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Summary. We define a graph on an abstract set, edges of which are pairs of any two
elements. For any finite sequence of a plane, we give a definition of nodic, which means that
edges by a finite sequence are crossed only at terminals. If the first point and the last point of
a finite sequence differs, simpleness as a chain and nodic condition imply unfoldedness and
s.n.c. condition. We generalize Goboard Theorem, proved by us before, to a continuous case.
We call this Fashoda Meet Theorem, which was taken from Fashoda incident of 100 years
ago.
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The articles [32], [10], [36], [3], [33], [20], [37], [8], [9], [4], [11], [16], [1], [2], [21], [28], [25],
[35], [26], [19], [27], [29], [24], [23], [18], [6], [14], [5], [15], [22], [30], [34], [13], [12], [31], [17],
and [7] provide the notation and terminology for this paper.

1. A GRAPH BY CARTESIAN PRODUCT

For simplicity, we follow the rules:G is a graph,v1 is a finite sequence of elements of the vertices
of G, I1 is an oriented chain ofG, n, m, k, i, j are natural numbers, andr, r1, r2 are real numbers.

One can prove the following propositions:

(2)1
√

r1
2 + r2

2 ≤ |r1|+ |r2|.

(3) |r1| ≤
√

r1
2 + r2

2 and|r2| ≤
√

r1
2 + r2

2.

(4) Let givenv1. SupposeI1 is Simple andv1 is oriented vertex seq ofI1. Let givenn, m. If
1≤ n andn < m andm≤ lenv1 andv1(n) = v1(m), thenn = 1 andm= lenv1.

Let X be a set. The functor PGraphX yielding a multi graph structure is defined by:

(Def. 1) PGraphX = 〈X, [:X, X :],π1(X×X),π2(X×X)〉.

One can prove the following propositions:

(5) For every non empty setX holds PGraphX is a graph.

(6) For every setX holds the vertices of PGraphX = X.

1 The proposition (1) has been removed.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol10/jgraph_1.html


GRAPH THEORETICAL PROPERTIES OF ARCS IN THE. . . 2

Let f be a finite sequence. The functor PairFf yielding a finite sequence is defined as follows:

(Def. 2) lenPairFf = len f −′ 1 and for every natural numberi such that 1≤ i and i < len f holds
(PairFf )(i) = 〈〈 f (i), f (i +1)〉〉.

In the sequelX is a non empty set.
Let X be a non empty set. Observe that PGraphX is graph-like.
Next we state two propositions:

(7) Every finite sequence of elements ofX is a finite sequence of elements of the vertices of
PGraphX.

(8) For every finite sequencef of elements ofX holds PairFf is a finite sequence of elements
of the edges of PGraphX.

Let X be a non empty set and letf be a finite sequence of elements ofX. Then PairFf is a finite
sequence of elements of the edges of PGraphX.

Next we state two propositions:

(9) Let n be a natural number andf be a finite sequence of elements ofX. If 1 ≤ n and
n≤ lenPairFf , then(PairFf )(n) ∈ the edges of PGraphX.

(10) For every finite sequencef of elements ofX holds PairFf is an oriented chain of PGraphX.

Let X be a non empty set and letf be a finite sequence of elements ofX. Then PairFf is an
oriented chain of PGraphX.

One can prove the following proposition

(11) Let f be a finite sequence of elements ofX and f1 be a finite sequence of elements of the
vertices of PGraphX. If len f ≥ 1 and f = f1, then f1 is oriented vertex seq of PairFf .

2. SHORTCUTS OFFINITE SEQUENCES INPLANE

Let X be a non empty set and letf , g be finite sequences of elements ofX. We say thatg is Shortcut
of f if and only if the conditions (Def. 3) are satisfied.

(Def. 3)(i) f (1) = g(1),

(ii) f (len f ) = g(leng), and

(iii) there exists a FinSubsequencef2 of PairFf and there exists a FinSubsequencef3 of f and
there exists an oriented simple chains1 of PGraphX and there exists a finite sequenceg1 of
elements of the vertices of PGraphX such that Seqf2 = s1 and Seqf3 = g andg1 = g andg1

is oriented vertex seq ofs1.

Next we state four propositions:

(12) For all finite sequencesf , g of elements ofX such thatg is Shortcut off holds 1≤ leng
and leng≤ len f .

(13) Let f be a finite sequence of elements ofX. Suppose lenf ≥ 1. Then there exists a finite
sequenceg of elements ofX such thatg is Shortcut off .

(14) For all finite sequencesf , g of elements ofX such thatg is Shortcut off holds rngPairFg⊆
rngPairFf .

(15) Let f , g be finite sequences of elements ofX. Supposef (1) 6= f (len f ) andg is Shortcut of
f . Theng is one-to-one and rngPairFg⊆ rngPairFf andg(1) = f (1) andg(leng) = f (len f ).

Let us considern and letI1 be a finite sequence of elements ofEn
T. We say thatI1 is nodic if and

only if the condition (Def. 4) is satisfied.
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(Def. 4) Let giveni, j. SupposeL(I1, i) meetsL(I1, j). ThenL(I1, i)∩L(I1, j) = {I1(i)} but I1(i) =
I1( j) or I1(i) = I1( j +1) or L(I1, i)∩L(I1, j) = {I1(i +1)} but I1(i +1) = I1( j) or I1(i +1) =
I1( j +1) or L(I1, i) = L(I1, j).

Next we state a number of propositions:

(16) For every finite sequencef of elements ofE2
T such thatf is s.n.c. holdsf is s.c.c..

(17) For every finite sequencef of elements ofE2
T such thatf is s.c.c. andL( f ,1) misses

L( f , len f −′ 1) holds f is s.n.c..

(18) For every finite sequencef of elements ofE2
T such thatf is nodic and PairFf is Simple

holds f is s.c.c..

(19) For every finite sequencef of elements ofE2
T such thatf is nodic and PairFf is Simple

and f (1) 6= f (len f ) holds f is s.n.c..

(20) For all pointsp1, p2, p3 of En
T such that there exists a setx such thatx 6= p2 and x ∈

L(p1, p2)∩L(p2, p3) holdsp1 ∈ L(p2, p3) or p3 ∈ L(p1, p2).

(21) Let f be a finite sequence of elements ofE2
T. Supposef is s.n.c. andL( f ,1)∩L( f ,1+1)⊆

{ f1+1} andL( f , len f −′ 2)∩L( f , len f −′ 1)⊆ { flen f−′1}. Then f is unfolded.

(22) For every finite sequencef of elements ofX such that PairFf is Simple andf (1) 6= f (len f )
holds f is one-to-one and lenf 6= 1.

(23) For every finite sequencef of elements ofX such thatf is one-to-one and lenf > 1 holds
PairFf is Simple andf (1) 6= f (len f ).

(24) Let f be a finite sequence of elements ofE2
T. If f is nodic and PairFf is Simple and

f (1) 6= f (len f ), then f is unfolded.

(25) Let f , g be finite sequences of elements ofE2
T and giveni. Supposeg is Shortcut off and

1≤ i andi+1≤ leng. Then there exists a natural numberk1 such that 1≤ k1 andk1+1≤ len f
and fk1 = gi and fk1+1 = gi+1 and f (k1) = g(i) and f (k1 +1) = g(i +1).

(26) For all finite sequencesf , g of elements ofE2
T such thatg is Shortcut off holds rngg⊆

rng f .

(27) For all finite sequencesf , g of elements ofE2
T such thatg is Shortcut off holdsL̃(g) ⊆

L̃( f ).

(28) Let f , g be finite sequences of elements ofE2
T. If f is special andg is Shortcut off , theng

is special.

(29) Let f be a finite sequence of elements ofE2
T. Supposef is special and 2≤ len f and

f (1) 6= f (len f ). Then there exists a finite sequenceg of elements ofE2
T such that 2≤ leng

andg is special and one-to-one and̃L(g) ⊆ L̃( f ) and f (1) = g(1) and f (len f ) = g(leng)
and rngg⊆ rng f .

(30) Let f1, f4 be finite sequences of elements ofE2
T. Suppose thatf1 is special andf4 is

special and 2≤ len f1 and 2≤ len f4 and f1(1) 6= f1(len f1) and f4(1) 6= f4(len f4) and
X-coordinate( f1) lies between(X-coordinate( f1))(1) and (X-coordinate( f1))(len f1) and
X-coordinate( f4) lies between(X-coordinate( f1))(1) and (X-coordinate( f1))(len f1) and
Y-coordinate( f1) lies between(Y-coordinate( f4))(1) and (Y-coordinate( f4))(len f4) and
Y-coordinate( f4) lies between(Y-coordinate( f4))(1) and(Y-coordinate( f4))(len f4). Then
L̃( f1) meetsL̃( f4).
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3. NORM OF POINTS IN En
T

The following proposition is true

(31) For all real numbersa, b, r1, r2 such thata≤ r1 andr1 ≤ b anda≤ r2 andr2 ≤ b holds
|r1− r2| ≤ b−a.

Let us considern and letp be a point ofEn
T. Then|p| can be characterized by the condition:

(Def. 5) For every elementw of R n such thatp = w holds|p|= |w|.

In the sequelp, p1, p2 denote points ofEn
T.

We now state several propositions:

(45)2 For all pointsx1, x2 of En such thatx1 = p1 andx2 = p2 holds|p1− p2|= ρ(x1,x2).

(46) For every pointp of E2
T holds|p|2 = (p1)2 +(p2)2.

(47) For every pointp of E2
T holds|p|=

√
(p1)2 +(p2)2.

(48) For every pointp of E2
T holds|p| ≤ |p1|+ |p2|.

(49) For all pointsp1, p2 of E2
T holds|p1− p2| ≤ |(p1)1− (p2)1|+ |(p1)2− (p2)2|.

(50) For every pointp of E2
T holds|p1| ≤ |p| and|p2| ≤ |p|.

(51) For all pointsp1, p2 of E2
T holds|(p1)1−(p2)1| ≤ |p1− p2| and|(p1)2−(p2)2| ≤ |p1− p2|.

(52) If p∈ L(p1, p2), then there existsr such that 0≤ r andr ≤ 1 andp = (1− r) · p1 + r · p2.

(53) If p∈ L(p1, p2), then|p− p1| ≤ |p1− p2| and|p− p2| ≤ |p1− p2|.

4. EXTENDED GOBOARD THEOREM AND FASHODA MEET THEOREM

In the sequelM denotes a non empty metric space.
Next we state several propositions:

(54) For all subsetsP, Q of Mtop such thatP 6= /0 andP is compact andQ 6= /0 andQ is compact
holds distmin

min(P,Q)≥ 0.

(55) LetP, Q be subsets ofMtop. SupposeP 6= /0 andP is compact andQ 6= /0 andQ is compact.
ThenP missesQ if and only if distmin

min(P,Q) > 0.

(56) Let f be a finite sequence of elements ofE2
T anda, c, d be real numbers. Suppose that

(i) 1 ≤ len f ,

(ii) X-coordinate( f ) lies between(X-coordinate( f ))(1) and(X-coordinate( f ))(len f ),

(iii) Y-coordinate( f ) lies betweenc andd,

(iv) a > 0, and

(v) for everyi such that 1≤ i andi +1≤ len f holds| fi − fi+1|< a.

Then there exists a finite sequenceg of elements ofE2
T such that

g is special andg(1) = f (1) andg(leng) = f (len f ) and leng≥ len f andX-coordinate(g)
lies between(X-coordinate( f ))(1) and (X-coordinate( f ))(len f ) and Y-coordinate(g) lies
betweenc andd and for everyj such thatj ∈ domg there existsk such thatk ∈ dom f and
|g j − fk|< a and for everyj such that 1≤ j and j +1≤ leng holds|g j −g j+1|< a.

2 The propositions (32)–(44) have been removed.
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(57) Let f be a finite sequence of elements ofE2
T anda, c, d be real numbers. Suppose that

(i) 1 ≤ len f ,

(ii) Y-coordinate( f ) lies between(Y-coordinate( f ))(1) and(Y-coordinate( f ))(len f ),

(iii) X-coordinate( f ) lies betweenc andd,

(iv) a > 0, and

(v) for everyi such that 1≤ i andi +1≤ len f holds| fi − fi+1|< a.

Then there exists a finite sequenceg of elements ofE2
T such that

g is special andg(1) = f (1) andg(leng) = f (len f ) and leng≥ len f andY-coordinate(g)
lies between(Y-coordinate( f ))(1) and (Y-coordinate( f ))(len f ) and X-coordinate(g) lies
betweenc andd and for everyj such thatj ∈ domg there existsk such thatk ∈ dom f and
|g j − fk|< a and for everyj such that 1≤ j and j +1≤ leng holds|g j −g j+1|< a.

(59)3 For every finite sequencef of elements of E2
T such that 1≤ len f holds

lenX-coordinate( f )= len f and(X-coordinate( f ))(1)= ( f1)1 and(X-coordinate( f ))(len f )=
( flen f )1.

(60) For every finite sequencef of elements of E2
T such that 1≤ len f holds

lenY-coordinate( f )= len f and(Y-coordinate( f ))(1)= ( f1)2 and(Y-coordinate( f ))(len f )=
( flen f )2.

(61) For every finite sequencef of elements of E2
T such that i ∈ dom f holds

(X-coordinate( f ))(i) = ( fi)1 and(Y-coordinate( f ))(i) = ( fi)2.

(62) LetP, Q be non empty subsets ofE2
T andp1, p2, q1, q2 be points ofE2

T. Suppose that

(i) P is an arc fromp1 to p2,

(ii) Q is an arc fromq1 to q2,

(iii) for every point p of E2
T such thatp∈ P holds(p1)1 ≤ p1 andp1 ≤ (p2)1,

(iv) for every pointp of E2
T such thatp∈ Q holds(p1)1 ≤ p1 andp1 ≤ (p2)1,

(v) for every pointp of E2
T such thatp∈ P holds(q1)2 ≤ p2 andp2 ≤ (q2)2, and

(vi) for every pointp of E2
T such thatp∈ Q holds(q1)2 ≤ p2 andp2 ≤ (q2)2.

ThenP meetsQ.

In the sequelX, Y are non empty topological spaces.
The following propositions are true:

(63) Let f be a map fromX into Y, P be a non empty subset ofY, and f1 be a map fromX into
Y�P. If f = f1 and f is continuous, thenf1 is continuous.

(64) Let f be a map fromX intoY andP be a non empty subset ofY. SupposeX is compact and
Y is aT2 space andf is continuous and one-to-one andP = rng f . Then there exists a mapf1
from X into Y�P such thatf = f1 and f1 is a homeomorphism.

(65) Let f , g be maps fromI into E2
T, a, b, c, d be real numbers, andO, I be points ofI.

Suppose thatO = 0 andI = 1 and f is continuous and one-to-one andg is continuous and
one-to-one andf (O)1 = a and f (I)1 = b andg(O)2 = c andg(I)2 = d and for every pointr
of I holdsa≤ f (r)1 and f (r)1 ≤ b anda≤ g(r)1 andg(r)1 ≤ b andc≤ f (r)2 and f (r)2 ≤ d
andc≤ g(r)2 andg(r)2 ≤ d. Then rngf meets rngg.

3 The proposition (58) has been removed.
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