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Summary. First, we prove the fact that the circle is the simple closed curve, which
was defined as a curve homeomorphic to the square. For this proof, we introduce a map-
ping which is a homeomorphism from 2-dimensional plane to itself. This mapping maps the
square to the circle. Secondly, we prove the Fashoda meet theorem for the circle using this
homeomorphism.
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The articles [16], [19], [1], [17], [12], [9], [20], [8], [3], [5], [10], [2], [7], [13], [15], [18], [4], [6],
[14], and [11] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paperx, y, z, u, a are real numbers.
The following propositions are true:

(1) If x2 = y2, thenx = y or x =−y.

(2) If x2 = 1, thenx = 1 orx =−1.

(3) If 0≤ x andx≤ 1, thenx2 ≤ x.

(4) If a≥ 0 and(x−a) · (x+a)≤ 0, then−a≤ x andx≤ a.

(5) If x2−1≤ 0, then−1≤ x andx≤ 1.

(6) x < y andx < z iff x < min(y,z).

(7) If 0 < x, then x
3 < x and x

4 < x.

(8) If x≥ 1, then
√

x≥ 1 and ifx > 1, then
√

x > 1.

(9) If x≤ y andz≤ u, then]y,z[⊆ ]x,u[.

(10) For every pointp of E2
T holds|p|=

√
(p1)2 +(p2)2 and|p|2 = (p1)2 +(p2)2.

(11) For every functionf and for all setsB, C holds( f �B)◦C = f ◦(C∩B).

(12) LetX be a topological structure,Y be a non empty topological structure,f be a map from
X into Y, andP be a subset ofX. Then f �P is a map fromX�P into Y.
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(13) LetX, Y be non empty topological spaces,p0 be a point ofX, D be a non empty subset of
X, E be a non empty subset ofY, and f be a map fromX into Y. Suppose thatDc = {p0}
andEc = { f (p0)} andX is a T2 space andY is a T2 space and for every pointp of X�D
holds f (p) 6= f (p0) and there exists a maph from X�D into Y�E such thath = f �D andh
is continuous and for every subsetV of Y such thatf (p0) ∈ V andV is open there exists a
subsetW of X such thatp0 ∈W andW is open andf ◦W ⊆V. Then f is continuous.

2. THE CIRCLE IS A SIMPLE CLOSED CURVE

In the sequelp, q denote points ofE2
T.

The function SqCirc from the carrier ofE2
T into the carrier ofE2

T is defined by the condition
(Def. 1).

(Def. 1) Letp be a point ofE2
T. Then

(i) if p = 0E2
T
, then SqCirc(p) = p,

(ii) if p2 ≤ p1 and−p1 ≤ p2 or p2 ≥ p1 and p2 ≤ −p1 and if p 6= 0E2
T
, then SqCirc(p) =

[ p1√
1+( p2

p1
)2

, p2√
1+( p2

p1
)2

], and

(iii) if p2 6≤ p1 or−p1 6≤ p2 but p2 6≥ p1 or p2 6≤−p1 andp 6= 0E2
T
, then SqCirc(p) = [ p1√

1+( p1
p2

)2
,

p2√
1+( p1

p2
)2

].

One can prove the following propositions:

(14) Let p be a point ofE2
T such thatp 6= 0E2

T
. Then

(i) if p1 ≤ p2 and −p2 ≤ p1 or p1 ≥ p2 and p1 ≤ −p2, then SqCirc(p) = [ p1√
1+( p1

p2
)2

,

p2√
1+( p1

p2
)2

], and

(ii) if p1 6≤ p2 or −p2 6≤ p1 and if p1 6≥ p2 or p1 6≤ −p2, then SqCirc(p) = [ p1√
1+( p2

p1
)2

,

p2√
1+( p2

p1
)2

].

(15) LetX be a non empty topological space andf1 be a map fromX into R1. Supposef1 is
continuous and for every pointq of X there exists a real numberr such thatf1(q) = r and
r ≥ 0. Then there exists a mapg from X into R1 such that for every pointp of X and for every
real numberr1 such thatf1(p) = r1 holdsg(p) =

√
r1 andg is continuous.

(16) LetX be a non empty topological space andf1, f2 be maps fromX into R1. Supposef1 is
continuous andf2 is continuous and for every pointq of X holds f2(q) 6= 0. Then there exists
a mapg from X into R1 such that

(i) for every pointp of X and for all real numbersr1, r2 such thatf1(p) = r1 and f2(p) = r2

holdsg(p) = ( r1
r2

)2, and

(ii) g is continuous.

(17) LetX be a non empty topological space andf1, f2 be maps fromX into R1. Supposef1 is
continuous andf2 is continuous and for every pointq of X holds f2(q) 6= 0. Then there exists
a mapg from X into R1 such that

(i) for every pointp of X and for all real numbersr1, r2 such thatf1(p) = r1 and f2(p) = r2

holdsg(p) = 1+( r1
r2

)2, and

(ii) g is continuous.
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(18) LetX be a non empty topological space andf1, f2 be maps fromX into R1. Supposef1 is
continuous andf2 is continuous and for every pointq of X holds f2(q) 6= 0. Then there exists
a mapg from X into R1 such that

(i) for every pointp of X and for all real numbersr1, r2 such thatf1(p) = r1 and f2(p) = r2

holdsg(p) =
√

1+( r1
r2

)2, and

(ii) g is continuous.

(19) LetX be a non empty topological space andf1, f2 be maps fromX into R1. Supposef1 is
continuous andf2 is continuous and for every pointq of X holds f2(q) 6= 0. Then there exists
a mapg from X into R1 such that

(i) for every pointp of X and for all real numbersr1, r2 such thatf1(p) = r1 and f2(p) = r2

holdsg(p) = r1√
1+( r1

r2
)2

, and

(ii) g is continuous.

(20) LetX be a non empty topological space andf1, f2 be maps fromX into R1. Supposef1 is
continuous andf2 is continuous and for every pointq of X holds f2(q) 6= 0. Then there exists
a mapg from X into R1 such that

(i) for every pointp of X and for all real numbersr1, r2 such thatf1(p) = r1 and f2(p) = r2

holdsg(p) = r2√
1+( r1

r2
)2

, and

(ii) g is continuous.

(21) LetK1 be a non empty subset ofE2
T and f be a map from(E2

T)�K1 into R1. Suppose that

(i) for every pointp of E2
T such thatp∈ the carrier of(E2

T)�K1 holds f (p) = p1√
1+( p2

p1
)2

, and

(ii) for every pointq of E2
T such thatq∈ the carrier of(E2

T)�K1 holdsq1 6= 0.

Then f is continuous.

(22) LetK1 be a non empty subset ofE2
T and f be a map from(E2

T)�K1 into R1. Suppose that

(i) for every pointp of E2
T such thatp∈ the carrier of(E2

T)�K1 holds f (p) = p2√
1+( p2

p1
)2

, and

(ii) for every pointq of E2
T such thatq∈ the carrier of(E2

T)�K1 holdsq1 6= 0.

Then f is continuous.

(23) LetK1 be a non empty subset ofE2
T and f be a map from(E2

T)�K1 into R1. Suppose that

(i) for every pointp of E2
T such thatp∈ the carrier of(E2

T)�K1 holds f (p) = p2√
1+( p1

p2
)2

, and

(ii) for every pointq of E2
T such thatq∈ the carrier of(E2

T)�K1 holdsq2 6= 0.

Then f is continuous.

(24) LetK1 be a non empty subset ofE2
T and f be a map from(E2

T)�K1 into R1. Suppose that

(i) for every pointp of E2
T such thatp∈ the carrier of(E2

T)�K1 holds f (p) = p1√
1+( p1

p2
)2

, and

(ii) for every pointq of E2
T such thatq∈ the carrier of(E2

T)�K1 holdsq2 6= 0.

Then f is continuous.

(25) Let K0, B0 be subsets ofE2
T and f be a map from(E2

T)�K0 into (E2
T)�B0. Supposef =

SqCirc�K0 andB0 = (the carrier ofE2
T)\{0E2

T
} andK0 = {p : (p2 ≤ p1 ∧ −p1 ≤ p2 ∨ p2 ≥

p1 ∧ p2 ≤−p1) ∧ p 6= 0E2
T
}. Then f is continuous.

(26) Let K0, B0 be subsets ofE2
T and f be a map from(E2

T)�K0 into (E2
T)�B0. Supposef =

SqCirc�K0 andB0 = (the carrier ofE2
T)\{0E2

T
} andK0 = {p : (p1 ≤ p2 ∧ −p2 ≤ p1 ∨ p1 ≥

p2 ∧ p1 ≤−p2) ∧ p 6= 0E2
T
}. Then f is continuous.
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In this article we present several logical schemes. The schemeTopInclconcerns a unary predi-
cateP , and states that:

{p : P [p] ∧ p 6= 0E2
T
} ⊆ (the carrier ofE2

T)\{0E2
T
}

for all values of the parameters.
The schemeTopInterconcerns a unary predicateP , and states that:

{p : P [p] ∧ p 6= 0E2
T
}= {p7; p7 ranges over points ofE2

T: P [p7]}∩ ((the carrier of

E2
T)\{0E2

T
})

for all values of the parameters.
One can prove the following propositions:

(27) Let B0 be a subset ofE2
T, K0 be a subset of(E2

T)�B0, and f be a map from(E2
T)�B0�K0

into (E2
T)�B0. Supposef = SqCirc�K0 andB0 = (the carrier ofE2

T) \ {0E2
T
} andK0 = {p :

(p2 ≤ p1 ∧ −p1 ≤ p2 ∨ p2 ≥ p1 ∧ p2 ≤−p1) ∧ p 6= 0E2
T
}. Then f is continuous andK0

is closed.

(28) Let B0 be a subset ofE2
T, K0 be a subset of(E2

T)�B0, and f be a map from(E2
T)�B0�K0

into (E2
T)�B0. Supposef = SqCirc�K0 andB0 = (the carrier ofE2

T) \ {0E2
T
} andK0 = {p :

(p1 ≤ p2 ∧ −p2 ≤ p1 ∨ p1 ≥ p2 ∧ p1 ≤−p2) ∧ p 6= 0E2
T
}. Then f is continuous andK0

is closed.

(29) LetD be a non empty subset ofE2
T. SupposeDc = {0E2

T
}. Then there exists a maph from

(E2
T)�D into (E2

T)�D such thath = SqCirc�D andh is continuous.

(30) For every non empty subsetD of E2
T such thatD = (the carrier ofE2

T)\{0E2
T
} holdsDc =

{0E2
T
}.

(31) There exists a maph from E2
T into E2

T such thath = SqCirc andh is continuous.

(32) SqCirc is one-to-one.

Let us note that SqCirc is one-to-one.
We now state four propositions:

(33) LetK2, C1 be subsets ofE2
T. Suppose that

(i) K2 = {q : −1 = q1 ∧ −1≤ q2 ∧ q2 ≤ 1 ∨ q1 = 1 ∧ −1≤ q2 ∧ q2 ≤ 1 ∨ −1 =
q2 ∧ −1≤ q1 ∧ q1 ≤ 1 ∨ 1 = q2 ∧ −1≤ q1 ∧ q1 ≤ 1}, and

(ii) C1 = {p2; p2 ranges over points ofE2
T: |p2|= 1}.

Then SqCirc◦K2 = C1.

(34) LetP, K2 be subsets ofE2
T and f be a map from(E2

T)�K2 into (E2
T)�P. Suppose that

(i) K2 = {q : −1 = q1 ∧ −1≤ q2 ∧ q2 ≤ 1 ∨ q1 = 1 ∧ −1≤ q2 ∧ q2 ≤ 1 ∨ −1 =
q2 ∧ −1≤ q1 ∧ q1 ≤ 1 ∨ 1 = q2 ∧ −1≤ q1 ∧ q1 ≤ 1}, and

(ii) f is a homeomorphism.

ThenP is a simple closed curve.

(35) Let K2 be a subset ofE2
T. SupposeK2 = {q : −1 = q1 ∧ −1≤ q2 ∧ q2 ≤ 1 ∨ q1 =

1 ∧ −1≤ q2 ∧ q2 ≤ 1 ∨ −1 = q2 ∧ −1≤ q1 ∧ q1 ≤ 1 ∨ 1 = q2 ∧ −1≤ q1 ∧ q1 ≤ 1}.
ThenK2 is a simple closed curve and compact.

(36) For every subsetC1 of E2
T such thatC1 = {p; p ranges over points ofE2

T: |p|= 1} holdsC1

is a simple closed curve.
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3. THE FASHODA MEET THEOREM FOR THECIRCLE

We now state a number of propositions:

(37) LetK0, C0 be subsets ofE2
T. SupposeK0 = {p :−1≤ p1 ∧ p1 ≤ 1 ∧ −1≤ p2 ∧ p2 ≤ 1}

andC0 = {p1; p1 ranges over points ofE2
T: |p1| ≤ 1}. Then SqCirc−1(C0)⊆ K0.

(38) Let givenp. Then

(i) if p = 0E2
T
, then SqCirc−1(p) = 0E2

T
,

(ii) if p2 ≤ p1 and−p1 ≤ p2 or p2 ≥ p1 andp2 ≤ −p1 and if p 6= 0E2
T
, then SqCirc−1(p) =

[p1 ·
√

1+( p2
p1

)2, p2 ·
√

1+( p2
p1

)2], and

(iii) if p2 6≤ p1 or −p1 6≤ p2 but p2 6≥ p1 or p2 6≤ −p1 and p 6= 0E2
T
, then SqCirc−1(p) =

[p1 ·
√

1+( p1
p2

)2, p2 ·
√

1+( p1
p2

)2].

(39) SqCirc−1 is a map fromE2
T into E2

T.

(40) Let p be a point ofE2
T such thatp 6= 0E2

T
. Then

(i) if p1 ≤ p2 and−p2 ≤ p1 or p1 ≥ p2 andp1 ≤−p2, then SqCirc−1(p) = [p1 ·
√

1+( p1
p2

)2,

p2 ·
√

1+( p1
p2

)2], and

(ii) if p1 6≤ p2 or−p2 6≤ p1 and if p1 6≥ p2 or p1 6≤ −p2, then SqCirc−1(p) = [p1 ·
√

1+( p2
p1

)2,

p2 ·
√

1+( p2
p1

)2].

(41) LetX be a non empty topological space andf1, f2 be maps fromX into R1. Supposef1 is
continuous andf2 is continuous and for every pointq of X holds f2(q) 6= 0. Then there exists
a mapg from X into R1 such that

(i) for every pointp of X and for all real numbersr1, r2 such thatf1(p) = r1 and f2(p) = r2

holdsg(p) = r1 ·
√

1+( r1
r2

)2, and

(ii) g is continuous.

(42) LetX be a non empty topological space andf1, f2 be maps fromX into R1. Supposef1 is
continuous andf2 is continuous and for every pointq of X holds f2(q) 6= 0. Then there exists
a mapg from X into R1 such that

(i) for every pointp of X and for all real numbersr1, r2 such thatf1(p) = r1 and f2(p) = r2

holdsg(p) = r2 ·
√

1+( r1
r2

)2, and

(ii) g is continuous.

(43) LetK1 be a non empty subset ofE2
T and f be a map from(E2

T)�K1 into R1. Suppose that

(i) for every pointp of E2
T such thatp∈ the carrier of(E2

T)�K1 holds f (p) = p1 ·
√

1+( p2
p1

)2,

and

(ii) for every pointq of E2
T such thatq∈ the carrier of(E2

T)�K1 holdsq1 6= 0.

Then f is continuous.

(44) LetK1 be a non empty subset ofE2
T and f be a map from(E2

T)�K1 into R1. Suppose that

(i) for every pointp of E2
T such thatp∈ the carrier of(E2

T)�K1 holds f (p) = p2 ·
√

1+( p2
p1

)2,

and

(ii) for every pointq of E2
T such thatq∈ the carrier of(E2

T)�K1 holdsq1 6= 0.

Then f is continuous.
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(45) LetK1 be a non empty subset ofE2
T and f be a map from(E2

T)�K1 into R1. Suppose that

(i) for every pointp of E2
T such thatp∈ the carrier of(E2

T)�K1 holds f (p) = p2 ·
√

1+( p1
p2

)2,

and

(ii) for every pointq of E2
T such thatq∈ the carrier of(E2

T)�K1 holdsq2 6= 0.

Then f is continuous.

(46) LetK1 be a non empty subset ofE2
T and f be a map from(E2

T)�K1 into R1. Suppose that

(i) for every pointp of E2
T such thatp∈ the carrier of(E2

T)�K1 holds f (p) = p1 ·
√

1+( p1
p2

)2,

and

(ii) for every pointq of E2
T such thatq∈ the carrier of(E2

T)�K1 holdsq2 6= 0.

Then f is continuous.

(47) Let K0, B0 be subsets ofE2
T and f be a map from(E2

T)�K0 into (E2
T)�B0. Supposef =

SqCirc−1�K0 andB0 = (the carrier ofE2
T)\{0E2

T
} andK0 = {p : (p2≤ p1 ∧ −p1≤ p2 ∨ p2≥

p1 ∧ p2 ≤−p1) ∧ p 6= 0E2
T
}. Then f is continuous.

(48) Let K0, B0 be subsets ofE2
T and f be a map from(E2

T)�K0 into (E2
T)�B0. Supposef =

SqCirc−1�K0 andB0 = (the carrier ofE2
T)\{0E2

T
} andK0 = {p : (p1≤ p2 ∧ −p2≤ p1 ∨ p1≥

p2 ∧ p1 ≤−p2) ∧ p 6= 0E2
T
}. Then f is continuous.

(49) Let B0 be a subset ofE2
T, K0 be a subset of(E2

T)�B0, and f be a map from(E2
T)�B0�K0

into (E2
T)�B0. Supposef = SqCirc−1�K0 andB0 = (the carrier ofE2

T)\{0E2
T
} andK0 = {p :

(p2 ≤ p1 ∧ −p1 ≤ p2 ∨ p2 ≥ p1 ∧ p2 ≤−p1) ∧ p 6= 0E2
T
}. Then f is continuous andK0

is closed.

(50) Let B0 be a subset ofE2
T, K0 be a subset of(E2

T)�B0, and f be a map from(E2
T)�B0�K0

into (E2
T)�B0. Supposef = SqCirc−1�K0 andB0 = (the carrier ofE2

T)\{0E2
T
} andK0 = {p :

(p1 ≤ p2 ∧ −p2 ≤ p1 ∨ p1 ≥ p2 ∧ p1 ≤−p2) ∧ p 6= 0E2
T
}. Then f is continuous andK0

is closed.

(51) LetD be a non empty subset ofE2
T. SupposeDc = {0E2

T
}. Then there exists a maph from

(E2
T)�D into (E2

T)�D such thath = SqCirc−1�D andh is continuous.

(52) There exists a maph from E2
T into E2

T such thath = SqCirc−1 andh is continuous.

(54)1(i) SqCirc is a map fromE2
T into E2

T,

(ii) rngSqCirc= the carrier ofE2
T, and

(iii) for every map f from E2
T into E2

T such thatf = SqCirc holdsf is a homeomorphism.

(55) Let f , g be maps fromI into E2
T, C0, K3, K4, K5, K6 be subsets ofE2

T, andO, I be points
of I. Suppose thatO = 0 andI = 1 and f is continuous and one-to-one andg is continuous
and one-to-one andC0 = {p : |p| ≤ 1} andK3 = {q1;q1 ranges over points ofE2

T: |q1| =
1 ∧ (q1)2 ≤ (q1)1 ∧ (q1)2 ≥ −(q1)1} andK4 = {q2;q2 ranges over points ofE2

T: |q2| =
1 ∧ (q2)2 ≥ (q2)1 ∧ (q2)2 ≤ −(q2)1} andK5 = {q3;q3 ranges over points ofE2

T: |q3| =
1 ∧ (q3)2 ≥ (q3)1 ∧ (q3)2 ≥ −(q3)1} andK6 = {q4;q4 ranges over points ofE2

T: |q4| =
1 ∧ (q4)2 ≤ (q4)1 ∧ (q4)2 ≤ −(q4)1} and f (O) ∈ K4 and f (I) ∈ K3 andg(O) ∈ K6 and
g(I) ∈ K5 and rngf ⊆C0 and rngg⊆C0. Then rngf meets rngg.

1 The proposition (53) has been removed.
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[5] Czesław Bylínski. Partial functions.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/partfun1.html.
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