Graph Theoretical Properties of Arcs in the Plane and Fashoda Meet Theorem

Yatsuka Nakamura Shinshu University Nagano

Summary. We define a graph on an abstract set, edges of which are pairs of any two elements. For any finite sequence of a plane, we give a definition of nodic, which means that edges by a finite sequence are crossed only at terminals. If the first point and the last point of a finite sequence differs, simpleness as a chain and nodic condition imply unfoldedness and s.n.c. condition. We generalize Goboard Theorem, proved by us before, to a continuous case. We call this Fashoda Meet Theorem, which was taken from Fashoda incident of 100 years ago.

MML Identifier: JGRAPH_1.

WWW: http://mizar.org/JFM/Vol10/jgraph_1.html

The articles [32], [10], [36], [3], [33], [20], [37], [8], [9], [4], [11], [16], [1], [2], [21], [28], [25], [35], [26], [19], [27], [29], [24], [23], [18], [6], [14], [5], [15], [22], [30], [34], [13], [12], [31], [17], and [7] provide the notation and terminology for this paper.

1. A GRAPH BY CARTESIAN PRODUCT

For simplicity, we follow the rules: G is a graph, v_1 is a finite sequence of elements of the vertices of G, I_1 is an oriented chain of G, n, m, k, i, j are natural numbers, and r, r_1 , r_2 are real numbers. One can prove the following propositions:

$$(2)^1 \quad \sqrt{r_1^2 + r_2^2} \le |r_1| + |r_2|.$$

(3)
$$|r_1| \le \sqrt{r_1^2 + r_2^2}$$
 and $|r_2| \le \sqrt{r_1^2 + r_2^2}$.

(4) Let given v_1 . Suppose I_1 is Simple and v_1 is oriented vertex seq of I_1 . Let given n, m. If $1 \le n$ and n < m and $m \le \operatorname{len} v_1$ and $v_1(n) = v_1(m)$, then n = 1 and $m = \operatorname{len} v_1$.

Let X be a set. The functor PGraph X yielding a multi graph structure is defined by:

(Def. 1) PGraph
$$X = \langle X, [:X,X:], \pi_1(X \times X), \pi_2(X \times X) \rangle$$
.

One can prove the following propositions:

- (5) For every non empty set *X* holds PGraph *X* is a graph.
- (6) For every set *X* holds the vertices of PGraph X = X.

¹ The proposition (1) has been removed.

Let f be a finite sequence. The functor PairF f yielding a finite sequence is defined as follows:

(Def. 2) len PairF f = len f - 1 and for every natural number i such that $1 \le i$ and i < len f holds $(\text{PairF } f)(i) = \langle f(i), f(i+1) \rangle$.

In the sequel *X* is a non empty set.

Let *X* be a non empty set. Observe that PGraph *X* is graph-like.

Next we state two propositions:

- (7) Every finite sequence of elements of *X* is a finite sequence of elements of the vertices of PGraph *X*.
- (8) For every finite sequence f of elements of X holds PairF f is a finite sequence of elements of the edges of PGraph X.

Let X be a non empty set and let f be a finite sequence of elements of X. Then PairF f is a finite sequence of elements of the edges of PGraph X.

Next we state two propositions:

- (9) Let n be a natural number and f be a finite sequence of elements of X. If $1 \le n$ and $n \le \text{len PairF } f$, then $(\text{PairF } f)(n) \in \text{the edges of PGraph } X$.
- (10) For every finite sequence f of elements of X holds PairF f is an oriented chain of PGraph X.

Let X be a non empty set and let f be a finite sequence of elements of X. Then PairFf is an oriented chain of PGraph X.

One can prove the following proposition

- (11) Let f be a finite sequence of elements of X and f_1 be a finite sequence of elements of the vertices of PGraph X. If len $f \ge 1$ and $f = f_1$, then f_1 is oriented vertex seq of PairF f.
 - 2. SHORTCUTS OF FINITE SEQUENCES IN PLANE

Let X be a non empty set and let f, g be finite sequences of elements of X. We say that g is Shortcut of f if and only if the conditions (Def. 3) are satisfied.

(Def. 3)(i)
$$f(1) = g(1)$$
,

- (ii) $f(\operatorname{len} f) = g(\operatorname{len} g)$, and
- (iii) there exists a FinSubsequence f_2 of PairF f and there exists a FinSubsequence f_3 of f and there exists an oriented simple chain s_1 of PGraph X and there exists a finite sequence g_1 of elements of the vertices of PGraph X such that Seq $f_2 = s_1$ and Seq $f_3 = g$ and $g_1 = g$ and g_1 is oriented vertex seq of s_1 .

Next we state four propositions:

- (12) For all finite sequences f, g of elements of X such that g is Shortcut of f holds $1 \le \text{len } g$ and $\text{len } g \le \text{len } f$.
- (13) Let f be a finite sequence of elements of X. Suppose len $f \ge 1$. Then there exists a finite sequence g of elements of X such that g is Shortcut of f.
- (14) For all finite sequences f, g of elements of X such that g is Shortcut of f holds rng PairF $g \subseteq \text{rng PairF } f$.
- (15) Let f, g be finite sequences of elements of X. Suppose $f(1) \neq f(\text{len } f)$ and g is Shortcut of f. Then g is one-to-one and rng PairF $g \subseteq \text{rng PairF} f$ and g(1) = f(1) and g(len g) = f(len f).

Let us consider n and let I_1 be a finite sequence of elements of \mathcal{E}_T^n . We say that I_1 is nodic if and only if the condition (Def. 4) is satisfied.

(Def. 4) Let given i, j. Suppose $\mathcal{L}(I_1, i)$ meets $\mathcal{L}(I_1, j)$. Then $\mathcal{L}(I_1, i) \cap \mathcal{L}(I_1, j) = \{I_1(i)\}$ but $I_1(i) = I_1(j)$ or $I_1(i) = I_1(j+1)$ or $\mathcal{L}(I_1, i) \cap \mathcal{L}(I_1, j) = \{I_1(i+1)\}$ but $I_1(i+1) = I_1(j)$ or $I_1(i+1) = I_1(j)$

Next we state a number of propositions:

- (16) For every finite sequence f of elements of \mathcal{E}^2_T such that f is s.n.c. holds f is s.c.c..
- (17) For every finite sequence f of elements of \mathcal{E}_T^2 such that f is s.c.c. and $\mathcal{L}(f,1)$ misses $\mathcal{L}(f, \text{len } f 1)$ holds f is s.n.c..
- (18) For every finite sequence f of elements of \mathcal{E}_T^2 such that f is nodic and PairF f is Simple holds f is s.c.c..
- (19) For every finite sequence f of elements of \mathcal{E}_T^2 such that f is nodic and PairF f is Simple and $f(1) \neq f(\operatorname{len} f)$ holds f is s.n.c..
- (20) For all points p_1 , p_2 , p_3 of \mathcal{E}_T^n such that there exists a set x such that $x \neq p_2$ and $x \in \mathcal{L}(p_1, p_2) \cap \mathcal{L}(p_2, p_3)$ holds $p_1 \in \mathcal{L}(p_2, p_3)$ or $p_3 \in \mathcal{L}(p_1, p_2)$.
- (21) Let f be a finite sequence of elements of $\mathcal{E}_{\mathbf{T}}^2$. Suppose f is s.n.c. and $\mathcal{L}(f,1) \cap \mathcal{L}(f,1+1) \subseteq \{f_{1+1}\}$ and $\mathcal{L}(f, \operatorname{len} f 2) \cap \mathcal{L}(f, \operatorname{len} f 1) \subseteq \{f_{\operatorname{len} f 1}\}$. Then f is unfolded.
- (22) For every finite sequence f of elements of X such that PairF f is Simple and $f(1) \neq f(\text{len } f)$ holds f is one-to-one and len $f \neq 1$.
- (23) For every finite sequence f of elements of X such that f is one-to-one and len f > 1 holds PairF f is Simple and $f(1) \neq f(\text{len } f)$.
- (24) Let f be a finite sequence of elements of \mathcal{E}_T^2 . If f is nodic and PairF f is Simple and $f(1) \neq f(\text{len } f)$, then f is unfolded.
- (25) Let f, g be finite sequences of elements of \mathcal{E}_{T}^{2} and given i. Suppose g is Shortcut of f and $1 \le i$ and $i+1 \le \text{len } g$. Then there exists a natural number k_{1} such that $1 \le k_{1}$ and $k_{1}+1 \le \text{len } f$ and $f_{k_{1}} = g_{i}$ and $f_{k_{1}+1} = g_{i+1}$ and $f(k_{1}) = g(i)$ and $f(k_{1}+1) = g(i+1)$.
- (26) For all finite sequences f, g of elements of \mathcal{E}_T^2 such that g is Shortcut of f holds rng $g \subseteq \operatorname{rng} f$.
- (27) For all finite sequences f, g of elements of \mathcal{E}^2_T such that g is Shortcut of f holds $\widetilde{\mathcal{L}}(g) \subseteq \widetilde{\mathcal{L}}(f)$.
- (28) Let f, g be finite sequences of elements of \mathcal{E}_T^2 . If f is special and g is Shortcut of f, then g is special.
- (29) Let f be a finite sequence of elements of \mathcal{E}^2_T . Suppose f is special and $2 \leq \operatorname{len} f$ and $f(1) \neq f(\operatorname{len} f)$. Then there exists a finite sequence g of elements of \mathcal{E}^2_T such that $2 \leq \operatorname{len} g$ and g is special and one-to-one and $\widetilde{L}(g) \subseteq \widetilde{L}(f)$ and f(1) = g(1) and $f(\operatorname{len} f) = g(\operatorname{len} g)$ and $\operatorname{rng} g \subseteq \operatorname{rng} f$.
- (30) Let f_1 , f_4 be finite sequences of elements of \mathcal{E}_T^2 . Suppose that f_1 is special and f_4 is special and $2 \le \text{len } f_1$ and $1 \le \text{len } f_2$ and $1 \le \text{len } f_3$ and $1 \le \text{len } f_4$ and $1 \le \text{$

3. Norm of Points in \mathcal{E}_{T}^{n}

The following proposition is true

(31) For all real numbers a, b, r_1 , r_2 such that $a \le r_1$ and $r_1 \le b$ and $a \le r_2$ and $r_2 \le b$ holds $|r_1 - r_2| \le b - a$.

Let us consider n and let p be a point of \mathcal{E}_{T}^{n} . Then |p| can be characterized by the condition:

(Def. 5) For every element w of \Re^n such that p = w holds |p| = |w|.

In the sequel p, p_1 , p_2 denote points of \mathcal{E}_T^n . We now state several propositions:

- $(45)^2$ For all points x_1, x_2 of \mathcal{E}^n such that $x_1 = p_1$ and $x_2 = p_2$ holds $|p_1 p_2| = \rho(x_1, x_2)$.
- (46) For every point p of \mathcal{E}_{T}^{2} holds $|p|^{2} = (p_{1})^{2} + (p_{2})^{2}$.
- (47) For every point p of \mathcal{E}_T^2 holds $|p| = \sqrt{(p_1)^2 + (p_2)^2}$.
- (48) For every point p of \mathcal{E}_T^2 holds $|p| \le |p_1| + |p_2|$.
- (49) For all points p_1 , p_2 of \mathcal{E}_T^2 holds $|p_1 p_2| \le |(p_1)_1 (p_2)_1| + |(p_1)_2 (p_2)_2|$.
- (50) For every point p of \mathcal{E}_T^2 holds $|p_1| \le |p|$ and $|p_2| \le |p|$.
- (51) For all points p_1 , p_2 of \mathcal{E}_T^2 holds $|(p_1)_1 (p_2)_1| \le |p_1 p_2|$ and $|(p_1)_2 (p_2)_2| \le |p_1 p_2|$.
- (52) If $p \in \mathcal{L}(p_1, p_2)$, then there exists r such that $0 \le r$ and $r \le 1$ and $p = (1 r) \cdot p_1 + r \cdot p_2$.
- (53) If $p \in \mathcal{L}(p_1, p_2)$, then $|p p_1| \le |p_1 p_2|$ and $|p p_2| \le |p_1 p_2|$.
 - 4. EXTENDED GOBOARD THEOREM AND FASHODA MEET THEOREM

In the sequel M denotes a non empty metric space.

Next we state several propositions:

- (54) For all subsets P, Q of M_{top} such that $P \neq \emptyset$ and P is compact and $Q \neq \emptyset$ and Q is compact holds $\text{dist}_{\min}^{\min}(P,Q) \geq 0$.
- (55) Let P, Q be subsets of M_{top} . Suppose $P \neq \emptyset$ and P is compact and $Q \neq \emptyset$ and Q is compact. Then P misses Q if and only if $\text{dist}_{\min}^{\min}(P,Q) > 0$.
- (56) Let f be a finite sequence of elements of \mathcal{E}^2_T and a, c, d be real numbers. Suppose that
 - (i) $1 \leq \operatorname{len} f$,
- (ii) **X**-coordinate(f) lies between $(\mathbf{X}$ -coordinate(f))(1) and $(\mathbf{X}$ -coordinate(f))(len f),
- (iii) **Y**-coordinate(f) lies between c and d,
- (iv) a > 0, and
- (v) for every i such that $1 \le i$ and $i+1 \le \text{len } f$ holds $|f_i f_{i+1}| < a$.

Then there exists a finite sequence g of elements of \mathcal{E}_T^2 such that

g is special and g(1) = f(1) and $g(\log g) = f(\log f)$ and $\log g \ge \log f$ and **X**-coordinate(g) lies between (**X**-coordinate(f))(1) and (**X**-coordinate(f))($\log f$) and **Y**-coordinate(g) lies between g and g and for every g such that $g \in \log g$ there exists g such that $g \in \log g$ and $g \in g$ and $g \in g$ and $g \in g$ and $g \in g$ such that $g \in g$ and $g \in g$ such that $g \in g$ suc

² The propositions (32)–(44) have been removed.

- (57) Let f be a finite sequence of elements of \mathcal{E}_T^2 and a, c, d be real numbers. Suppose that
 - (i) $1 \leq \operatorname{len} f$,
- (ii) **Y**-coordinate(f) lies between $(\mathbf{Y}$ -coordinate(f))(1) and $(\mathbf{Y}$ -coordinate(f))(len f),
- (iii) **X**-coordinate(f) lies between c and d,
- (iv) a > 0, and
- (v) for every i such that $1 \le i$ and $i+1 \le \text{len } f$ holds $|f_i f_{i+1}| < a$.

Then there exists a finite sequence g of elements of \mathcal{E}_T^2 such that

g is special and g(1) = f(1) and $g(\log g) = f(\log f)$ and $\log g \ge \log f$ and **Y**-coordinate(g) lies between (**Y**-coordinate(f))(1) and (**Y**-coordinate(f))($\log f$) and **X**-coordinate(g) lies between g and g and for every g such that $g \in \log g$ there exists g such that $g \in \log g$ and $g \in \log g$ such that $g \in \log g$ and $g \in \log g$ and $g \in \log g$ such that $g \in \log g$ and $g \in \log g$ such that $g \in \log$

- (59)³ For every finite sequence f of elements of \mathcal{E}_{T}^{2} such that $1 \leq \text{len } f$ holds $\text{len } \mathbf{X}\text{-coordinate}(f) = \text{len } f$ and $(\mathbf{X}\text{-coordinate}(f))(1) = (f_{1})_{1}$ and $(\mathbf{X}\text{-coordinate}(f))(\text{len } f) = (f_{\text{len } f})_{1}$.
- (60) For every finite sequence f of elements of $\mathcal{E}_{\mathsf{T}}^2$ such that $1 \leq \mathsf{len}\, f$ holds $\mathsf{len}\, \mathbf{Y}\text{-coordinate}(f) = \mathsf{len}\, f$ and $(\mathbf{Y}\text{-coordinate}(f))(1) = (f_1)_2$ and $(\mathbf{Y}\text{-coordinate}(f))(\mathsf{len}\, f) = (f_{\mathsf{len}\, f})_2$.
- (61) For every finite sequence f of elements of \mathcal{E}^2_T such that $i \in \text{dom } f$ holds $(\mathbf{X}\text{-coordinate}(f))(i) = (f_i)_1$ and $(\mathbf{Y}\text{-coordinate}(f))(i) = (f_i)_2$.
- (62) Let P, Q be non empty subsets of \mathcal{E}_T^2 and p_1 , p_2 , q_1 , q_2 be points of \mathcal{E}_T^2 . Suppose that
 - (i) P is an arc from p_1 to p_2 ,
- (ii) Q is an arc from q_1 to q_2 ,
- (iii) for every point p of $\mathcal{E}_{\mathbf{T}}^2$ such that $p \in P$ holds $(p_1)_1 \le p_1$ and $p_1 \le (p_2)_1$,
- (iv) for every point p of \mathcal{E}_T^2 such that $p \in Q$ holds $(p_1)_1 \le p_1$ and $p_1 \le (p_2)_1$,
- (v) for every point p of \mathcal{L}^2_T such that $p \in P$ holds $(q_1)_2 \le p_2$ and $p_2 \le (q_2)_2$, and
- (vi) for every point p of \mathcal{E}^2_T such that $p \in Q$ holds $(q_1)_2 \le p_2$ and $p_2 \le (q_2)_2$. Then P meets Q.

In the sequel *X*, *Y* are non empty topological spaces.

The following propositions are true:

- (63) Let f be a map from X into Y, P be a non empty subset of Y, and f_1 be a map from X into Y
 subseteq P. If $f = f_1$ and f is continuous, then f_1 is continuous.
- (64) Let f be a map from X into Y and P be a non empty subset of Y. Suppose X is compact and Y is a T_2 space and f is continuous and one-to-one and $P = \operatorname{rng} f$. Then there exists a map f_1 from X into $Y \upharpoonright P$ such that $f = f_1$ and f_1 is a homeomorphism.
- (65) Let f, g be maps from \mathbb{I} into $\mathcal{E}_{\mathbf{T}}^2$, a, b, c, d be real numbers, and O, I be points of \mathbb{I} . Suppose that O=0 and I=1 and f is continuous and one-to-one and g is continuous and one-to-one and $f(O)_1=a$ and $f(I)_1=b$ and $g(O)_2=c$ and $g(I)_2=d$ and for every point r of \mathbb{I} holds $a \leq f(r)_1$ and $f(r)_1 \leq b$ and $a \leq g(r)_1$ and $g(r)_1 \leq b$ and $c \leq f(r)_2$ and $f(r)_2 \leq d$ and $c \leq g(r)_2$ and $g(r)_2 \leq d$. Then rng f meets rng g.

³ The proposition (58) has been removed.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [5] Józef Białas and Yatsuka Nakamura. The theorem of Weierstrass. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/weierstr.html.
- [6] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/pcomps_1.html.
- [7] Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/funct_3.html.
- [8] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [9] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [10] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [11] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [12] Czesław Byliński. The sum and product of finite sequences of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rvsum_1.html.
- [13] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in £2. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vo19/pscomp 1.html.
- [14] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [15] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [16] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [17] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [18] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topmetr.html.
- [19] Agata Darmochwał and Yatsuka Nakamura. The topological space \(\mathcal{E}_{T}^{2}\). Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreal1.html.
- [20] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/real_1.html.
- [21] Krzysztof Hryniewiecki. Graphs. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/graph_1.html.
- [22] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/metric_1.html.
- [23] Jarosław Kotowicz and Yatsuka Nakamura. Go-Board theorem. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/ JFM/Vol4/goboard4.html.
- [24] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board part I. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/goboard1.html.
- [25] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/graph_2.html.
- [26] Yatsuka Nakamura and Piotr Rudnicki. Oriented chains. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/graph_4.html.
- [27] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/goboard5.html.
- [28] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vol5/binarith.html.
- [29] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.

- [30] Jan Popiolek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html.
- [31] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in E_T^N. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/toprns_1.html.
- [32] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [33] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html
- [34] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/square_1.html.
- [35] Wojciech A. Trybulec. Pigeon hole principle. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4 html
- [36] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [37] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received August 21, 1998

Published January 2, 2004