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Summary. We have proven the “Fashoda Meet Theorem{id [14]. Here we prove the
outside version of it. It says that if Britain and France intended to set the courses for ships to
the opposite side of Africa, they must also meet.
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The articles([18],[[211],[[1],[[19],[112] . 122][T4],[12],[171,.16],[[16],[14],[18],[1113],.15],[120],[1],[[10],
[15], [8], and [17] provide the notation and terminology for this paper.
One can prove the following propositions:

(2] For every real numbea such that i a holdsa < a2.

(3) For every real numbexrsuch that-1 > a holds—a < a2.

(4) For every real numbex such that-1 > a holds—a < a°.

(5) For all real numbera, b such thab? < a? anda > 0 holds—a < bandb < a.
(6) For all real numbera, b such thab? < a? anda > 0 holds—a < b andb < a.
(7) For all real numbera, b such that-a < b andb < a holdsb? < a2.

(8) For all real numbera, b such that-a < b andb < a holdsb? < a2.

In the sequeT, Ty, T, Sdenote non empty topological spaces.
Next we state a number of propositions:

(9) Letf be a map fron; into S, g be a map fron, into S andF;, F, be subsets of .
Suppose thal; is a subspace af andT; is a subspace df andF; = Q) andF, = Q(1,) and
QyUQr,) =Qr andF; is closed andr; is closed and is continuous and is continuous
and for every sep such thatp € Q ;) NQ(1,) holds f(p) = g(p). Then there exists a map
from T into Ssuch thah = f+-g andh is continuous.

(10) Letn be a natural numbegy be a point ofE", q be a point of£f, andr be a real number.
If 9= o, then Ballgy,r) = {qs; g3 ranges over points aff: |[q—qgz| < r}.

(11) (0@%)1 =0 and(Ogg)g =0.
(12) 1REAL2=(1,1).
(13) (1.REAL2); =1 and(1.REAL2), = 1.

1 The proposition (1) has been removed.
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(14) domproj1= the carrier ofE2 and dom proji= R 2.

(15) domproj2= the carrier of£2 and dom proj2= 2.

(16) projl is a map fronE2 into R™.

(17) proj2 is a map fronE2 into R™.

(18) For every poinp of 2 holdsp = [proj1(p), proj2(p)].

(19) For every subsd@ of 2 such thaB = {Of%z} holdsBC # 0 and (the carrier of£2) \ B # 0.

(20) LetX, Y be non empty topological spaces ahde a map fromX into Y. Thenf is
continuous if and only if for every poirg of X and for every subs&t of Y such thatf (p) € V
andV is open there exists a sub%&tof X such thatp € W andW is open andf°W C V.

(21) Letp be a point ofE% andG be a subset OE% Supposés is open and € G. Then there
exists a real numbersuch that > 0 and{q; g ranges over points OE%: pr—r<gqr A g1 <
PL+Tr A P2—T<O2 A Ge<p2+r}CG.

(22) LetX,Y, Z be non empty topological spac&sbe a subset of, C be a subset af, f be
a map fromX into Y, andh be a map fron¥ [B into Z[C. Supposef is continuous andth is
continuous and rn§ C B andB £ 0 andC £ 0. Then there exists a mapfrom X into Z such
thatg is continuous and = h- f.

In the sequep, q are points ofE%.
The function OutInSq from (the carrier @)\ {Oz%} into (the carrier of£2) \ {OE%} is defined
by the condition (Def. 1).

(Def. 1) Letp be a point ofE2 such thatp # Oz:% Then
P2

(i) if pp<prand—p; < pporpz > ppandp; < —py, then OutinS¢p) = [%, %}, and

P1

(i) if p2 £ pror—py £ p2andifpy Z p1or p2 £ —p1, then OutinS@p) = [%, é].

The following propositions are true:

(23) Letp be a point of E2. Suppose, £ p1 Or —py % Pz but pp # py or p2 £ —p1. Then
p1 < pzand—pz < pyorpp > pz andpy < —pe.
(24) Letpbe a point ofE% such thatp # %% Then
P
() if p1<pzand—p, < pyorp; > ppandp; < —pp, then OutinSgp) = [ 2, é}, and
P2

(i) if prZ P2or —pp £ prandif py # Pz or p1 £ —pz, then OutinS@p) = [, 7.

(25) LetD be a subset of2 andKq be a subset of £2) [D. Supposeko = {p: (p2 < p1 A
—pr<p2V p>prApPp<-p)ApP# Of%;}. Then rndOutIinSqiKop) C the carrier of
(Z%)IDIKo.

(26) LetD be a subset ofZ andKo be a subset of £2) [D. SupposeKo = {p: (p1 < p2 A
—p2<pLVpP1i>p2ApPL<—pP2) ApP# 0@%]’- Then rndOutInSqiKo) C the carrier of
(Z%)IDIKo.

(27) LetKy be a set an® be a nhon empty subset ﬁ$ Suppos&; = {p; p ranges over points
of E2: (pa<pr A —p1<pP2V P2>pr A p2<—p1) A p;éog%} andD® = {OE%}. Then
Ky is a non empty subset 6f£2)[D and a non empty subset &£,

(28) LetK; be a set an® be a non empty subset @‘% Suppos&; = {p; p ranges over points
of 22 (pp<p2 A —P2<p1VpPr>p2Apr<—p2) A p;éog%} andD® = {%%}~ Then
Ky is a non empty subset ¢f£2)[D and a non empty subset &f.
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(29) LetX be a non empty topological space afid f, be maps fronX into RY. Supposef;
is continuous and, is continuous. Then there exists a m@from X into R such that for
every pointp of X and for all real numbers, ro such thatf;(p) = ry and f2(p) = r2 holds
g(p) =r1+rz2 andg is continuous.

(30) LetX be a non empty topological space anide a real number. Then there exists a rgap
from X into R* such that for every poin of X holdsg(p) = a andg is continuous.

(31) LetX be a non empty topological space afid f, be maps fronX into R:. Supposef;
is continuous and> is continuous. Then there exists a n@gfrom X into R* such that for
every pointp of X and for all real numbers, ra such thatf;(p) = r1 and f2(p) = r2 holds
g(p) =r1—rz andgis continuous.

(32) LetX be a non empty topological space afdbe a map fronX into R'. Supposef; is
continuous. Then there exists a mgifrom X into R? such that for every poinp of X and
for every real numberr; such thatf,(p) =r1 holdsg(p) = r1 - r1 andg is continuous.

(33) LetX be a non empty topological spach, be a map fromX into R, anda be a real
number. Supposé; is continuous. Then there exists a m@from X into R! such that for
every pointp of X and for every real numbey such thatfi(p) =r; holdsg(p) =a-r; and
g is continuous.

(34) LetX be a non empty topological spach, be a map fromX into R, anda be a real
number. Supposé is continuous. Then there exists a ngfrom X into R* such that for
every pointp of X and for every real numbej such thatf;(p) =r1 holdsg(p) =r1+aand
g is continuous.

(35) LetX be a non empty topological space afid f» be maps fronX into RY. Supposef;
is continuous and, is continuous. Then there exists a m@from X into R such that for
every pointp of X and for all real numbers, rp such thatf;(p) = ry and f2(p) = ry holds
g(p) =r1-ry andg is continuous.

(36) LetX be a non empty topological space afcbe a map fronX into R, Supposef; is
continuous and for every poigtof X holds f1(q) # 0. Then there exists a mapfrom X into

R such that for every poinp of X and for every real numbet such thatf;(p) = r; holds

g(p) = + andgis continuous.

(37) LetX be a non empty topological space afigl f, be maps fronX into RL. Supposef is
continuous andy is continuous and for every poigtof X holds f2(q) # 0. Then there exists
a mapg from X into R? such that for every poirp of X and for all real numbensy, r, such
that f1(p) = r1 and fa(p) = ro holdsg(p) = % andg is continuous.

(38) LetX be a non empty topological space afigl f, be maps fronX into RY. Supposef is
continuous andy is continuous and for every poigtof X holds f(q) # 0. Then there exists
a mapg from X into R* such that

(i) for every pointp of X and for all real numbens;, r, such thatf1(p) =r1 and fa(p) =r2
[
holdsg(p) = %, and
(i) gis continuous.

(39) LetKg be a subset oE% and f be a map fron{Z%) IKo into R, If for every pointp of
(£2)[Ko holds f (p) = proj1(p), thenf is continuous.

(40) LetKg be a subset o2 and f be a map from(’E£2) [Kq into RL. If for every pointp of
(Z2)[Ko holds f(p) = proj2(p), thenf is continuous.

(41) LetK; be a non empty subset @2 and f be a map fron{E2) [K; into R. Suppose that
(i) for every pointp of Z:% such thatp € the carrier of(E%) K2 holdsf(p) = %, and

(i) for every pointq of E% such thag € the carrier of(z%) Kz holdsq; # 0.
Thenf is continuous.
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(42) LetK; be a non empty subset @ and f be a map fron{E2) [K; into R. Suppose that
(i) for every pointp of Z:% such thatp € the carrier of(E%) K2 holdsf(p) = é, and

(i) for every pointq of £2 such thag € the carrier o £2) [K holdsq, # 0.
Thenf is continuous.

43) LetKy be a non empty subset @ and f be a map fron{£2) [K, into R!. Suppose that
2
P2

(i) for every pointp of Z% such thatp € the carrier of(Z%) K2 holds f(p) = %7 and

(i) for every pointq of 2 such thag € the carrier o £2) [K holdsq; # 0.
Thenf is continuous.

(44) LetK; be a non empty subset @ and f be a map fron{E2) [K; into R. Suppose that
P1

(i) for every pointp of z% such thatp € the carrier of(Z%) IK2 holds f(p) = %7 and

(i) for every pointq of £2 such thag € the carrier of( £2) [K holdsg, # 0.
Thenf is continuous.

(45) LetKo, Bg be subsets of2, f be a map from(£2) [Ko into (£2)[Bo, and f1, f, be maps
from (£2)[Ko into RY. Suppose that

(i) fyis continuous,
(i)  fois continuous,
(i) Ko #0,
(v) Bo#0,and
(v) forall real numbers, y, r, ssuch thafx,y] € Ko andr = f1([x,y]) ands= f2([x,y]) holds
f(lxy)) =1r.s.
Thenf is continuous.

(46) LetKo, By be subsets of-2 and f be a map from(‘E2) [Ko into (£2) [Bo. Supposef =
OutInSqKo andBy = (the carrier of£2) \ {OZ%} andKo={p:(p2<p1 A —p1<p2V p2>
pL A p2<—p1) A p# OZ%}. Thenf is continuous.

(47) LetKo, By be subsets of:2 and f be a map from(E2) [Ko into (£2) [Bo. Supposef =
OutInSqKg andBg = (the carrier ofE%) \ {OE%} andKo={p:(p1<pP2 A —p2<p1V p1>
P2 A pr<—p2) AP# Ogg}. Thenf is continuous.

In this article we present several logical schemes. The scH@p8ubsetoncerns a unary
predicateP, and states that:
{p; pranges over points at2: P[p]} is a subset of=2
for all values of the parameters.
The schemd@opCompldeals with a subset of E% and a unary predicat®, and states that:
A4° = {p; p ranges over points at2: not P[p|}
provided the parameters satisfy the following condition:
e 4= {p;pranges over points atZ: P[pl}.
The schem&losedSubseteals with two unary functorg and G yielding real numbers, and
states that:
{p; pranges over points at2: ¥ (p) < G(p)} is a closed subset @2
provided the parameter meets the following requirements:
e For all pointsp, g of £% holds # (p—q) = ¥ (p) — #(q) and G(p—q) = G(p) —
G(a), and
e For all pointsp, g of £2 holds|p—qf> = F (p—q)?+ G(p—q)>.
Next we state several propositions:
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(48) LetBg be a subset of2, Ko be a subset of£2) By, and f be a map fron(£2) By Ko
into (£2) [Bo. Supposef = OutinSqKg andBy = (the carrier of£2) \ {042} andKo = {p:

(P2<pLA—-pPr<p2VpP>ptApPp<—-p)Ap# Of%}. Thenf is continuous an&g
is closed.

(49) LetBy be a subset of2, Ko be a subset of£2) [Bg, and f be a map from(E2) [Bo[Ko
into (£2) [Bo. Supposef = OutinSq/Kg andBy = (the carrier of£2) \ {042} andKo = {p:
(Pr< P2 A —=p2<Pp1V P1=Pp2 A PL<—pz) A P70z} Thenf is continuous anto
is closed.

(50) LetD be a non empty subset Gii% Supposd = {OZ%}. Then there exists a mdpfrom
(Z23)ID into (‘£2) D such thah = OutinSq anch is continuous.

(51) LetB, Kp, K3 be subsets ofE% Suppose that
) B={0z}
(i) Ko={p:—1l<piApi<lA-1<pyA p2<1}, and

iy Ke={og:-1=qu A 1< A p<lVa=1A-1<gpAg<lyv-1=
RA-1<quAq<1Vi=gA-1<g Agq<1)

Then there exists a mapfrom (£2) [BC into (£2)[B° such that
(iv)  fis continuous and one-to-one,
(v) for every point of E% such that € Ky andt # 0@% holds f (t) ¢ KoUK,

(vi) for every pointr of E% such thatr ¢ KoUK3 holdsf(r) € Ko, and
(vii)  for every points of £2 such thas € K3 holds f(s) = s.

(52) Letf, gbe maps from into Z% Ko be a subset orE% andO, | be points ofl. Suppose
thatO = 0 andl = 1 andf is continuous and one-to-one agds continuous and one-to-one
andKg={p:—1<pr A <1 A -1<px A pp<1l}andf(O);=-1andf(l);=1and
—1< f(O)2 andf(0) <1 and—1< f(l)2 andf(l), <1 andg(O), = —1 andg(l), =1
and—1 < g(0); andg(0); < 1and—1 < g(l); andg(l)1 < 1 and rngf misseKp and rngy
misseKp. Then rngf meets rng.

(53) LetA, B, C, D be real numbers antlbe a map fromE% into E% Suppose that for every
pointt of £2 holds f(t) = [A-t; + B,C-t,+D]. Thenf is continuous.

Let A, B, C, D be real numbers. The functor AffineMgh B,C,D) yields a map fron?2 into
£2 and is defined as follows:

(Def. 2) For every point of £2 holds(AffineMap(A, B,C,D))(t) = [A-t; +B,C-t, +D.

Leta, b, ¢, d be real numbers. One can check that Affineap, ¢, d) is continuous.
Next we state several propositions:

(54) For all real numbera, B, C, D such thatA > 0 andC > 0 holds AffineMagA,B,C,D) is
one-to-one.

(55) Letf, gbe maps froniinto E% a, b, ¢, d be real numbers, ar@, | be points ofl. Suppose
thatO = 0 andl = 1 andf is continuous and one-to-one agds continuous and one-to-one
andf(0); =aandf(l); =bandc< f(0),andf(0), <dandc< f(l); andf(l), <dand
0(0)2 =candg(l), =d anda < g(O); andg(O)1 <banda< g(l); andg(l)1 <banda<b
andc < d and it is not true that there exists a poirtf I such thata < f(r); andf(r); <b
andc < f(r)2 andf(r)2 < dand itis not true that there exists a pairmtf I such thatn < g(r)1
andg(r)1 < bandc < g(r)2 andg(r), < d. Then rngf meets rng.

(56)())  {p7; pr ranges over points at2: (p7)2 < (p7)1} is a closed subset &2, and
(i)  {p7; pr ranges over points GE%: (p7)1 < (p7)2} is a closed subset @%
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(57)() {p7; pr ranges over points af2: —(p7)1 < (p7)2} is a closed subset &2, and

(i) {p7; pr ranges over points at2: (p7)2 < —(p7)1} is a closed subset 2.

(58)(i) {p7; pr ranges over points df%: —(p7)2 < (p7)1} is a closed subset cﬂ% and

(1

(2

(3]

4

(5]

(6]
(7]

8l

[

[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(i)  {p7; pr ranges over points a2 (p7)1 < —(pr)2} is a closed subset 2.
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