On Outside Fashoda Meet Theorem

Yatsuka Nakamura Shinshu University Nagano

Summary. We have proven the "Fashoda Meet Theorem" in [14]. Here we prove the outside version of it. It says that if Britain and France intended to set the courses for ships to the opposite side of Africa, they must also meet.

MML Identifier: JGRAPH_2.

WWW: http://mizar.org/JFM/Vol13/jgraph_2.html

The articles [18], [21], [1], [19], [12], [22], [4], [2], [7], [6], [16], [11], [3], [13], [5], [20], [9], [10], [15], [8], and [17] provide the notation and terminology for this paper.

One can prove the following propositions:

- (2)¹ For every real number a such that $1 \le a$ holds $a \le a^2$.
- (3) For every real number a such that $-1 \ge a$ holds $-a \le a^2$.
- (4) For every real number a such that -1 > a holds $-a < a^2$.
- (5) For all real numbers a, b such that $b^2 \le a^2$ and $a \ge 0$ holds $-a \le b$ and $b \le a$.
- (6) For all real numbers a, b such that $b^2 < a^2$ and $a \ge 0$ holds -a < b and b < a.
- (7) For all real numbers a, b such that -a < b and b < a holds $b^2 < a^2$.
- (8) For all real numbers a, b such that -a < b and b < a holds $b^2 < a^2$.

In the sequel T, T_1 , T_2 , S denote non empty topological spaces.

Next we state a number of propositions:

- (9) Let f be a map from T_1 into S, g be a map from T_2 into S, and F_1 , F_2 be subsets of T. Suppose that T_1 is a subspace of T and T_2 is a subspace of T and $F_1 = \Omega_{(T_1)}$ and $F_2 = \Omega_{(T_2)}$ and $\Omega_{(T_1)} \cup \Omega_{(T_2)} = \Omega_T$ and F_1 is closed and F_2 is closed and f is continuous and g is continuous and for every set p such that $p \in \Omega_{(T_1)} \cap \Omega_{(T_2)}$ holds f(p) = g(p). Then there exists a map h from T into S such that h = f + g and h is continuous.
- (10) Let n be a natural number, q_2 be a point of \mathcal{E}^n , q be a point of \mathcal{E}^n_T , and r be a real number. If $q = q_2$, then Ball $(q_2, r) = \{q_3; q_3 \text{ ranges over points of } \mathcal{E}^n_T \colon |q q_3| < r\}$.
- (11) $(0_{\mathcal{E}^2_{\mathbf{T}}})_{\mathbf{1}} = 0$ and $(0_{\mathcal{E}^2_{\mathbf{T}}})_{\mathbf{2}} = 0$.
- (12) $1.REAL2 = \langle 1, 1 \rangle.$
- (13) $(1.REAL2)_1 = 1$ and $(1.REAL2)_2 = 1$.

¹ The proposition (1) has been removed.

- $(14) \quad \text{dom} \, \text{proj} \, 1 = \text{the carrier of} \, \, \mathcal{E}^2_T \, \, \text{and} \, \, \text{dom} \, \text{proj} \, 1 = \mathcal{R}^2.$
- (15) dom proj2 = the carrier of \mathcal{E}_T^2 and dom proj2 = \mathcal{R}^2 .
- (16) proj1 is a map from \mathcal{E}_T^2 into \mathbb{R}^1 .
- (17) proj2 is a map from \mathcal{E}_T^2 into \mathbb{R}^1 .
- (18) For every point p of \mathcal{E}_{T}^{2} holds p = [proj1(p), proj2(p)].
- (19) For every subset B of \mathcal{E}_T^2 such that $B = \{0_{\mathcal{E}_T^2}\}$ holds $B^c \neq \emptyset$ and (the carrier of \mathcal{E}_T^2) $\setminus B \neq \emptyset$.
- (20) Let X, Y be non empty topological spaces and f be a map from X into Y. Then f is continuous if and only if for every point p of X and for every subset V of Y such that $f(p) \in V$ and V is open there exists a subset W of X such that $p \in W$ and W is open and $f^{\circ}W \subseteq V$.
- (21) Let p be a point of $\mathcal{E}_{\mathbf{T}}^2$ and G be a subset of $\mathcal{E}_{\mathbf{T}}^2$. Suppose G is open and $p \in G$. Then there exists a real number r such that r > 0 and $\{q; q \text{ ranges over points of } \mathcal{E}_{\mathbf{T}}^2$: $p_1 r < q_1 \land q_1 < p_1 + r \land p_2 r < q_2 \land q_2 < p_2 + r\} \subseteq G$.
- (22) Let X, Y, Z be non empty topological spaces, B be a subset of Y, C be a subset of Z, f be a map from X into Y, and h be a map from $Y \upharpoonright B$ into $Z \upharpoonright C$. Suppose f is continuous and h is continuous and rng $f \subseteq B$ and $B \neq \emptyset$ and $C \neq \emptyset$. Then there exists a map g from X into Z such that g is continuous and $g = h \cdot f$.

In the sequel p, q are points of $\mathcal{E}_{\mathbf{T}}^2$.

The function OutInSq from (the carrier of \mathcal{E}_T^2) \ $\{0_{\mathcal{E}_T^2}\}$ into (the carrier of \mathcal{E}_T^2) \ $\{0_{\mathcal{E}_T^2}\}$ is defined by the condition (Def. 1).

- (Def. 1) Let p be a point of \mathcal{E}^2_T such that $p \neq 0_{\mathcal{E}^2_T}$. Then
 - (i) if $p_2 \le p_1$ and $-p_1 \le p_2$ or $p_2 \ge p_1$ and $p_2 \le -p_1$, then $\text{OutInSq}(p) = [\frac{1}{p_1}, \frac{\frac{p_2}{p_1}}{p_1}]$, and
 - (ii) if $p_2 \not\leq p_1$ or $-p_1 \not\leq p_2$ and if $p_2 \not\geq p_1$ or $p_2 \not\leq -p_1$, then OutInSq $(p) = [\frac{p_1}{p_2}, \frac{1}{p_2}]$.

The following propositions are true:

- (23) Let p be a point of $\mathcal{E}_{\mathsf{T}}^2$. Suppose $p_2 \not\leq p_1$ or $-p_1 \not\leq p_2$ but $p_2 \not\geq p_1$ or $p_2 \not\leq -p_1$. Then $p_1 \leq p_2$ and $-p_2 \leq p_1$ or $p_1 \geq p_2$ and $p_1 \leq -p_2$.
- (24) Let p be a point of \mathcal{E}_T^2 such that $p \neq 0_{\mathcal{E}_T^2}$. Then
 - (i) if $p_1 \le p_2$ and $-p_2 \le p_1$ or $p_1 \ge p_2$ and $p_1 \le -p_2$, then OutInSq $(p) = [\frac{p_1}{p_2}, \frac{1}{p_2}]$, and
- (ii) if $p_1 \not\leq p_2$ or $-p_2 \not\leq p_1$ and if $p_1 \not\geq p_2$ or $p_1 \not\leq -p_2$, then $\operatorname{OutInSq}(p) = \left[\frac{1}{p_1}, \frac{\frac{p_2}{p_1}}{p_1}\right]$.
- (25) Let D be a subset of $\mathcal{E}_{\mathsf{T}}^2$ and K_0 be a subset of $(\mathcal{E}_{\mathsf{T}}^2) \upharpoonright D$. Suppose $K_0 = \{p : (p_2 \leq p_1 \land -p_1 \leq p_2 \lor p_2 \geq p_1 \land p_2 \leq -p_1) \land p \neq 0_{\mathcal{E}_{\mathsf{T}}^2}\}$. Then $\operatorname{rng}(\operatorname{OutInSq} \upharpoonright K_0) \subseteq \operatorname{the} \operatorname{carrier} \operatorname{of} (\mathcal{E}_{\mathsf{T}}^2) \upharpoonright D \upharpoonright K_0$.
- (26) Let D be a subset of $\mathcal{E}_{\mathbb{T}}^2$ and K_0 be a subset of $(\mathcal{E}_{\mathbb{T}}^2) \upharpoonright D$. Suppose $K_0 = \{p : (p_1 \leq p_2 \land -p_2 \leq p_1 \lor p_1 \geq p_2 \land p_1 \leq -p_2) \land p \neq 0_{\mathcal{E}_{\mathbb{T}}^2}\}$. Then $\operatorname{rng}(\operatorname{OutInSq} \upharpoonright K_0) \subseteq \operatorname{the} \operatorname{carrier}$ of $(\mathcal{E}_{\mathbb{T}}^2) \upharpoonright D \upharpoonright K_0$.
- (27) Let K_1 be a set and D be a non empty subset of $\mathcal{E}_{\mathbf{T}}^2$. Suppose $K_1 = \{p; p \text{ ranges over points of } \mathcal{E}_{\mathbf{T}}^2$: $(p_2 \leq p_1 \land -p_1 \leq p_2 \lor p_2 \geq p_1 \land p_2 \leq -p_1) \land p \neq 0_{\mathcal{E}_{\mathbf{T}}^2}\}$ and $D^c = \{0_{\mathcal{E}_{\mathbf{T}}^2}\}$. Then K_1 is a non empty subset of $(\mathcal{E}_{\mathbf{T}}^2) \upharpoonright D$ and a non empty subset of $\mathcal{E}_{\mathbf{T}}^2$.
- (28) Let K_1 be a set and D be a non empty subset of \mathcal{E}_T^2 . Suppose $K_1 = \{p; p \text{ ranges over points} \text{ of } \mathcal{E}_T^2$: $(p_1 \leq p_2 \land -p_2 \leq p_1 \lor p_1 \geq p_2 \land p_1 \leq -p_2) \land p \neq 0_{\mathcal{E}_T^2}\}$ and $D^c = \{0_{\mathcal{E}_T^2}\}$. Then K_1 is a non empty subset of $(\mathcal{E}_T^2) \upharpoonright D$ and a non empty subset of \mathcal{E}_T^2 .

- (29) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous. Then there exists a map g from X into \mathbb{R}^1 such that for every point p of X and for all real numbers r_1 , r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = r_1 + r_2$ and g is continuous.
- (30) Let X be a non empty topological space and a be a real number. Then there exists a map g from X into \mathbb{R}^1 such that for every point p of X holds g(p) = a and g is continuous.
- (31) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous. Then there exists a map g from X into \mathbb{R}^1 such that for every point p of X and for all real numbers r_1 , r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = r_1 r_2$ and g is continuous.
- (32) Let X be a non empty topological space and f_1 be a map from X into \mathbb{R}^1 . Suppose f_1 is continuous. Then there exists a map g from X into \mathbb{R}^1 such that for every point p of X and for every real number r_1 such that $f_1(p) = r_1$ holds $g(p) = r_1 \cdot r_1$ and g is continuous.
- (33) Let X be a non empty topological space, f_1 be a map from X into \mathbb{R}^1 , and a be a real number. Suppose f_1 is continuous. Then there exists a map g from X into \mathbb{R}^1 such that for every point p of X and for every real number r_1 such that $f_1(p) = r_1$ holds $g(p) = a \cdot r_1$ and g is continuous.
- (34) Let X be a non empty topological space, f_1 be a map from X into \mathbb{R}^1 , and a be a real number. Suppose f_1 is continuous. Then there exists a map g from X into \mathbb{R}^1 such that for every point p of X and for every real number r_1 such that $f_1(p) = r_1$ holds $g(p) = r_1 + a$ and g is continuous.
- (35) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous. Then there exists a map g from X into \mathbb{R}^1 such that for every point p of X and for all real numbers r_1 , r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = r_1 \cdot r_2$ and g is continuous.
- (36) Let X be a non empty topological space and f_1 be a map from X into \mathbb{R}^1 . Suppose f_1 is continuous and for every point q of X holds $f_1(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that for every point p of X and for every real number r_1 such that $f_1(p) = r_1$ holds $g(p) = \frac{1}{r_1}$ and g is continuous.
- (37) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that for every point p of X and for all real numbers r_1 , r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = \frac{r_1}{r_2}$ and g is continuous.
- (38) Let X be a non empty topological space and f_1 , f_2 be maps from X into \mathbb{R}^1 . Suppose f_1 is continuous and f_2 is continuous and for every point q of X holds $f_2(q) \neq 0$. Then there exists a map g from X into \mathbb{R}^1 such that
 - (i) for every point p of X and for all real numbers r_1 , r_2 such that $f_1(p) = r_1$ and $f_2(p) = r_2$ holds $g(p) = \frac{r_1}{r_2}$, and
- (ii) g is continuous.
- (39) Let K_0 be a subset of \mathcal{E}^2_T and f be a map from $(\mathcal{E}^2_T) \upharpoonright K_0$ into \mathbb{R}^1 . If for every point p of $(\mathcal{E}^2_T) \upharpoonright K_0$ holds f(p) = proj 1(p), then f is continuous.
- (40) Let K_0 be a subset of \mathcal{E}^2_T and f be a map from $(\mathcal{E}^2_T) \upharpoonright K_0$ into \mathbb{R}^1 . If for every point p of $(\mathcal{E}^2_T) \upharpoonright K_0$ holds f(p) = proj(p), then f is continuous.
- (41) Let K_2 be a non empty subset of \mathcal{E}_T^2 and f be a map from $(\mathcal{E}_T^2) \upharpoonright K_2$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of \mathcal{E}_T^2 such that $p \in \text{the carrier of } (\mathcal{E}_T^2) \upharpoonright K_2 \text{ holds } f(p) = \frac{1}{p_1}$, and
 - (ii) for every point q of $\mathcal{E}_{\mathbb{T}}^2$ such that $q \in$ the carrier of $(\mathcal{E}_{\mathbb{T}}^2) \upharpoonright K_2$ holds $q_1 \neq 0$. Then f is continuous.

- (42) Let K_2 be a non empty subset of \mathcal{E}^2_T and f be a map from $(\mathcal{E}^2_T) \upharpoonright K_2$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of \mathcal{E}_T^2 such that $p \in \text{the carrier of } (\mathcal{E}_T^2) \upharpoonright K_2 \text{ holds } f(p) = \frac{1}{p_2}$, and
- (ii) for every point q of \mathcal{E}^2_T such that $q \in$ the carrier of $(\mathcal{E}^2_T) \upharpoonright K_2$ holds $q_2 \neq 0$. Then f is continuous.
- (43) Let K_2 be a non empty subset of \mathcal{E}^2_T and f be a map from $(\mathcal{E}^2_T) \upharpoonright K_2$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of \mathcal{E}_T^2 such that $p \in \text{the carrier of } (\mathcal{E}_T^2) \upharpoonright K_2 \text{ holds } f(p) = \frac{\frac{p_2}{p_1}}{p_1}$, and
 - (ii) for every point q of \mathcal{E}_T^2 such that $q \in$ the carrier of $(\mathcal{E}_T^2) \upharpoonright K_2$ holds $q_1 \neq 0$. Then f is continuous.
- (44) Let K_2 be a non empty subset of \mathcal{E}^2_T and f be a map from $(\mathcal{E}^2_T) \upharpoonright K_2$ into \mathbb{R}^1 . Suppose that
 - (i) for every point p of \mathcal{E}^2_T such that $p \in \text{the carrier of } (\mathcal{E}^2_T) \upharpoonright K_2 \text{ holds } f(p) = \frac{\frac{p_1}{p_2}}{p_2}$, and
- (ii) for every point q of \mathcal{E}^2_T such that $q \in$ the carrier of $(\mathcal{E}^2_T) \upharpoonright K_2$ holds $q_2 \neq 0$. Then f is continuous.
- (45) Let K_0 , B_0 be subsets of \mathcal{E}_T^2 , f be a map from $(\mathcal{E}_T^2) \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$, and f_1 , f_2 be maps from $(\mathcal{E}_T^2) \upharpoonright K_0$ into \mathbb{R}^1 . Suppose that
 - (i) f_1 is continuous,
- (ii) f_2 is continuous,
- (iii) $K_0 \neq \emptyset$,
- (iv) $B_0 \neq \emptyset$, and
- (v) for all real numbers x, y, r, s such that $[x,y] \in K_0$ and $r = f_1([x,y])$ and $s = f_2([x,y])$ holds f([x,y]) = [r,s].

Then f is continuous.

- (46) Let K_0 , B_0 be subsets of \mathcal{L}_T^2 and f be a map from $(\mathcal{L}_T^2) \upharpoonright K_0$ into $(\mathcal{L}_T^2) \upharpoonright B_0$. Suppose $f = \text{OutInSq} \upharpoonright K_0$ and $B_0 = (\text{the carrier of } \mathcal{L}_T^2) \setminus \{0_{\mathcal{L}_T^2}\}$ and $K_0 = \{p : (p_2 \le p_1 \land -p_1 \le p_2 \lor p_2 \ge p_1 \land p_2 \le -p_1) \land p \ne 0_{\mathcal{L}_T^2}\}$. Then f is continuous.
- (47) Let K_0 , B_0 be subsets of $\mathcal{E}_{\mathbb{T}}^2$ and f be a map from $(\mathcal{E}_{\mathbb{T}}^2) \upharpoonright K_0$ into $(\mathcal{E}_{\mathbb{T}}^2) \upharpoonright B_0$. Suppose $f = \operatorname{OutInSq} \upharpoonright K_0$ and $B_0 = (\operatorname{the carrier of} \mathcal{E}_{\mathbb{T}}^2) \setminus \{0_{\mathcal{E}_{\mathbb{T}}^2}\}$ and $K_0 = \{p : (p_1 \leq p_2 \land -p_2 \leq p_1 \lor p_1 \geq p_2 \land p_1 \leq -p_2) \land p \neq 0_{\mathcal{E}_{\mathbb{T}}^2}\}$. Then f is continuous.

In this article we present several logical schemes. The scheme TopSubset concerns a unary predicate \mathcal{P} , and states that:

 $\{p; p \text{ ranges over points of } \mathcal{E}_{\mathrm{T}}^2 \colon \mathcal{P}[p]\}$ is a subset of $\mathcal{E}_{\mathrm{T}}^2$ for all values of the parameters.

The scheme TopCompl deals with a subset \mathcal{A} of \mathcal{E}^2_T and a unary predicate \mathcal{P} , and states that:

 $\mathcal{A}^{c} = \{p; p \text{ ranges over points of } \mathcal{E}_{T}^{2} : \text{not } \mathcal{P}[p]\}$ provided the parameters satisfy the following condition:

• $\mathcal{A} = \{p; p \text{ ranges over points of } \mathcal{E}_{\mathsf{T}}^2 \colon \mathcal{P}[p]\}.$

The scheme *ClosedSubset* deals with two unary functors \mathcal{F} and \mathcal{G} yielding real numbers, and states that:

 $\{p; p \text{ ranges over points of } \mathcal{E}^2_T \colon \mathcal{F}(p) \leq \mathcal{G}(p)\}$ is a closed subset of \mathcal{E}^2_T

- provided the parameter meets the following requirements:

 For all points p, q of \mathcal{E}^2_T holds $\mathcal{F}(p-q)=\mathcal{F}(p)-\mathcal{F}(q)$ and $\mathcal{G}(p-q)=\mathcal{G}(p)-\mathcal{G}(q)$, and
 - For all points p, q of \mathcal{E}_T^2 holds $|p-q|^2 = \mathcal{F}(p-q)^2 + \mathcal{G}(p-q)^2$.

Next we state several propositions:

- (48) Let B_0 be a subset of $\mathcal{E}_{\mathrm{T}}^2$, K_0 be a subset of $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$, and f be a map from $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0 \upharpoonright K_0$ into $(\mathcal{E}_{\mathrm{T}}^2) \upharpoonright B_0$. Suppose $f = \mathrm{OutInSq} \upharpoonright K_0$ and $B_0 = (\mathrm{the\ carrier\ of\ } \mathcal{E}_{\mathrm{T}}^2) \setminus \{0_{\mathcal{E}_{\mathrm{T}}^2}\}$ and $K_0 = \{p: (p_2 \leq p_1 \land -p_1 \leq p_2 \lor p_2 \geq p_1 \land p_2 \leq -p_1) \land p \neq 0_{\mathcal{E}_{\mathrm{T}}^2}\}$. Then f is continuous and K_0 is closed.
- (49) Let B_0 be a subset of \mathcal{E}_T^2 , K_0 be a subset of $(\mathcal{E}_T^2) \upharpoonright B_0$, and f be a map from $(\mathcal{E}_T^2) \upharpoonright B_0 \upharpoonright K_0$ into $(\mathcal{E}_T^2) \upharpoonright B_0$. Suppose $f = \text{OutInSq} \upharpoonright K_0$ and $B_0 = (\text{the carrier of } \mathcal{E}_T^2) \setminus \{0_{\mathcal{E}_T^2}\}$ and $K_0 = \{p : (p_1 \leq p_2 \land -p_2 \leq p_1 \lor p_1 \geq p_2 \land p_1 \leq -p_2) \land p \neq 0_{\mathcal{E}_T^2}\}$. Then f is continuous and K_0 is closed.
- (50) Let D be a non empty subset of $\mathcal{E}_{\mathbf{T}}^2$. Suppose $D^{\mathbf{c}} = \{0_{\mathcal{E}_{\mathbf{T}}^2}\}$. Then there exists a map h from $(\mathcal{E}_{\mathbf{T}}^2) \upharpoonright D$ into $(\mathcal{E}_{\mathbf{T}}^2) \upharpoonright D$ such that h = OutInSq and h is continuous.
- (51) Let B, K_0 , K_3 be subsets of \mathcal{E}^2_T . Suppose that
 - (i) $B = \{0_{\mathcal{E}_{x}^{2}}\},$
- (ii) $K_0 = \{p: -1 < p_1 \land p_1 < 1 \land -1 < p_2 \land p_2 < 1\}, \text{ and }$
- (iii) $K_3 = \{q: -1 = q_1 \land -1 \le q_2 \land q_2 \le 1 \lor q_1 = 1 \land -1 \le q_2 \land q_2 \le 1 \lor -1 = q_2 \land -1 \le q_1 \land q_1 \le 1 \lor 1 = q_2 \land -1 \le q_1 \land q_1 \le 1 \}.$

Then there exists a map f from $(\mathcal{E}_T^2) \upharpoonright B^c$ into $(\mathcal{E}_T^2) \upharpoonright B^c$ such that

- (iv) f is continuous and one-to-one,
- (v) for every point t of \mathcal{L}^2_T such that $t \in K_0$ and $t \neq 0_{\mathcal{L}^2_T}$ holds $f(t) \notin K_0 \cup K_3$,
- (vi) for every point r of \mathcal{E}^2_T such that $r \notin K_0 \cup K_3$ holds $f(r) \in K_0$, and
- (vii) for every point s of \mathcal{E}_T^2 such that $s \in K_3$ holds f(s) = s.
- (52) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathbb{T}}^2$, K_0 be a subset of $\mathcal{E}_{\mathbb{T}}^2$, and O, I be points of \mathbb{I} . Suppose that O=0 and I=1 and f is continuous and one-to-one and g is continuous and one-to-one and $K_0=\{p:-1< p_1 \land p_1<1 \land -1< p_2 \land p_2<1\}$ and $f(O)_1=-1$ and $f(I)_1=1$ and $-1\leq f(O)_2$ and $f(O)_2\leq 1$ and $-1\leq f(I)_2$ and $f(I)_2\leq 1$ and $g(O)_2=-1$ and $g(I)_2=1$ and $-1\leq g(O)_1$ and $g(O)_1\leq 1$ and $-1\leq g(I)_1$ and $g(I)_1\leq 1$ and $g(I)_2\leq 1$ and $g(I)_1\leq 1$ and $g(I)_2\leq 1$
- (53) Let A, B, C, D be real numbers and f be a map from \mathcal{E}_T^2 into \mathcal{E}_T^2 . Suppose that for every point t of \mathcal{E}_T^2 holds $f(t) = [A \cdot t_1 + B, C \cdot t_2 + D]$. Then f is continuous.

Let A, B, C, D be real numbers. The functor AffineMap(A, B, C, D) yields a map from \mathcal{E}^2_T into \mathcal{E}^2_T and is defined as follows:

(Def. 2) For every point t of $\mathcal{E}_{\mathbf{T}}^2$ holds (AffineMap(A,B,C,D)) $(t) = [A \cdot t_1 + B, C \cdot t_2 + D]$.

Let a, b, c, d be real numbers. One can check that AffineMap(a,b,c,d) is continuous. Next we state several propositions:

- (54) For all real numbers A, B, C, D such that A > 0 and C > 0 holds AffineMap(A, B, C, D) is one-to-one.
- (55) Let f,g be maps from \mathbb{I} into $\mathcal{E}_{\mathrm{T}}^2, a, b, c, d$ be real numbers, and O,I be points of \mathbb{I} . Suppose that O=0 and I=1 and f is continuous and one-to-one and g is continuous and one-to-one and $f(O)_1=a$ and $f(I)_1=b$ and $c\leq f(O)_2$ and $f(O)_2\leq d$ and $c\leq f(I)_2$ and $f(I)_2\leq d$ and $g(O)_2=c$ and $g(I)_2=d$ and $a\leq g(O)_1$ and $g(O)_1\leq b$ and $a\leq g(I)_1$ and $g(I)_1\leq b$ and a< b and $a\leq d$ and it is not true that there exists a point $a\leq d$ and $a\leq d$ an
- (56)(i) $\{p_7; p_7 \text{ ranges over points of } \mathcal{E}_T^2: (p_7)_2 \le (p_7)_1\}$ is a closed subset of \mathcal{E}_T^2 , and
- (ii) $\{p_7; p_7 \text{ ranges over points of } \mathcal{E}^2_T : (p_7)_1 \le (p_7)_2\}$ is a closed subset of \mathcal{E}^2_T .

- (57)(i) $\{p_7; p_7 \text{ ranges over points of } \mathcal{E}_T^2: -(p_7)_1 \leq (p_7)_2\}$ is a closed subset of \mathcal{E}_T^2 , and
- (ii) $\{p_7; p_7 \text{ ranges over points of } \mathcal{E}^2_{\mathbf{T}}: (p_7)_{\mathbf{2}} \leq -(p_7)_{\mathbf{1}}\}$ is a closed subset of $\mathcal{E}^2_{\mathbf{T}}$.
- (58)(i) $\{p_7; p_7 \text{ ranges over points of } \mathcal{E}^2_{\mathbf{T}}: -(p_7)_{\mathbf{2}} \leq (p_7)_{\mathbf{1}}\}$ is a closed subset of $\mathcal{E}^2_{\mathbf{T}}$, and
- (ii) $\{p_7; p_7 \text{ ranges over points of } \mathcal{E}^2_T : (p_7)_1 \le -(p_7)_2\}$ is a closed subset of \mathcal{E}^2_T .

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [3] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/pcomps_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [6] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [8] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [9] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in £². Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/pscomp_1.html.
- [10] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [11] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topmetr.html.
- [12] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/real 1.html.
- [13] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/metric_1.html.
- [14] Yatsuka Nakamura. Graph theoretical properties of arcs in the plane and Fashoda Meet Theorem. *Journal of Formalized Mathematics*, 10, 1998. http://mizar.org/JFM/Vol10/jgraph_1.html.
- [15] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/jordan2c.html.
- [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [17] Piotr Rudnicki and Andrzej Trybulec. On same equivalents of well-foundedness. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vo19/wellfnd1.html.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [19] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [20] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/square_1.html.
- $[21] \enskip \textbf{Zinaida Trybulec. Properties of subsets.} \enskip \textbf{Journal of Formalized Mathematics}, \textbf{1}, \textbf{1989}. \enskip \textbf{http://mizar.org/JFM/Vol1/subset_1.html.}$

[22] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received July 16, 2001

Published January 2, 2004