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Summary. We have proven the “Fashoda Meet Theorem” in [14]. Here we prove the
outside version of it. It says that if Britain and France intended to set the courses for ships to
the opposite side of Africa, they must also meet.
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The articles [18], [21], [1], [19], [12], [22], [4], [2], [7], [6], [16], [11], [3], [13], [5], [20], [9], [10],
[15], [8], and [17] provide the notation and terminology for this paper.

One can prove the following propositions:

(2)1 For every real numbera such that 1≤ a holdsa≤ a2.

(3) For every real numbera such that−1≥ a holds−a≤ a2.

(4) For every real numbera such that−1 > a holds−a < a2.

(5) For all real numbersa, b such thatb2 ≤ a2 anda≥ 0 holds−a≤ b andb≤ a.

(6) For all real numbersa, b such thatb2 < a2 anda≥ 0 holds−a < b andb < a.

(7) For all real numbersa, b such that−a≤ b andb≤ a holdsb2 ≤ a2.

(8) For all real numbersa, b such that−a < b andb < a holdsb2 < a2.

In the sequelT, T1, T2, Sdenote non empty topological spaces.
Next we state a number of propositions:

(9) Let f be a map fromT1 into S, g be a map fromT2 into S, andF1, F2 be subsets ofT.
Suppose thatT1 is a subspace ofT andT2 is a subspace ofT andF1 = Ω(T1) andF2 = Ω(T2) and
Ω(T1)∪Ω(T2) = ΩT andF1 is closed andF2 is closed andf is continuous andg is continuous
and for every setp such thatp∈ Ω(T1)∩Ω(T2) holds f (p) = g(p). Then there exists a maph
from T into Ssuch thath = f+·g andh is continuous.

(10) Letn be a natural number,q2 be a point ofEn, q be a point ofEn
T, andr be a real number.

If q = q2, then Ball(q2, r) = {q3;q3 ranges over points ofEn
T: |q−q3|< r}.

(11) (0E2
T
)1 = 0 and(0E2

T
)2 = 0.

(12) 1.REAL2 = 〈1,1〉.

(13) (1.REAL2)1 = 1 and(1.REAL2)2 = 1.

1 The proposition (1) has been removed.
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(14) domproj1= the carrier ofE2
T and domproj1= R 2.

(15) domproj2= the carrier ofE2
T and domproj2= R 2.

(16) proj1 is a map fromE2
T into R1.

(17) proj2 is a map fromE2
T into R1.

(18) For every pointp of E2
T holdsp = [proj1(p),proj2(p)].

(19) For every subsetB of E2
T such thatB= {0E2

T
} holdsBc 6= /0 and (the carrier ofE2

T)\B 6= /0.

(20) Let X, Y be non empty topological spaces andf be a map fromX into Y. Then f is
continuous if and only if for every pointp of X and for every subsetV of Y such thatf (p)∈V
andV is open there exists a subsetW of X such thatp∈W andW is open andf ◦W ⊆V.

(21) Let p be a point ofE2
T andG be a subset ofE2

T. SupposeG is open andp∈ G. Then there
exists a real numberr such thatr > 0 and{q;q ranges over points ofE2

T: p1− r < q1 ∧ q1 <
p1 + r ∧ p2− r < q2 ∧ q2 < p2 + r} ⊆ G.

(22) LetX, Y, Z be non empty topological spaces,B be a subset ofY, C be a subset ofZ, f be
a map fromX into Y, andh be a map fromY�B into Z�C. Supposef is continuous andh is
continuous and rngf ⊆ B andB 6= /0 andC 6= /0. Then there exists a mapg from X into Z such
thatg is continuous andg = h· f .

In the sequelp, q are points ofE2
T.

The function OutInSq from (the carrier ofE2
T)\{0E2

T
} into (the carrier ofE2

T)\{0E2
T
} is defined

by the condition (Def. 1).

(Def. 1) Letp be a point ofE2
T such thatp 6= 0E2

T
. Then

(i) if p2 ≤ p1 and−p1 ≤ p2 or p2 ≥ p1 andp2 ≤−p1, then OutInSq(p) = [ 1
p1

,
p2
p1
p1

], and

(ii) if p2 6≤ p1 or−p1 6≤ p2 and if p2 6≥ p1 or p2 6≤ −p1, then OutInSq(p) = [
p1
p2
p2

, 1
p2

].

The following propositions are true:

(23) Let p be a point ofE2
T. Supposep2 6≤ p1 or −p1 6≤ p2 but p2 6≥ p1 or p2 6≤ −p1. Then

p1 ≤ p2 and−p2 ≤ p1 or p1 ≥ p2 andp1 ≤−p2.

(24) Let p be a point ofE2
T such thatp 6= 0E2

T
. Then

(i) if p1 ≤ p2 and−p2 ≤ p1 or p1 ≥ p2 andp1 ≤−p2, then OutInSq(p) = [
p1
p2
p2

, 1
p2

], and

(ii) if p1 6≤ p2 or−p2 6≤ p1 and if p1 6≥ p2 or p1 6≤ −p2, then OutInSq(p) = [ 1
p1

,
p2
p1
p1

].

(25) Let D be a subset ofE2
T andK0 be a subset of(E2

T)�D. SupposeK0 = {p : (p2 ≤ p1 ∧
−p1 ≤ p2 ∨ p2 ≥ p1 ∧ p2 ≤ −p1) ∧ p 6= 0E2

T
}. Then rng(OutInSq�K0) ⊆ the carrier of

(E2
T)�D�K0.

(26) Let D be a subset ofE2
T andK0 be a subset of(E2

T)�D. SupposeK0 = {p : (p1 ≤ p2 ∧
−p2 ≤ p1 ∨ p1 ≥ p2 ∧ p1 ≤ −p2) ∧ p 6= 0E2

T
}. Then rng(OutInSq�K0) ⊆ the carrier of

(E2
T)�D�K0.

(27) LetK1 be a set andD be a non empty subset ofE2
T. SupposeK1 = {p; p ranges over points

of E2
T: (p2 ≤ p1 ∧ −p1 ≤ p2 ∨ p2 ≥ p1 ∧ p2 ≤−p1) ∧ p 6= 0E2

T
} andDc = {0E2

T
}. Then

K1 is a non empty subset of(E2
T)�D and a non empty subset ofE2

T.

(28) LetK1 be a set andD be a non empty subset ofE2
T. SupposeK1 = {p; p ranges over points

of E2
T: (p1 ≤ p2 ∧ −p2 ≤ p1 ∨ p1 ≥ p2 ∧ p1 ≤−p2) ∧ p 6= 0E2

T
} andDc = {0E2

T
}. Then

K1 is a non empty subset of(E2
T)�D and a non empty subset ofE2

T.
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(29) LetX be a non empty topological space andf1, f2 be maps fromX into R1. Supposef1
is continuous andf2 is continuous. Then there exists a mapg from X into R1 such that for
every pointp of X and for all real numbersr1, r2 such thatf1(p) = r1 and f2(p) = r2 holds
g(p) = r1 + r2 andg is continuous.

(30) LetX be a non empty topological space anda be a real number. Then there exists a mapg
from X into R1 such that for every pointp of X holdsg(p) = a andg is continuous.

(31) LetX be a non empty topological space andf1, f2 be maps fromX into R1. Supposef1
is continuous andf2 is continuous. Then there exists a mapg from X into R1 such that for
every pointp of X and for all real numbersr1, r2 such thatf1(p) = r1 and f2(p) = r2 holds
g(p) = r1− r2 andg is continuous.

(32) LetX be a non empty topological space andf1 be a map fromX into R1. Supposef1 is
continuous. Then there exists a mapg from X into R1 such that for every pointp of X and
for every real numberr1 such thatf1(p) = r1 holdsg(p) = r1 · r1 andg is continuous.

(33) Let X be a non empty topological space,f1 be a map fromX into R1, anda be a real
number. Supposef1 is continuous. Then there exists a mapg from X into R1 such that for
every pointp of X and for every real numberr1 such thatf1(p) = r1 holdsg(p) = a · r1 and
g is continuous.

(34) Let X be a non empty topological space,f1 be a map fromX into R1, anda be a real
number. Supposef1 is continuous. Then there exists a mapg from X into R1 such that for
every pointp of X and for every real numberr1 such thatf1(p) = r1 holdsg(p) = r1 +a and
g is continuous.

(35) LetX be a non empty topological space andf1, f2 be maps fromX into R1. Supposef1
is continuous andf2 is continuous. Then there exists a mapg from X into R1 such that for
every pointp of X and for all real numbersr1, r2 such thatf1(p) = r1 and f2(p) = r2 holds
g(p) = r1 · r2 andg is continuous.

(36) LetX be a non empty topological space andf1 be a map fromX into R1. Supposef1 is
continuous and for every pointq of X holds f1(q) 6= 0. Then there exists a mapg from X into
R1 such that for every pointp of X and for every real numberr1 such thatf1(p) = r1 holds
g(p) = 1

r1
andg is continuous.

(37) LetX be a non empty topological space andf1, f2 be maps fromX into R1. Supposef1 is
continuous andf2 is continuous and for every pointq of X holds f2(q) 6= 0. Then there exists
a mapg from X into R1 such that for every pointp of X and for all real numbersr1, r2 such
that f1(p) = r1 and f2(p) = r2 holdsg(p) = r1

r2
andg is continuous.

(38) LetX be a non empty topological space andf1, f2 be maps fromX into R1. Supposef1 is
continuous andf2 is continuous and for every pointq of X holds f2(q) 6= 0. Then there exists
a mapg from X into R1 such that

(i) for every pointp of X and for all real numbersr1, r2 such thatf1(p) = r1 and f2(p) = r2

holdsg(p) =
r1
r2
r2

, and

(ii) g is continuous.

(39) Let K0 be a subset ofE2
T and f be a map from(E2

T)�K0 into R1. If for every pointp of
(E2

T)�K0 holds f (p) = proj1(p), then f is continuous.

(40) Let K0 be a subset ofE2
T and f be a map from(E2

T)�K0 into R1. If for every pointp of
(E2

T)�K0 holds f (p) = proj2(p), then f is continuous.

(41) LetK2 be a non empty subset ofE2
T and f be a map from(E2

T)�K2 into R1. Suppose that

(i) for every pointp of E2
T such thatp∈ the carrier of(E2

T)�K2 holds f (p) = 1
p1

, and

(ii) for every pointq of E2
T such thatq∈ the carrier of(E2

T)�K2 holdsq1 6= 0.

Then f is continuous.
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(42) LetK2 be a non empty subset ofE2
T and f be a map from(E2

T)�K2 into R1. Suppose that

(i) for every pointp of E2
T such thatp∈ the carrier of(E2

T)�K2 holds f (p) = 1
p2

, and

(ii) for every pointq of E2
T such thatq∈ the carrier of(E2

T)�K2 holdsq2 6= 0.

Then f is continuous.

(43) LetK2 be a non empty subset ofE2
T and f be a map from(E2

T)�K2 into R1. Suppose that

(i) for every pointp of E2
T such thatp∈ the carrier of(E2

T)�K2 holds f (p) =
p2
p1
p1

, and

(ii) for every pointq of E2
T such thatq∈ the carrier of(E2

T)�K2 holdsq1 6= 0.

Then f is continuous.

(44) LetK2 be a non empty subset ofE2
T and f be a map from(E2

T)�K2 into R1. Suppose that

(i) for every pointp of E2
T such thatp∈ the carrier of(E2

T)�K2 holds f (p) =
p1
p2
p2

, and

(ii) for every pointq of E2
T such thatq∈ the carrier of(E2

T)�K2 holdsq2 6= 0.

Then f is continuous.

(45) LetK0, B0 be subsets ofE2
T, f be a map from(E2

T)�K0 into (E2
T)�B0, and f1, f2 be maps

from (E2
T)�K0 into R1. Suppose that

(i) f1 is continuous,

(ii) f2 is continuous,

(iii) K0 6= /0,

(iv) B0 6= /0, and

(v) for all real numbersx, y, r, ssuch that[x,y] ∈ K0 andr = f1([x,y]) ands= f2([x,y]) holds
f ([x,y]) = [r,s].

Then f is continuous.

(46) Let K0, B0 be subsets ofE2
T and f be a map from(E2

T)�K0 into (E2
T)�B0. Supposef =

OutInSq�K0 andB0 = (the carrier ofE2
T)\{0E2

T
} andK0 = {p : (p2≤ p1 ∧ −p1≤ p2 ∨ p2≥

p1 ∧ p2 ≤−p1) ∧ p 6= 0E2
T
}. Then f is continuous.

(47) Let K0, B0 be subsets ofE2
T and f be a map from(E2

T)�K0 into (E2
T)�B0. Supposef =

OutInSq�K0 andB0 = (the carrier ofE2
T)\{0E2

T
} andK0 = {p : (p1≤ p2 ∧ −p2≤ p1 ∨ p1≥

p2 ∧ p1 ≤−p2) ∧ p 6= 0E2
T
}. Then f is continuous.

In this article we present several logical schemes. The schemeTopSubsetconcerns a unary
predicateP , and states that:

{p; p ranges over points ofE2
T: P [p]} is a subset ofE2

T
for all values of the parameters.

The schemeTopCompldeals with a subsetA of E2
T and a unary predicateP , and states that:

Ac = {p; p ranges over points ofE2
T: not P [p]}

provided the parameters satisfy the following condition:
• A = {p; p ranges over points ofE2

T: P [p]}.
The schemeClosedSubsetdeals with two unary functorsF andG yielding real numbers, and

states that:
{p; p ranges over points ofE2

T: F (p)≤ G(p)} is a closed subset ofE2
T

provided the parameter meets the following requirements:
• For all pointsp, q of E2

T holdsF (p−q) = F (p)−F (q) andG(p−q) = G(p)−
G(q), and

• For all pointsp, q of E2
T holds|p−q|2 = F (p−q)2 +G(p−q)2.

Next we state several propositions:
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(48) Let B0 be a subset ofE2
T, K0 be a subset of(E2

T)�B0, and f be a map from(E2
T)�B0�K0

into (E2
T)�B0. Supposef = OutInSq�K0 andB0 = (the carrier ofE2

T)\{0E2
T
} andK0 = {p :

(p2 ≤ p1 ∧ −p1 ≤ p2 ∨ p2 ≥ p1 ∧ p2 ≤−p1) ∧ p 6= 0E2
T
}. Then f is continuous andK0

is closed.

(49) Let B0 be a subset ofE2
T, K0 be a subset of(E2

T)�B0, and f be a map from(E2
T)�B0�K0

into (E2
T)�B0. Supposef = OutInSq�K0 andB0 = (the carrier ofE2

T)\{0E2
T
} andK0 = {p :

(p1 ≤ p2 ∧ −p2 ≤ p1 ∨ p1 ≥ p2 ∧ p1 ≤−p2) ∧ p 6= 0E2
T
}. Then f is continuous andK0

is closed.

(50) LetD be a non empty subset ofE2
T. SupposeDc = {0E2

T
}. Then there exists a maph from

(E2
T)�D into (E2

T)�D such thath = OutInSq andh is continuous.

(51) LetB, K0, K3 be subsets ofE2
T. Suppose that

(i) B = {0E2
T
},

(ii) K0 = {p : −1 < p1 ∧ p1 < 1 ∧ −1 < p2 ∧ p2 < 1}, and

(iii) K3 = {q : −1 = q1 ∧ −1 ≤ q2 ∧ q2 ≤ 1 ∨ q1 = 1 ∧ −1 ≤ q2 ∧ q2 ≤ 1 ∨ −1 =
q2 ∧ −1≤ q1 ∧ q1 ≤ 1 ∨ 1 = q2 ∧ −1≤ q1 ∧ q1 ≤ 1}.
Then there exists a mapf from (E2

T)�Bc into (E2
T)�Bc such that

(iv) f is continuous and one-to-one,

(v) for every pointt of E2
T such thatt ∈ K0 andt 6= 0E2

T
holds f (t) /∈ K0∪K3,

(vi) for every pointr of E2
T such thatr /∈ K0∪K3 holds f (r) ∈ K0, and

(vii) for every points of E2
T such thats∈ K3 holds f (s) = s.

(52) Let f , g be maps fromI into E2
T, K0 be a subset ofE2

T, andO, I be points ofI. Suppose
thatO = 0 andI = 1 and f is continuous and one-to-one andg is continuous and one-to-one
andK0 = {p :−1 < p1 ∧ p1 < 1 ∧ −1 < p2 ∧ p2 < 1} and f (O)1 =−1 and f (I)1 = 1 and
−1≤ f (O)2 and f (O)2 ≤ 1 and−1≤ f (I)2 and f (I)2 ≤ 1 andg(O)2 = −1 andg(I)2 = 1
and−1≤ g(O)1 andg(O)1 ≤ 1 and−1≤ g(I)1 andg(I)1 ≤ 1 and rngf missesK0 and rngg
missesK0. Then rngf meets rngg.

(53) LetA, B, C, D be real numbers andf be a map fromE2
T into E2

T. Suppose that for every
point t of E2

T holds f (t) = [A· t1 +B,C · t2 +D]. Then f is continuous.

Let A, B, C, D be real numbers. The functor AffineMap(A,B,C,D) yields a map fromE2
T into

E2
T and is defined as follows:

(Def. 2) For every pointt of E2
T holds(AffineMap(A,B,C,D))(t) = [A· t1 +B,C · t2 +D].

Let a, b, c, d be real numbers. One can check that AffineMap(a,b,c,d) is continuous.
Next we state several propositions:

(54) For all real numbersA, B, C, D such thatA > 0 andC > 0 holds AffineMap(A,B,C,D) is
one-to-one.

(55) Let f , g be maps fromI into E2
T, a, b, c, d be real numbers, andO, I be points ofI. Suppose

thatO = 0 andI = 1 and f is continuous and one-to-one andg is continuous and one-to-one
and f (O)1 = a and f (I)1 = b andc≤ f (O)2 and f (O)2 ≤ d andc≤ f (I)2 and f (I)2 ≤ d and
g(O)2 = c andg(I)2 = d anda≤ g(O)1 andg(O)1 ≤ b anda≤ g(I)1 andg(I)1 ≤ b anda< b
andc < d and it is not true that there exists a pointr of I such thata < f (r)1 and f (r)1 < b
andc< f (r)2 and f (r)2 < d and it is not true that there exists a pointr of I such thata< g(r)1
andg(r)1 < b andc < g(r)2 andg(r)2 < d. Then rngf meets rngg.

(56)(i) {p7; p7 ranges over points ofE2
T: (p7)2 ≤ (p7)1} is a closed subset ofE2

T, and

(ii) {p7; p7 ranges over points ofE2
T: (p7)1 ≤ (p7)2} is a closed subset ofE2

T.
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(57)(i) {p7; p7 ranges over points ofE2
T: −(p7)1 ≤ (p7)2} is a closed subset ofE2

T, and

(ii) {p7; p7 ranges over points ofE2
T: (p7)2 ≤−(p7)1} is a closed subset ofE2

T.

(58)(i) {p7; p7 ranges over points ofE2
T: −(p7)2 ≤ (p7)1} is a closed subset ofE2

T, and

(ii) {p7; p7 ranges over points ofE2
T: (p7)1 ≤−(p7)2} is a closed subset ofE2

T.
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