Some Isomorphisms Between Functor Categories

Andrzej Trybulec Warsaw University Białystok

Summary. We define some well known isomorphisms between functor categories: between $A^{\circlearrowright(o,m)}$ and A, between $C^{[A,B]}$ and $(C^B)^A$, and between $[B,C]^A$ and $[B^A,C^A]$. Compare [9] and [8]. Unfortunately in this paper "functor" is used in two different meanings, as a lingual function and as a functor between categories.

MML Identifier: ISOCAT_2.

WWW: http://mizar.org/JFM/Vol4/isocat_2.html

The articles [10], [6], [14], [15], [16], [3], [4], [2], [1], [11], [5], [7], [13], and [12] provide the notation and terminology for this paper.

1. Preliminaries

Let A, B, C be non empty sets and let f be a function from A into C^B . Then uncurry f is a function from [A, B] into C.

We now state several propositions:

- (1) For all non empty sets A, B, C and for every function f from A into C^B holds curry uncurry f = f.
- (2) Let A, B, C be non empty sets, f be a function from A into C^B , a be an element of A, and b be an element of B. Then (uncurry f)($\langle a, b \rangle$) = f(a)(b).
- (3) For every set x and for every non empty set A and for all functions f, g from $\{x\}$ into A such that f(x) = g(x) holds f = g.
- (4) For all non empty sets A, B and for every element x of A and for every function f from A into B holds $f(x) \in \operatorname{rng} f$.
- (5) Let A, B, C be non empty sets and f, g be functions from A into [:B, C:]. If $\pi_1(B \times C) \cdot f = \pi_1(B \times C) \cdot g$ and $\pi_2(B \times C) \cdot f = \pi_2(B \times C) \cdot g$, then f = g.

In the sequel *A*, *B*, *C* denote categories. We now state two propositions:

- (6) For every morphism f of A holds $id_{cod f} \cdot f = f$.
- (7) For every morphism f of A holds $f \cdot id_{\text{dom } f} = f$.

In the sequel o, m are sets.

The following propositions are true:

- (8) o is an object of B^A iff o is a functor from A to B.
- (9) Let f be a morphism of B^A . Then there exist functors F_1 , F_2 from A to B and there exists a natural transformation t from F_1 to F_2 such that F_1 is naturally transformable to F_2 and dom $f = F_1$ and cod $f = F_2$ and $f = \langle \langle F_1, F_2 \rangle, t \rangle$.
 - 2. The isomorphism between $A^{\circlearrowright(o,m)}$ and A

Let us consider A, B and let a be an object of A. The functor $a \mapsto B$ yields a functor from B^A to B and is defined by the condition (Def. 1).

(Def. 1) Let F_1 , F_2 be functors from A to B and t be a natural transformation from F_1 to F_2 . If F_1 is naturally transformable to F_2 , then $(a \mapsto B)(\langle \langle F_1, F_2 \rangle, t \rangle) = t(a)$.

The following proposition is true

- $(11)^1$ $A^{\circ(o,m)} \cong A$.
 - 3. The isomorphism between $C^{[A,B]}$ and $(C^B)^A$

One can prove the following four propositions:

- (12) For every functor F from [:A, B:] to C and for every object a of A and for every object b of B holds $F(a, -)(b) = F(\langle a, b \rangle)$.
- (13) For all objects a_1 , a_2 of A and for all objects b_1 , b_2 of B holds hom $(a_1, a_2) \neq \emptyset$ and hom $(b_1, b_2) \neq \emptyset$ iff hom $(\langle a_1, b_1 \rangle, \langle a_2, b_2 \rangle) \neq \emptyset$.
- (14) Let a_1 , a_2 be objects of A and b_1 , b_2 be objects of B. Suppose hom($\langle a_1, b_1 \rangle, \langle a_2, b_2 \rangle) \neq \emptyset$. Let f be a morphism of A and g be a morphism of B. Then $\langle f, g \rangle$ is a morphism from $\langle a_1, b_1 \rangle$ to $\langle a_2, b_2 \rangle$ if and only if f is a morphism from a_1 to a_2 and g is a morphism from b_1 to b_2 .
- (15) Let F_1 , F_2 be functors from [:A, B:] to C. Suppose F_1 is naturally transformable to F_2 . Let t be a natural transformation from F_1 to F_2 and a be an object of A. Then $F_1(a, -)$ is naturally transformable to $F_2(a, -)$ and $(\operatorname{curry} t)(a)$ is a natural transformation from $F_1(a, -)$ to $F_2(a, -)$.

Let us consider A, B, C, let F be a functor from [:A,B:] to C, and let f be a morphism of A. The functor curry(F,f) yields a function from the morphisms of B into the morphisms of C and is defined as follows:

(Def. 2) $\operatorname{curry}(F, f) = (\operatorname{curry} F)(f)$.

We now state two propositions:

- (16) Let a_1, a_2 be objects of A, b_1, b_2 be objects of B, f be a morphism of A, and g be a morphism of B. If $f \in \text{hom}(a_1, a_2)$ and $g \in \text{hom}(b_1, b_2)$, then $\langle f, g \rangle \in \text{hom}(\langle a_1, b_1 \rangle, \langle a_2, b_2 \rangle)$.
- (17) Let F be a functor from [:A, B:] to C and a, b be objects of A. Suppose hom $(a, b) \neq \emptyset$. Let f be a morphism from a to b. Then
 - (i) F(a, -) is naturally transformable to F(b, -), and
- (ii) curry (F, f) the id-map of B is a natural transformation from F(a, -) to F(b, -).

Let us consider A, B, C, let F be a functor from [:A, B:] to C, and let f be a morphism of A. The functor F(f, -) yielding a natural transformation from $F(\operatorname{dom} f, -)$ to $F(\operatorname{cod} f, -)$ is defined by:

(Def. 3) $F(f, -) = \operatorname{curry}(F, f) \cdot \operatorname{the id-map} \operatorname{of} B$.

¹ The proposition (10) has been removed.

One can prove the following propositions:

- (18) For every functor F from [:A, B:] to C and for every morphism g of A holds $F(\operatorname{dom} g, -)$ is naturally transformable to $F(\operatorname{cod} g, -)$.
- (19) For every functor F from [:A, B:] to C and for every morphism f of A and for every object b of B holds $F(f, -)(b) = F(\langle f, \mathrm{id}_b \rangle)$.
- (20) For every functor F from [:A, B:] to C and for every object a of A holds $\mathrm{id}_{F(a,-)} = F(\mathrm{id}_a, -)$.
- (21) Let F be a functor from [:A, B:] to C and g, f be morphisms of A. Suppose $\operatorname{dom} g = \operatorname{cod} f$. Let f be a natural transformation from $F(\operatorname{dom} f, -)$ to $F(\operatorname{dom} g, -)$. If f = F(f, -), then $F(g \cdot f, -) = F(g, -) \circ f$.

Let us consider A, B, C and let F be a functor from [:A, B:] to C. The functor export(F) yields a functor from A to C^B and is defined as follows:

(Def. 4) For every morphism f of A holds $(\operatorname{export}(F))(f) = \langle \langle F(\operatorname{dom} f, -), F(\operatorname{cod} f, -) \rangle$, $F(f, -) \rangle$.

We now state four propositions:

- (24)² For every functor F from [:A, B:] to C and for every object a of A holds $(\operatorname{export}(F))(a) = F(a, -)$.
- (25) For every functor F from [:A, B:] to C and for every object a of A holds $(\operatorname{export}(F))(a)$ is a functor from B to C.
- (26) For all functors F_1 , F_2 from [:A, B:] to C such that $export(F_1) = export(F_2)$ holds $F_1 = F_2$.
- (27) Let F_1 , F_2 be functors from [:A, B:] to C. Suppose F_1 is naturally transformable to F_2 . Let t be a natural transformation from F_1 to F_2 . Then
 - (i) export (F_1) is naturally transformable to export (F_2) , and
- (ii) there exists a natural transformation G from $\operatorname{export}(F_1)$ to $\operatorname{export}(F_2)$ such that for every function s from [: the objects of A, the objects of B:] into the morphisms of C such that t = s and for every object a of A holds $G(a) = \langle \langle (\operatorname{export}(F_1))(a), (\operatorname{export}(F_2))(a) \rangle$, $(\operatorname{curry} s)(a) \rangle$.

Let us consider A, B, C and let F_1 , F_2 be functors from [:A, B:] to C. Let us assume that F_1 is naturally transformable to F_2 . Let t be a natural transformation from F_1 to F_2 . The functor export(t) yielding a natural transformation from export(F_1) to export(F_2) is defined by the condition (Def. 5).

(Def. 5) Let s be a function from [:the objects of A, the objects of B:] into the morphisms of C. If t = s, then for every object a of A holds $(\operatorname{export}(t))(a) = \langle \langle (\operatorname{export}(F_1))(a), (\operatorname{export}(F_2))(a) \rangle$, $(\operatorname{curry} s)(a) \rangle$.

We now state several propositions:

- (28) For every functor F from [:A, B:] to C holds $id_{export(F)} = export(id_F)$.
- (29) Let F_1 , F_2 , F_3 be functors from [:A, B:] to C. Suppose F_1 is naturally transformable to F_2 and F_2 is naturally transformable to F_3 . Let t_1 be a natural transformation from F_1 to F_2 and t_2 be a natural transformation from F_2 to F_3 . Then export $(t_2 \circ t_1) = \operatorname{export}(t_2) \circ \operatorname{export}(t_1)$.
- (30) Let F_1 , F_2 be functors from [:A, B:] to C. Suppose F_1 is naturally transformable to F_2 . Let t_1 , t_2 be natural transformations from F_1 to F_2 . If $export(t_1) = export(t_2)$, then $t_1 = t_2$.
- (31) For every functor G from A to C^B there exists a functor F from [:A,B:] to C such that $G = \operatorname{export}(F)$.

² The propositions (22) and (23) have been removed.

(32) Let F_1 , F_2 be functors from [:A, B:] to C. Suppose export (F_1) is naturally transformable to export (F_2) . Let t be a natural transformation from export (F_1) to export (F_2) . Then F_1 is naturally transformable to F_2 and there exists a natural transformation u from F_1 to F_2 such that t = export(u).

Let us consider A, B, C. The functor **export**_{A,B,C} yielding a functor from $C^{[A,B]}$ to $(C^B)^A$ is defined by the condition (Def. 6).

(Def. 6) Let F_1 , F_2 be functors from [:A, B:] to C. Suppose F_1 is naturally transformable to F_2 . Let t be a natural transformation from F_1 to F_2 . Then $\mathbf{export}_{A,B,C}(\langle \langle F_1, F_2 \rangle, t \rangle) = \langle \langle \mathbf{export}(F_1), \mathbf{export}(F_2) \rangle$, $\mathbf{export}(F_2) \rangle$.

Next we state two propositions:

- (33) **export** $_{A,B,C}$ is an isomorphism.
- (34) $C^{[:A,B:]} \cong (C^B)^A$.
 - 4. The isomorphism between $[:B,C:]^A$ and $[:B^A,C^A:]$

We now state the proposition

(35) Let F_1 , F_2 be functors from A to B and G be a functor from B to C. Suppose F_1 is naturally transformable to F_2 . Let t be a natural transformation from F_1 to F_2 . Then $G \cdot t = G \cdot (t \text{ qua function})$.

Let us consider A, B. Then $\pi_1(A \times B)$ is a functor from [:A, B:] to A. Then $\pi_2(A \times B)$ is a functor from [:A, B:] to B.

Let us consider A, B, C, let F be a functor from A to B, and let G be a functor from A to C. Then $\langle F, G \rangle$ is a functor from A to [B, C].

Let us consider A, B, C and let F be a functor from A to [B, C]. The functor $\pi_1 \cdot F$ yields a functor from A to B and is defined by:

(Def. 7)
$$\pi_1 \cdot F = \pi_1(B \times C) \cdot F$$
.

The functor $\pi_2 \cdot F$ yields a functor from *A* to *C* and is defined by:

(Def. 8)
$$\pi_2 \cdot F = \pi_2(B \times C) \cdot F$$
.

Next we state two propositions:

- (36) For every functor F from A to B and for every functor G from A to C holds $\pi_1 \cdot \langle F, G \rangle = F$ and $\pi_2 \cdot \langle F, G \rangle = G$.
- (37) For all functors F, G from A to [B, C] such that $\pi_1 \cdot F = \pi_1 \cdot G$ and $\pi_2 \cdot F = \pi_2 \cdot G$ holds F = G.

Let us consider A, B, C, let F_1 , F_2 be functors from A to [:B,C:], and let t be a natural transformation from F_1 to F_2 . The functor $\pi_1 \cdot t$ yielding a natural transformation from $\pi_1 \cdot F_1$ to $\pi_1 \cdot F_2$ is defined as follows:

(Def. 9)
$$\pi_1 \cdot t = \pi_1(B \times C) \cdot t$$
.

The functor $\pi_2 \cdot t$ yields a natural transformation from $\pi_2 \cdot F_1$ to $\pi_2 \cdot F_2$ and is defined as follows:

(Def. 10)
$$\pi_2 \cdot t = \pi_2(B \times C) \cdot t$$
.

Next we state several propositions:

(38) Let F, G be functors from A to [:B,C:]. Suppose F is naturally transformable to G. Then $\pi_1 \cdot F$ is naturally transformable to $\pi_2 \cdot G$ and $\pi_2 \cdot F$ is naturally transformable to $\pi_2 \cdot G$.

- (39) Let F_1 , F_2 , G_1 , G_2 be functors from A to [:B,C:]. Suppose F_1 is naturally transformable to F_2 and G_1 is naturally transformable to G_2 . Let S_1 be a natural transformation from S_1 to S_2 and S_3 to S_4 and S_4 to S_5 and S_6 to S_7 and S_8 to S_8 and S_8 to S_8 to S_8 and S_8 to S_8 to
- (40) For every functor F from A to [:B,C:] holds $\mathrm{id}_{\pi_1 \cdot F} = \pi_1 \cdot (\mathrm{id}_F)$ and $\mathrm{id}_{\pi_2 \cdot F} = \pi_2 \cdot (\mathrm{id}_F)$.
- (41) Let F, G, H be functors from A to [:B,C:]. Suppose F is naturally transformable to G and G is naturally transformable to H. Let S be a natural transformation from F to G and G G are G and G and G and G and G are G are G and G are G and G are G and G are G are G are G and G are G and G are G and G are G are G are G are G are G and G are G are
- (42) Let F be a functor from A to B, G be a functor from A to C, and a, b be objects of A. If $hom(a,b) \neq \emptyset$, then for every morphism f from a to b holds $\langle F,G \rangle(f) = \langle F(f),G(f) \rangle$.
- (43) Let F be a functor from A to B, G be a functor from A to C, and a be an object of A. Then $\langle F, G \rangle (a) = \langle F(a), G(a) \rangle$.
- (44) Let F_1 , G_1 be functors from A to B and F_2 , G_2 be functors from A to C. Suppose F_1 is transformable to G_1 and F_2 is transformable to G_2 . Then $\langle F_1, F_2 \rangle$ is transformable to $\langle G_1, G_2 \rangle$.

Let us consider A, B, C, let F_1 , G_1 be functors from A to B, and let F_2 , G_2 be functors from A to C. Let us assume that F_1 is transformable to G_1 and F_2 is transformable to G_2 . Let t_1 be a transformation from F_1 to G_1 and let t_2 be a transformation from F_2 to G_2 . The functor $\langle t_1, t_2 \rangle$ yields a transformation from $\langle F_1, F_2 \rangle$ to $\langle G_1, G_2 \rangle$ and is defined as follows:

(Def. 11) $\langle t_1, t_2 \rangle = \langle t_1, t_2 \rangle$.

Next we state two propositions:

- (45) Let F_1 , G_1 be functors from A to B and F_2 , G_2 be functors from A to C. Suppose F_1 is transformable to G_1 and F_2 is transformable to G_2 . Let t_1 be a transformation from F_1 to G_1 , t_2 be a transformation from F_2 to G_2 , and a be an object of A. Then $\langle t_1, t_2 \rangle(a) = \langle t_1(a), t_2(a) \rangle$.
- (46) Let F_1 , G_1 be functors from A to B and F_2 , G_2 be functors from A to C. Suppose F_1 is naturally transformable to G_1 and F_2 is naturally transformable to G_2 . Then $\langle F_1, F_2 \rangle$ is naturally transformable to $\langle G_1, G_2 \rangle$.

Let us consider A, B, C, let F_1 , G_1 be functors from A to B, and let F_2 , G_2 be functors from A to C. Let us assume that F_1 is naturally transformable to G_1 and F_2 is naturally transformable to G_2 . Let t_1 be a natural transformation from F_1 to G_1 and let t_2 be a natural transformation from F_2 to G_2 . The functor $\langle t_1, t_2 \rangle$ yields a natural transformation from $\langle F_1, F_2 \rangle$ to $\langle G_1, G_2 \rangle$ and is defined as follows:

(Def. 12) $\langle t_1, t_2 \rangle = \langle t_1, t_2 \rangle$.

One can prove the following proposition

(47) Let F_1 , G_1 be functors from A to B and F_2 , G_2 be functors from A to C. Suppose F_1 is naturally transformable to G_1 and F_2 is naturally transformable to G_2 . Let t_1 be a natural transformation from F_1 to G_1 and t_2 be a natural transformation from F_2 to G_2 . Then $\pi_1 \cdot \langle t_1, t_2 \rangle = t_1$ and $\pi_2 \cdot \langle t_1, t_2 \rangle = t_2$.

Let us consider A, B, C. The functor **distribute**_{A,B,C} yields a functor from $[:B,C:]^A$ to $[:B^A,C^A:]$ and is defined by the condition (Def. 13).

(Def. 13) Let F_1 , F_2 be functors from A to [:B,C:]. Suppose F_1 is naturally transformable to F_2 . Let t be a natural transformation from F_1 to F_2 . Then **distribute**_{A,B,C}($\langle\langle F_1,F_2\rangle,t\rangle$) = $\langle\langle\langle \pi_1\cdot F_1,\pi_2\cdot F_2\rangle,\pi_2\cdot t\rangle\rangle$.

One can prove the following two propositions:

- (48) **distribute** $_{A,B,C}$ is an isomorphism.
- (49) $[:B,C:]^A \cong [:B^A,C^A:].$

REFERENCES

- Grzegorz Bancerek. Curried and uncurried functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_5.html.
- [2] Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/funct_3.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [5] Czesław Byliński. Introduction to categories and functors. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/cat_1.html.
- [6] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_l.html.
- [7] Czesław Byliński. Subcategories and products of categories. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cat_2.html.
- [8] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer Verlag, New York, Heidelberg, Berlin, 1971.
- [9] Zbigniew Semadeni and Antoni Wiweger. Wstęp do teorii kategorii i funktorów, volume 45 of Biblioteka Matematyczna. PWN, Warszawa, 1978.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [11] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel.html.
- [12] Andrzej Trybulec. Isomorphisms of categories. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/isocat_ 1.html.
- [13] Andrzej Trybulec. Natural transformations. Discrete categories. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/nattra_1.html.
- [14] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [15] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [16] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.

Received June 5, 1992

Published January 2, 2004