [5], [10], [2], [7], [13], [15], [18], [4], [6], [14], and [11] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paper x, y, z, u, a are real numbers.

The following propositions are true:

- (1) If $x^2 = y^2$, then x = y or x = -y.
- (2) If $x^2 = 1$, then x = 1 or x = -1.
- (3) If $0 \le x$ and $x \le 1$, then $x^2 \le x$.
- (4) If $a \ge 0$ and $(x-a) \cdot (x+a) \le 0$, then $-a \le x$ and $x \le a$.
- (5) If $x^2 1 < 0$, then -1 < x and x < 1.
- (6) x < y and x < z iff $x < \min(y, z)$.
- (7) If 0 < x, then $\frac{x}{3} < x$ and $\frac{x}{4} < x$.
- (8) If $x \ge 1$, then $\sqrt{x} \ge 1$ and if x > 1, then $\sqrt{x} > 1$.
- (9) If $x \le y$ and $z \le u$, then $|y, z| \subseteq |x, u|$.
- (10) For every point p of \mathcal{E}_T^2 holds $|p| = \sqrt{(p_1)^2 + (p_2)^2}$ and $|p|^2 = (p_1)^2 + (p_2)^2$.
- (11) For every function f and for all sets B, C holds $(f \upharpoonright B)^{\circ}C = f^{\circ}(C \cap B)$.
- (12) Let X be a topological structure, Y be a non empty topological structure, f be a map from X into Y, and P be a subset of X. Then $f
 cents_P P$ is a map from $X
 cents_P P$ into Y.

(13) Let X, Y be non empty topological spaces, p_0 be a point of X, D be a non empty subset of X, E be a non empty subset of Y, and f be a map from X into Y. Suppose that $D^c = \{p_0\}$ and $E^c = \{f(p_0)\}$ and X is a T_2 space and Y is a T_2 space and for every point P of $X \mid D$ holds $f(P) \neq f(p_0)$ and there exists a map P from $Y \mid D$ into $Y \mid E$ such that $P \mid D$ and $P \mid D$ is continuous and for every subset $P \mid D$ and $P \mid D$ and P

2. THE CIRCLE IS A SIMPLE CLOSED CURVE

In the sequel p, q denote points of $\mathcal{E}_{\mathrm{T}}^2$.

The function SqCirc from the carrier of \mathcal{E}_T^2 into the carrier of \mathcal{E}_T^2 is defined by the condition (Def. 1).

- (Def. 1) Let p be a point of \mathcal{E}^2_T . Then
 - (i) if $p = 0_{\mathcal{E}_T^2}$, then SqCirc(p) = p,
 - (ii) if $p_2 \le p_1$ and $-p_1 \le p_2$ or $p_2 \ge p_1$ and $p_2 \le -p_1$ and if $p \ne 0_{\mathcal{E}_T^2}$, then $SqCirc(p) = [\frac{p_1}{\sqrt{1+(\frac{p_2}{p_1})^2}}, \frac{p_2}{\sqrt{1+(\frac{p_2}{p_1})^2}}]$, and
 - $\text{(iii)} \quad \text{if } p_2 \not \leq p_1 \text{ or } -p_1 \not \leq p_2 \text{ but } p_2 \not \geq p_1 \text{ or } p_2 \not \leq -p_1 \text{ and } p \neq 0_{\mathcal{E}^2_\Gamma}, \text{ then SqCirc}(p) = [\frac{p_1}{\sqrt{1+(\frac{p_1}{p_2})^2}}, \frac{p_2}{\sqrt{1+(\frac{p_1}{p_2})^2}}].$

One can prove the following propositions:

- (14) Let p be a point of $\mathcal{E}_{\mathbf{T}}^2$ such that $p \neq 0_{\mathcal{E}_{\mathbf{T}}^2}$. Then
 - (i) if $p_1 \le p_2$ and $-p_2 \le p_1$ or $p_1 \ge p_2$ and $p_1 \le -p_2$, then $SqCirc(p) = \left[\frac{p_1}{\sqrt{1 + (\frac{p_1}{p_2})^2}}, \frac{p_2}{\sqrt{1 + (\frac{p_1}{p_2})^2}}\right]$, and
- (ii) if $p_1 \not\leq p_2$ or $-p_2 \not\leq p_1$ and if $p_1 \not\geq p_2$ or $p_1 \not\leq -p_2$, then $SqCirc(p) = \left[\frac{p_1}{\sqrt{1 + (\frac{p_2}{p_1})^2}}, \frac{p_2}{\sqrt{1 + (\frac{p_2}{p_1})^2}}\right]$.
- (15) Let X be a non empty topological space and f_1 be a map from X into \mathbb{R}^1 . Suppose f_1 is continuous and for every point q of X there exists a real number r such that $f_1(q) = r$ and $r \ge 0$. Then there exists a map g from X into \mathbb{R}^1 such that for every point p of X and for every real number r_1 such that $f_1(p) = r_1$ holds $g(p) = \sqrt{r_1}$ and g is continuous.
- (16) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1 , r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = (\frac{r_1}{r_2})^2$, and
 - (ii) g is continuous.
- (17) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1 , r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = 1 + (\frac{r_1}{r_2})^2$, and
- (ii) g is continuous.

- (18) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
- (i) for every point p of X and for all real numbers r_1 , r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = \sqrt{1 + (\frac{r_1}{r_2})^2}$, and
- (ii) g is continuous.
- (19) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1 , r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = \frac{r_1}{\sqrt{1+(\frac{r_1}{r_2})^2}}$, and
- (ii) g is continuous.
- (20) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1 , r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = \frac{r_2}{\sqrt{1+(\frac{r_1}{r_2})^2}}$, and
- (ii) g is continuous.
- (21) Let K_1 be a non empty subset of \mathcal{E}^2_T and f be a map from $(\mathcal{E}^2_T) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of \mathcal{E}^2_T such that $p \in \text{the carrier of } (\mathcal{E}^2_T) \upharpoonright K_1 \text{ holds } f(p) = \frac{p_1}{\sqrt{1 + (\frac{p_2}{p_1})^2}}$, and
- (ii) for every point q of \mathcal{E}_T^2 such that $q \in$ the carrier of $(\mathcal{E}_T^2) \upharpoonright K_1$ holds $q_1 \neq 0$. Then f is continuous.
- (22) Let K_1 be a non empty subset of \mathcal{E}^2_T and f be a map from $(\mathcal{E}^2_T) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of \mathcal{E}^2_T such that $p \in \text{the carrier of } (\mathcal{E}^2_T) \upharpoonright K_1 \text{ holds } f(p) = \frac{p_2}{\sqrt{1 + (\frac{p_2}{p_1})^2}}$, and
- (ii) for every point q of $\mathcal{E}_{\mathbf{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathbf{T}}^2) \upharpoonright K_1$ holds $q_1 \neq 0$. Then f is continuous.
- (23) Let K_1 be a non empty subset of \mathcal{E}^2_T and f be a map from $(\mathcal{E}^2_T) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of \mathcal{E}^2_T such that $p \in \text{the carrier of } (\mathcal{E}^2_T) \upharpoonright K_1 \text{ holds } f(p) = \frac{p_2}{\sqrt{1+(\frac{p_1}{p_2})^2}}$, and
- (ii) for every point q of \mathcal{E}_T^2 such that $q \in \text{the carrier of } (\mathcal{E}_T^2) \upharpoonright K_1 \text{ holds } q_2 \neq 0$. Then f is continuous.
- (24) Let K_1 be a non empty subset of \mathcal{E}^2_T and f be a map from $(\mathcal{E}^2_T) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of \mathcal{E}^2_T such that $p \in \text{the carrier of } (\mathcal{E}^2_T) \upharpoonright K_1 \text{ holds } f(p) = \frac{p_1}{\sqrt{1 + (\frac{p_1}{p_2})^2}}$, and
- (ii) for every point q of $\mathcal{E}_{\mathbb{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathbb{T}}^2) \upharpoonright K_1$ holds $q_2 \neq 0$. Then f is continuous.
- (25) Let K_0 , B_0 be subsets of $\mathcal{E}_{\mathrm{T}}^2$ and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $f = \operatorname{SqCirc} \upharpoonright K_0$ and $B_0 = (\operatorname{the carrier of } \mathcal{E}_{\mathrm{T}}^2) \setminus \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : (p_2 \leq p_1 \land -p_1 \leq p_2 \lor p_2 \geq p_1 \land p_2 \leq -p_1) \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous.
- (26) Let K_0 , B_0 be subsets of $\mathcal{E}_{\mathsf{T}}^2$ and f be a map from $(\mathcal{E}_{\mathsf{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathsf{T}}^2) \upharpoonright B_0$. Suppose $f = \mathsf{SqCirc} \upharpoonright K_0$ and $B_0 = (\mathsf{the carrier of } \mathcal{E}_{\mathsf{T}}^2) \setminus \{0_{\mathcal{E}_{\mathsf{T}}^2}\}$ and $K_0 = \{p : (p_1 \leq p_2 \land -p_2 \leq p_1 \lor p_1 \geq p_2 \land p_1 \leq -p_2) \land p \neq 0_{\mathcal{E}_{\mathsf{T}}^2}\}$. Then f is continuous.

In this article we present several logical schemes. The scheme TopIncl concerns a unary predicate \mathcal{P} , and states that:

$$\{p: \mathcal{P}[p] \land p \neq 0_{\mathcal{E}_T^2}\} \subseteq \text{(the carrier of } \mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$$

for all values of the parameters.

The scheme TopInter concerns a unary predicate \mathcal{P} , and states that:

$$\{p: \mathcal{P}[p] \land p \neq 0_{\mathcal{E}_{\Gamma}^2}\} = \{p_7; p_7 \text{ ranges over points of } \mathcal{E}_{\Gamma}^2: \mathcal{P}[p_7]\} \cap (\text{(the carrier of } \mathcal{E}_{\Gamma}^2) \setminus \{0_{\mathcal{E}_{\Gamma}^2}\})$$

for all values of the parameters.

One can prove the following propositions:

- (27) Let B_0 be a subset of $\mathcal{E}_{\mathrm{T}}^2$, K_0 be a subset of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0 \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $f = \operatorname{SqCirc} \upharpoonright K_0$ and $B_0 = (\operatorname{the carrier of } \mathcal{E}_{\mathrm{T}}^2) \setminus \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p : (p_2 \leq p_1 \land -p_1 \leq p_2 \lor p_2 \geq p_1 \land p_2 \leq -p_1) \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous and K_0 is closed
- (28) Let B_0 be a subset of \mathcal{E}_T^2 , K_0 be a subset of $(\mathcal{E}_T^2) \upharpoonright B_0$, and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_0 \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $f = \operatorname{SqCirc} \upharpoonright K_0$ and $B_0 = (\operatorname{the carrier of } \mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : (p_1 \leq p_2 \land -p_2 \leq p_1 \lor p_1 \geq p_2 \land p_1 \leq -p_2) \land p \neq 0_{\mathcal{E}_T^2}\}$. Then f is continuous and K_0 is closed.
- (29) Let D be a non empty subset of $\mathcal{E}_{\mathsf{T}}^2$. Suppose $D^{\mathsf{c}} = \{0_{\mathcal{E}_{\mathsf{T}}^2}\}$. Then there exists a map h from $(\mathcal{E}_{\mathsf{T}}^2) \upharpoonright D$ into $(\mathcal{E}_{\mathsf{T}}^2) \upharpoonright D$ such that $h = \mathsf{SqCirc} \upharpoonright D$ and h is continuous.
- (30) For every non empty subset D of \mathcal{E}_{T}^{2} such that $D = (\text{the carrier of } \mathcal{E}_{T}^{2}) \setminus \{0_{\mathcal{E}_{T}^{2}}\}$ holds $D^{c} = \{0_{\mathcal{E}_{T}^{2}}\}$.
- (31) There exists a map h from \mathcal{E}_T^2 into \mathcal{E}_T^2 such that $h = \operatorname{SqCirc}$ and h is continuous.
- (32) SqCirc is one-to-one.

Let us note that SqCirc is one-to-one.

We now state four propositions:

- (33) Let K_2 , C_1 be subsets of \mathcal{E}_T^2 . Suppose that
 - (i) $K_2 = \{q: -1 = q_1 \land -1 \le q_2 \land q_2 \le 1 \lor q_1 = 1 \land -1 \le q_2 \land q_2 \le 1 \lor -1 = q_2 \land -1 \le q_1 \land q_1 \le 1 \lor 1 = q_2 \land -1 \le q_1 \land q_1 \le 1\},$ and
- (ii) $C_1 = \{p_2; p_2 \text{ ranges over points of } \mathcal{E}_T^2 \colon |p_2| = 1\}.$ Then SqCirc° $K_2 = C_1$.
- (34) Let P, K_2 be subsets of \mathcal{E}^2_T and f be a map from $(\mathcal{E}^2_T) \upharpoonright K_2$ into $(\mathcal{E}^2_T) \upharpoonright P$. Suppose that
- (i) $K_2 = \{q : -1 = q_1 \land -1 \le q_2 \land q_2 \le 1 \lor q_1 = 1 \land -1 \le q_2 \land q_2 \le 1 \lor -1 = q_2 \land -1 \le q_1 \land q_1 \le 1 \lor 1 = q_2 \land -1 \le q_1 \land q_1 \le 1\},$ and
- (ii) f is a homeomorphism.

Then *P* is a simple closed curve.

- (35) Let K_2 be a subset of \mathcal{E}_T^2 . Suppose $K_2 = \{q : -1 = q_1 \land -1 \le q_2 \land q_2 \le 1 \lor q_1 = 1 \land -1 \le q_2 \land q_2 \le 1 \lor -1 = q_2 \land -1 \le q_1 \land q_1 \le 1 \lor 1 = q_2 \land -1 \le q_1 \land q_1 \le 1\}$. Then K_2 is a simple closed curve and compact.
- (36) For every subset C_1 of \mathcal{E}^2_T such that $C_1 = \{p; p \text{ ranges over points of } \mathcal{E}^2_T : |p| = 1\}$ holds C_1 is a simple closed curve.

3. THE FASHODA MEET THEOREM FOR THE CIRCLE

We now state a number of propositions:

- (37) Let K_0 , C_0 be subsets of \mathcal{E}^2_T . Suppose $K_0 = \{p: -1 \le p_1 \land p_1 \le 1 \land -1 \le p_2 \land p_2 \le 1\}$ and $C_0 = \{p_1; p_1 \text{ ranges over points of } \mathcal{E}^2_T \colon |p_1| \le 1\}$. Then SqCirc $^{-1}(C_0) \subseteq K_0$.
- (38) Let given p. Then
 - (i) if $p = 0_{\mathcal{E}_{\mathbf{T}}^2}$, then SqCirc⁻¹ $(p) = 0_{\mathcal{E}_{\mathbf{T}}^2}$,
- (ii) if $p_2 \le p_1$ and $-p_1 \le p_2$ or $p_2 \ge p_1$ and $p_2 \le -p_1$ and if $p \ne 0_{\mathcal{E}^2_\Gamma}$, then $SqCirc^{-1}(p) = [p_1 \cdot \sqrt{1 + (\frac{p_2}{p_1})^2}, p_2 \cdot \sqrt{1 + (\frac{p_2}{p_1})^2}]$, and
- (iii) if $p_2 \not\leq p_1$ or $-p_1 \not\leq p_2$ but $p_2 \not\geq p_1$ or $p_2 \not\leq -p_1$ and $p \neq 0_{\mathcal{E}^2_T}$, then $SqCirc^{-1}(p) = [p_1 \cdot \sqrt{1 + (\frac{p_1}{p_2})^2}, p_2 \cdot \sqrt{1 + (\frac{p_1}{p_2})^2}].$
- (39) SqCirc⁻¹ is a map from \mathcal{E}_T^2 into \mathcal{E}_T^2 .
- (40) Let p be a point of $\mathcal{E}_{\mathbb{T}}^2$ such that $p \neq 0_{\mathcal{E}_{\mathbb{T}}^2}$. Then
- (i) if $p_1 \le p_2$ and $-p_2 \le p_1$ or $p_1 \ge p_2$ and $p_1 \le -p_2$, then SqCirc⁻¹ $(p) = [p_1 \cdot \sqrt{1 + (\frac{p_1}{p_2})^2}, p_2 \cdot \sqrt{1 + (\frac{p_1}{p_2})^2}]$, and
- (ii) if $p_1 \not\leq p_2$ or $-p_2 \not\leq p_1$ and if $p_1 \not\geq p_2$ or $p_1 \not\leq -p_2$, then SqCirc⁻¹ $(p) = [p_1 \cdot \sqrt{1 + (\frac{p_2}{p_1})^2}, p_2 \cdot \sqrt{1 + (\frac{p_2}{p_1})^2}]$.
- (41) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1 , r_2 such that $f_1(p)=r_1$ and $f_2(p)=r_2$ holds $g(p)=r_1\cdot\sqrt{1+(\frac{r_1}{r_2})^2}$, and
- (ii) g is continuous.
- (42) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1 , r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = r_2 \cdot \sqrt{1 + (\frac{r_1}{r_2})^2}$, and
- (ii) g is continuous.
- (43) Let K_1 be a non empty subset of \mathcal{E}^2_T and f be a map from $(\mathcal{E}^2_T) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of \mathcal{E}_T^2 such that $p \in \text{the carrier of } (\mathcal{E}_T^2) \upharpoonright K_1 \text{ holds } f(p) = p_1 \cdot \sqrt{1 + (\frac{p_2}{p_1})^2}$, and
 - (ii) for every point q of $\mathcal{E}_{\mathbb{T}}^2$ such that $q \in \text{the carrier of } (\mathcal{E}_{\mathbb{T}}^2) \upharpoonright K_1 \text{ holds } q_1 \neq 0$. Then f is continuous.
- (44) Let K_1 be a non empty subset of \mathcal{E}^2_T and f be a map from $(\mathcal{E}^2_T) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of \mathcal{E}^2_T such that $p \in \text{the carrier of } (\mathcal{E}^2_T) \upharpoonright K_1 \text{ holds } f(p) = p_2 \cdot \sqrt{1 + (\frac{p_2}{p_1})^2}$, and
 - (ii) for every point q of $\mathcal{E}_{\mathbb{T}}^2$ such that $q \in \text{the carrier of } (\mathcal{E}_{\mathbb{T}}^2) \upharpoonright K_1 \text{ holds } q_1 \neq 0.$ Then f is continuous.

- (45) Let K_1 be a non empty subset of \mathcal{E}^2_T and f be a map from $(\mathcal{E}^2_T) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of $\mathcal{E}_{\mathbb{T}}^2$ such that $p \in \text{the carrier of } (\mathcal{E}_{\mathbb{T}}^2) \upharpoonright K_1 \text{ holds } f(p) = p_2 \cdot \sqrt{1 + (\frac{p_1}{p_2})^2}$, and
- (ii) for every point q of \mathcal{E}_T^2 such that $q \in$ the carrier of $(\mathcal{E}_T^2) \upharpoonright K_1$ holds $q_2 \neq 0$. Then f is continuous.
- (46) Let K_1 be a non empty subset of \mathcal{E}^2_T and f be a map from $(\mathcal{E}^2_T) \upharpoonright K_1$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of \mathcal{E}_T^2 such that $p \in \text{the carrier of } (\mathcal{E}_T^2) \upharpoonright K_1 \text{ holds } f(p) = p_1 \cdot \sqrt{1 + (\frac{p_1}{p_2})^2}$, and
- (ii) for every point q of \mathcal{E}_T^2 such that $q \in$ the carrier of $(\mathcal{E}_T^2) \upharpoonright K_1$ holds $q_2 \neq 0$. Then f is continuous.
- (47) Let K_0 , B_0 be subsets of \mathcal{E}_T^2 and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $f = \operatorname{SqCirc}^{-1} \upharpoonright K_0$ and $B_0 = (\operatorname{the carrier of } \mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : (p_2 \le p_1 \land -p_1 \le p_2 \lor p_2 \ge p_1 \land p_2 \le -p_1) \land p \ne 0_{\mathcal{E}_\pi^2}\}$. Then f is continuous.
- (48) Let K_0 , B_0 be subsets of \mathcal{E}_T^2 and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $f = \operatorname{SqCirc}^{-1} \upharpoonright K_0$ and $B_0 = (\operatorname{the carrier of } \mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : (p_1 \leq p_2 \land -p_2 \leq p_1 \lor p_1 \geq p_2 \land p_1 \leq -p_2) \land p \neq 0_{\mathcal{E}_T^2}\}$. Then f is continuous.
- (49) Let B_0 be a subset of \mathcal{E}_T^2 , K_0 be a subset of $(\mathcal{E}_T^2) \upharpoonright B_0$, and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_0 \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $f = \operatorname{SqCirc}^{-1} \upharpoonright K_0$ and $B_0 = (\operatorname{the carrier of } \mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : (p_2 \le p_1 \land -p_1 \le p_2 \lor p_2 \ge p_1 \land p_2 \le -p_1) \land p \ne 0_{\mathcal{E}_T^2}\}$. Then f is continuous and K_0 is closed.
- (50) Let B_0 be a subset of \mathcal{E}_T^2 , K_0 be a subset of $(\mathcal{E}_T^2) \upharpoonright B_0$, and f be a map from $(\mathcal{E}_T^2) \upharpoonright B_0 \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $f = \operatorname{SqCirc}^{-1} \upharpoonright K_0$ and $B_0 = (\text{the carrier of } \mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : (p_1 \leq p_2 \land -p_2 \leq p_1 \lor p_1 \geq p_2 \land p_1 \leq -p_2) \land p \neq 0_{\mathcal{E}_T^2}\}$. Then f is continuous and K_0 is closed.
- (51) Let D be a non empty subset of \mathcal{E}_{T}^{2} . Suppose $D^{c} = \{0_{\mathcal{E}_{T}^{2}}\}$. Then there exists a map h from $(\mathcal{E}_{T}^{2}) \upharpoonright D$ into $(\mathcal{E}_{T}^{2}) \upharpoonright D$ such that $h = \operatorname{SqCirc}^{-1} \upharpoonright D$ and h is continuous.
- (52) There exists a map h from \mathcal{E}_T^2 into \mathcal{E}_T^2 such that $h = \operatorname{SqCirc}^{-1}$ and h is continuous.
- $(54)^1$ (i) SqCirc is a map from \mathcal{E}_T^2 into \mathcal{E}_T^2 ,
 - (ii) $\operatorname{rng} \operatorname{SqCirc} = \operatorname{the carrier of } \mathcal{E}_{T}^{2}, \operatorname{and}$
- (iii) for every map f from \mathcal{E}_T^2 into \mathcal{E}_T^2 such that $f = \operatorname{SqCirc}$ holds f is a homeomorphism.
- (55) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathsf{T}}^2$, C_0 , K_3 , K_4 , K_5 , K_6 be subsets of $\mathcal{E}_{\mathsf{T}}^2$, and O, I be points of \mathbb{I} . Suppose that O=0 and I=1 and f is continuous and one-to-one and g is continuous and one-to-one and $C_0=\{p:|p|\leq 1\}$ and $K_3=\{q_1;q_1 \text{ ranges over points of } \mathcal{E}_{\mathsf{T}}^2\colon |q_1|=1 \land (q_1)_2\leq (q_1)_1 \land (q_1)_2\geq -(q_1)_1\}$ and $K_4=\{q_2;q_2 \text{ ranges over points of } \mathcal{E}_{\mathsf{T}}^2\colon |q_2|=1 \land (q_2)_2\geq (q_2)_1 \land (q_2)_2\leq -(q_2)_1\}$ and $K_5=\{q_3;q_3 \text{ ranges over points of } \mathcal{E}_{\mathsf{T}}^2\colon |q_3|=1 \land (q_3)_2\geq (q_3)_1 \land (q_3)_2\geq -(q_3)_1\}$ and $K_6=\{q_4;q_4 \text{ ranges over points of } \mathcal{E}_{\mathsf{T}}^2\colon |q_4|=1 \land (q_4)_2\leq (q_4)_1 \land (q_4)_2\leq -(q_4)_1\}$ and $f(O)\in K_4$ and $f(I)\in K_3$ and $g(O)\in K_6$ and $g(I)\in K_5$ and $g(G)\in K_6$ and $g(G)\in K_6$. Then $g(G)\in K_6$ and $g(G)\in K$

¹ The proposition (53) has been removed.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [2] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/pcomps_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [5] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [6] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vo19/pscomp_1.html.
- [7] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [8] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [9] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topmetr.html.
- [11] Agata Darmochwał and Yatsuka Nakamura. The topological space \(\mathcal{E}_T^2\). Simple closed curves. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreal2.html.
- [12] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/real_1.html.
- [13] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/metric_1.html.
- [14] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [15] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [17] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/square_1.html.
- [19] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [20] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received August 20, 2001

Published January 2, 2004