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Summary. We define a graph on an abstract set, edges of which are pairs of any two
elements. For any finite sequence of a plane, we give a definition of nodic, which means that
edges by a finite sequence are crossed only at terminals. If the first point and the last point of
a finite sequence differs, simpleness as a chain and nodic condition imply unfoldedness and
s.n.c. condition. We generalize Goboard Theorem, proved by us before, to a continuous case.

We call this Fashoda Meet Theorem, which was taken from Fashoda incident of 100 years
ago.

MML Identifier: JGRAPH_ 1.

WWW: http://mizar.org/JEM/Voll0/jgraph_1.html

The articles|[32],[[10],[[36],[13],[[33],.120],[[37],[8],L19],[14],[111],[[16],[[1],[12],[[21] [[28] [[25],
[35], [26], [19], [27], [2€], [24], [23], [18], [6], [14], 5], [15], [22], [30], [34], [18],[12],[31],[[1F],
and [7] provide the notation and terminology for this paper.

1. A GRAPH BY CARTESIAN PRODUCT

For simplicity, we follow the rulesG is a graphys is a finite sequence of elements of the vertices
of G, I1 is an oriented chain d&, n, m, k, i, j are natural numbers, amdr, r, are real numbers.
One can prove the following propositions:

CH VrZ+r2<rf+ral.
3) |ra < v/ri2+r2and|ry| < v/ri2 4152

(4) Letgivenvy. Supposd; is Simple ands is oriented vertex seq df. Let givenn, m. If
1 <nandn< mandm< lenv; andvi(n) = vi(m), thenn= 1 andm= lenv;.

Let X be a set. The functor PGraltyielding a multi graph structure is defined by:
(Def. 1) PGrapiX = (X[ X, X ], (X x X), (X x X)).

One can prove the following propositions:

(5) For every non empty set holds PGraplX is a graph.

(6) For every seK holds the vertices of PGraph= X.

1 The proposition (1) has been removed.
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Let f be a finite sequence. The functor Pdirfielding a finite sequence is defined as follows:
lenPairF = lenf —' 1 and for every natural numbésuch that 1< i andi < lenf holds
(PairFf)(i) = (f(i), f(i+1)).

In the sequek is a non empty set.
Let X be a non empty set. Observe that PGréps graph-like.
Next we state two propositions:
(7) Every finite sequence of elementsXfis a finite sequence of elements of the vertices of
PGraptX.
(8) For every finite sequendeof elements oKX holds PairH is a finite sequence of elements
of the edges of PGraphti
Let X be a non empty set and létbe a finite sequence of elementsXfThen PairH is a finite
sequence of elements of the edges of PGKaph
Next we state two propositions:
(9) Letn be a natural number anfl be a finite sequence of elementsXf If 1 < n and
n < lenPairFf, then(PairFf)(n) € the edges of PGraph

(10) For every finite sequendeof elements oK holds PairH is an oriented chain of PGraph

(Def. 2)

Let X be a non empty set and Iétbe a finite sequence of elementsXaf Then PairH is an

oriented chain of PGrapk.
One can prove the following proposition

(11) Letf be a finite sequence of elementsXofind f; be a finite sequence of elements of the
vertices of PGrapK. If len f > 1 andf = fq, then f; is oriented vertex seq of Paiff

2. SHORTCUTS OFFINITE SEQUENCES INPLANE

Let X be a non empty set and létg be finite sequences of elementsafWe say thag is Shortcut
of f if and only if the conditions (Def. 3) are satisfied.

(Def. 3)()  f(1) =9(1),

(i) f(lenf)=g(leng), and

(i)  there exists a FinSubsequenteof PairFf and there exists a FinSubsequerfigef f and
there exists an oriented simple chainof PGraptX and there exists a finite sequergeof
elements of the vertices of PGraytsuch that Sef, = s; and Sedsz = g andg; = g andg;

is oriented vertex seq Gf.

Next we state four propositions:
(12) For all finite sequencef g of elements o such thatg is Shortcut off holds 1< leng
and lerg < lenf.
(13) Letf be a finite sequence of elementsXaf Suppose lefi > 1. Then there exists a finite
sequenceg of elements o such thaty is Shortcut off.
(14) For all finite sequencds g of elements oK such thag is Shortcut off holds rng Pairlg C

rng PairFf.

(15) Letf, gbe finite sequences of elementsofSuppose (1) # f(lenf) andgis Shortcut of
f. Thengis one-to-one and rng PaigC rng PairFf andg(1) = f(1) andg(leng) = f(lenf).

Let us considen and letl; be a finite sequence of elements&ff. We say that, is nodic if and
only if the condition (Def. 4) is satisfied.
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(Def. 4) Letgiven, j. Suppose(l1,i) meetsL(l, j). ThenL(ly,i)NL(l1,]) = {11(i)} butli(i) =
l1(j) orly(i) =l1(j+1) or L(I1,i))NL(11, ) = {I1(i+1)} butly(i+1) = 11(j) or l1(i+ 1) =
11(j+1) or L(10.i) = L(I1, ).

Next we state a number of propositions:

(16) For every finite sequendeof elements ofE% such thatf is s.n.c. holds is s.c.c..

(17) For every finite sequenck of elements of£Z such thatf is s.c.c. and.(f,1) misses
L(f,lenf —"1) holdsf is s.n.c..

(18) For every finite sequendeof elements 0f£% such thatf is nodic and Pairff is Simple
holdsf is s.c.c..

(19) For every finite sequendeof elements of£$ such thatf is nodic and PairfF is Simple
andf(1) # f(lenf) holdsf is s.n.c..

(20) For all pointspy, p2, ps of £ such that there exists a setsuch thatx # p, andx €
L(p1, P2) N L(p2, p3) holdspy € L(p2, ps) or ps € L(P1, P2).

(21) Letf be afinite sequence of elementsEﬁ. Supposd iss.n.c. and(f,1)NL(f,1+1) C
{fi+1} andL(f lenf —'2)N L(f,lenf —' 1) C {fiens_s1}. Thenf is unfolded.

(22) For every finite sequendeof elements oK such that Pairff is Simple andf (1) # f(lenf)
holdsf is one-to-one and leh# 1.

(23) For every finite sequendeof elements oK such thatf is one-to-one and leh> 1 holds
PairFf is Simple andf (1) # f(lenf).

(24) Letf be a finite sequence of elements@f. If f is nodic and Pairff is Simple and
f(1) # f(lenf), thenf is unfolded.

(25) Letf, gbe finite sequences of elementsﬁ and giveni. Suppose is Shortcut off and
1<iandi+1<leng. Thenthere exists a natural numisgsuch that K k; andk; +1 <lenf
andfy, =g andfi, 11 =0iy1 andf(ky) =g(i) andf (ki +1) =g(i+1).

(26) For all finite sequencef g of elements ofB% such thafg is Shortcut off holds rngy C
rngf.

(27) For all finite sequence g of elements of£2 such thag is Shortcut off holds £(g) C
L(f).

(28) Letf, gbe finite sequences of elements&f. If f is special ang) is Shortcut off, theng
is special.

(29) Letf be a finite sequence of elementsﬁf. Supposef is special and X lenf and
f(1) # f(lenf). Then there exists a finite sequergef elements of£2 such that < leng
andg is special and one-to-one andg) C £(f) and f(1) = g(1) and f(lenf) = g(leng)
and rngy C rngf.

(30) Let fy, fs be finite sequences of elements @f Suppose thaf; is special andfs is
special and X lenf; and 2< lenfs and f1(1) # fi(lenfy) and f4(1) # fa(lenfs) and
X-coordinatéfy) lies between(X-coordinatéfi))(1) and (X-coordinatéf;))(lenf;) and
X-coordinatéfs) lies between(X-coordinatéfi))(1) and (X-coordinatéf;))(lenf;) and
Y-coordinatéfi) lies between(Y-coordinatéfs))(1) and (Y-coordinatéfs))(lenfs) and
Y-coordinaté¢fs) lies between(Y-coordinatéfs))(1) and(Y-coordinatéfs))(lenfs). Then
L(f1) meetsL(fy).
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3. NORM OFPOINTS IN £
The following proposition is true

(31) For all real numbera, b, r1, ro such thata <r; andr; < b anda <r, andr, < b holds
[ri—rp|<b-—a

Let us considen and letp be a point of£7. Then|p| can be characterized by the condition:
(Def. 5) For every element of ®" such thatp = w holds|p| = |w|.

In the sequep, p1, p2 denote points of].
We now state several propositions:

(45E] For all pointsxs, x; of E" such thai; = p; andxz = pz holds|p1 — pz2| = p(x1,%2).
(46) For every poinp of 2 holds|p|? = (p1)? + (p2)?.

(47) For every poinp of £2 holds|p| = v/(p1)2+ (p2)2.

(48) For every poinp of £2 holds|p| < |p1| + |pz|-

(49) For all pointspy, p, of £Z holds|p1 — pz| < (1)1 — (P2)1]+|(P1)2— (P2)2l-

(50) For every poinp of E% holds|p1| < |p| and|pz| < |p|-

(51) Forall pointsps, pz of Z7 holds|(p1)1— (p2)1| < [p1— P2| and|(p1)2— (P2)2| < [P1— Pel-
(52) If pe L(p1,p2), then there exists such that 6<r andr <1 andp=(1—r)-py1+Tr - p2.

(53) Ifpe L(p1,p2), then|p—p1| < |p1— p2| and|p— p2| < [p1— p2|-

4., EXTENDED GOBOARD THEOREM AND FASHODA MEET THEOREM

In the sequeM denotes a non empty metric space.
Next we state several propositions:

(54) For all subsetB, Q of Miop such thaP # 0 andP is compact an® # 0 andQ is compact
holds disfin(P.Q) > 0.

(55) LetP, Qbe subsets dfliop. Suppose # 0 andP is compact an@® # 0 andQ is compact.
ThenP misse if and only if disfiin(P,Q) > 0.
(56) Letf be a finite sequence of elementslq?f anda, ¢, d be real numbers. Suppose that
i 1<lenf,
(i)  X-coordinaté¢f) lies betweer{X-coordinatéf))(1) and(X-coordinatéf))(lenf),
(i) Y-coordinatéf) lies betweert andd,
(v) a>0,and
(v) foreveryi such that i< i andi+ 1 <lenf holds|f; — fi11| < a.
Then there exists a finite sequengef elements ofE% such that

g is special and)(1) = f(1) andg(leng) = f(lenf) and lerg > lenf and X-coordinatég)
lies between(X-coordinaté¢f))(1) and (X-coordinatéf))(lenf) andY-coordinaté¢g) lies
betweenc andd and for everyj such thatj € domg there existk such thak € domf and
|gj — fk| < aand for everyj such that < j andj+ 1 < leng holds|g; — gj+1| < a.

2 The propositions (32)—(44) have been removed.
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(57) Letf be a finite sequence of elements%f anda, ¢, d be real numbers. Suppose that
i 1<lenf,
(i)  Y-coordinaté¢f) lies betweer(Y-coordinatéf))(1) and(Y-coordinatéf))(lenf),
(i)  X-coordinaté¢f) lies betweerc andd,
(v) a>0,and
(v) foreveryi such that i< i andi + 1 <lenf holds|f; — fi 1| < a.
Then there exists a finite sequengef elements ofE% such that

g is special and)(1) = f(1) andg(leng) = f(lenf) and lerg > lenf andY-coordinatég)
lies between(Y-coordinaté¢f))(1) and (Y-coordinatéf))(lenf) and X-coordinatég) lies
betweenc andd and for everyj such thatj € domg there existk such thak € domf and
|gj — fk| < aand for everyj such that < j andj+ 1 < leng holds|gj — gj+1| < a.

(59E| For every finite sequencef of elements ofz% such that 1< lenf holds
lenX-coordinatéf) =lenf and(X-coordinatéf))(1) = (f1)1 and(X-coordinaté¢f))(lenf) =
(flenf)l-

(60) For every finite sequence of elements of £2 such that 1< lenf holds
lenY-coordinatéf) =lenf and(Y-coordinaté¢f))(1) = (1), and(Y-coordinatéf))(lenf) =
(flenf )2~

(61) For every finite sequencd of elements of Z% such thati € domf holds
(X-coordinatéf))(i) = (fi)1 and(Y-coordinatéf))(i) = (fi)2.

(62) LetP, Q be non empty subsets m% andpzs, p2, g1, g2 be points off%. Suppose that

(i) Pisanarcfromp; to py,
(i) Qisanarc frongy to gy,
(iiiy  for every pointp of £2 such thatp € P holds(p1)1
(iv)  for every pointp of £2 such thatp € Q holds(p;)1
(v) for every pointp of z% such thatp € P holds(q1 )2
(vi) for every pointp of £2 such thatp € Q holds(as)2
ThenP meetQ.

< prandps < (p2)a,
< prandp; < (p2)1,
< pz andpz < (g2)2, and
< pzandpz < (02)2-

In the sequek, Y are non empty topological spaces.
The following propositions are true:

(63) Letf be amap fronK intoY, P be a non empty subset ¥f and f; be a map fronX into
Y TP If f = f;andf is continuous, thet; is continuous.

(64) Letf be amap fronX intoY andP be a non empty subset¥f Suppose is compact and
Y is aT, space and is continuous and one-to-one aRd- rngf. Then there exists a mafp
from X into Y [P such thatf = f; and f; is a homeomorphism.

(65) Letf, g be maps fronl into E% a, b, ¢, d be real numbers, an@, | be points ofl.
Suppose thaD = 0 andl = 1 andf is continuous and one-to-one agds continuous and
one-to-one and (0); = aandf(l); = bandg(O), = c andg(l ), = d and for every point
of T holdsa< f(r); andf(r); <banda<g(r); andg(r)1 <bandc < f(r) andf(r), <d
andc < g(r)2 andg(r), < d. Then rngf meets rng.

3 The proposition (58) has been removed.
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