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Summary. We define some well known isomorphisms between functor categories:
betweerA®(®M andA, betweerCiAB] and(CB)*, and betweefB,C]” and[BA,CA]. Com-
pare [9] and[[8]. Unfortunately in this paper "functor” is used in two different meanings, as a
lingual function and as a functor between categories.

MML Identifier: ISOCAT_2.
WWW: http://mizar.org/JFM/Vol4/isocat_2.html

The articles([10], (6], [([14], [[16],[[16], 131,141, [[2], [[1], [[24],[[5], [I¥], [1B], and_[12] provide the
notation and terminology for this paper.

1. PRELIMINARIES

Let A, B, C be non empty sets and létbe a function fromA into CB. Then uncurnf is a function
from A B]intoC.
We now state several propositions:

(1) For all non empty set#, B, C and for every functionf from A into CB® holds
curryuncurryf = f.

(2) LetA, B, C be non empty setd, be a function fromA into CB, a be an element oA, andb
be an element d8. Then(uncurryf)({(a, b)) = f(a)(b).

(3) For every sek and for every non empty sétand for all functionsf, g from {x} into A
such thatf (x) = g(x) holdsf =g.

(4) For all non empty set, B and for every element of A and for every functiorf from A
into B holds f(x) € rngf.

(5) LetA, B,C be non empty sets arfd g be functions fromAinto B, CJ. If ;(BxC)- f =
m(BxC)-gandm(BxC)- f =m(BxC)-g,thenf =g.

In the sequeh, B, C denote categories.
We now state two propositions:

(6) For every morphisnf of Aholds idogs - f = f.
(7) For every morphisni of Aholdsf -idgoms = f.

In the sequeb, mare sets.
The following propositions are true:
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(8) ois an object oB iff ois a functor fromA to B.

(9) Letf be a morphism oB”. Then there exist functor;, F> from A to B and there exists
a natural transformatioh from F; to F, such thatF; is naturally transformable t6, and
domf =F; and codf =F, andf = ((Fy, /), t).

2. THE ISOMORPHISM BETWEENAC(OM AnD A

Let us consideA, B and leta be an object ofA. The functora — B yields a functor fronB” to B
and is defined by the condition (Def. 1).

(Def. 1) LetFy, R be functors fromA to B andt be a natural transformation from to F. If F; is
naturally transformable tB,, then(a— B)({(F1, Rz}, t)) =t(a).

The following proposition is true

1] Adem ~p

3. THE ISOMORPHISM BETWEENCFAB] anD (CBY*
One can prove the following four propositions:

(12) For every functoF from [: A, B] to C and for every objeca of A and for every objedb of
B holdsF (a,—)(b) = F({a, b}).

(13) For all objectsa;, ap of A and for all objectsh;, by of B holds honfas,az) # 0 and
hom(b]_,bz) 75 O iff hom((al, b;]_)7 (az, bz)) 75 0.

(14) Letay, a be objects oA andbs, by be objects 0B. Suppose hoff{as, b1), (az, by)) # 0.
Let f be a morphism oA andg be a morphism oB. Then(f, g) is a morphism from(a;,
b1) to {a, by) if and only if f is @ morphism fromay to a; andg is a morphism fronb; to
bo.

(15) LetFy, R, be functors from: A, B] to C. SupposeF; is naturally transformable t6.
Lett be a natural transformation frof to F, anda be an object ofA. ThenF;(a,—) is
naturally transformable tB,(a, —) and(curryt)(a) is a natural transformation froffy (a, —)
to R (a, —).

Let us consideA, B, C, let F be a functor from: A, B]] to C, and letf be a morphism oA.
The functor curryF, f) yields a function from the morphisms Bfinto the morphisms of and is
defined as follows:

(Def. 2) curry(F, f) = (curryF)(f).
We now state two propositions:

(16) Letas, ay be objects of, by, b, be objects 0B, f be a morphism of\, andg be a morphism
of B. If f € hom(ag,ap) andg € hom(by,by), then(f, g} € hom({as, b1), (az, b2)).

(17) LetF be a functor fronf: A, B] to C anda, b be objects ofA. Suppose hoi@, b) # 0. Let
f be a morphism fronato b. Then

(i) F(a,—) is naturally transformable t6 (b, —), and
(i) curry(F, f)-the id-map oB is a natural transformation frof(a,—) to F (b, —).

Let us consideA, B, C, letF be a functor fronj: A, B]] to C, and letf be a morphism oA. The
functorF (f,—) yielding a natural transformation from(domf, —) to F(codf, —) is defined by:

(Def. 3) F(f,—)=curry(F, f)-the id-map ofB.

1 The proposition (10) has been removed.
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One can prove the following propositions:

(18) For every functoF from [: A, B} to C and for every morphisrg of A holdsF (domg, —) is
naturally transformable tB (codg, —).

(19) For every functoF from [ A, B]] to C and for every morphisni of A and for every object
b of B holdsF (f,—)(b) = F({f, idp)).

(20) Forevery functoF from [ A, B toC and for every objea of Aholds itk 5 ) = F (ida, —).

(21) LetF be a functor fronf. A, B to C andg, f be morphisms oA. Suppose dom = codf.
Lett be a natural transformation frof(domf,—) to F(domg,—). If t = F(f,—), then

F(g-f,—)=F(g,—)°t.

Let us consideA, B, C and letF be a functor fronf. A, B] to C. The functor expo(F) yields a
functor fromA to CB and is defined as follows:

(Def. 4) For every morphismf of A holds (expor{F))(f) = ((F(domf,—), F(codf,—)),
F(fv_))
We now state four propositions:

(24E] For every functoF from [ A, B] to C and for every objeca of A holds(expor{F))(a) =
F(a,—).

(25) For every functoF from [: A, B]] to C and for every objeca of A holds(expor{F))(a) is a
functor fromB to C.

(26) For all functord, F, from [ A, B to C such that expo(f;) = expor{F,) holdsF; = F.
(27) LetF;, R be functors fronf: A, B} to C. Supposé-; is naturally transformable ;. Lett
be a natural transformation froR to F. Then
(i) exportF;) is naturally transformable to expdf), and

(i) there exists a natural transformati@from exportF;) to exportF,) such that for every
functions from [:the objects ofA, the objects oB] into the morphisms of such that = s
and for every objeca of A holdsG(a) = {{(expor{F1))(a), (expor{,))(a)), (currys)(a)).

Let us consideA, B, C and letF;, F, be functors from: A, B] to C. Let us assume th& is
naturally transformable tB,. Lett be a natural transformation froRa to F». The functor expoft)
yielding a natural transformation from exp(#t) to expor{F,) is defined by the condition (Def. 5).

(Def. 5) Letsbe a function fronT:the objects ofA, the objects oB] into the morphisms of. If
t =s, then for every objec of A holds(expor(t))(a) = ({(expor{F1))(a), (expor(F,))(a)),
(currys)(a)).

We now state several propositions:
(28) For every functoF from A, B to C holds ithyporr) = €xpor(idr ).

(29) LetFy, R, F3 be functors from: A, B] to C. Supposér; is naturally transformable tB,
andF; is naturally transformable tB;. Lett; be a natural transformation from to F, and
to be a natural transformation froRa to Fs. Then exportto© t1) = expor{ty) > expor{ts).

(30) LetFy, F, be functors front: A, B] to C. Supposé is naturally transformable t6,. Let
t1, t2 be natural transformations froR to F,. If export(t;) = expor{ty), thent; =t,.

(31) For every functoG from A to CB there exists a functoF from [A, B] to C such that
G = expor(F).

2 The propositions (22) and (23) have been removed.
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(32) LetF;, R be functors from: A, B] to C. Suppose expd(fe;) is naturally transformable
to exportF,). Lett be a natural transformation from exp@d#) to exportF,). ThenFy is
naturally transformable t6, and there exists a natural transformatiofrom F; to F such
thatt = expor(u).

Let us consideA, B, C. The functorexport, g yielding a functor fromCHAB1 to (CB)A is
defined by the condition (Def. 6).

(Def. 6) LetFy, F, be functors from: A, B] to C. Supposé; is naturally transformable t6,. Let
t be a natural transformation froR to F,. Thenexporta g c({{F1, F2),t)) = ((expor(F1),
expor(R)), exportt)).

Next we state two propositions:
(33) export g is an isomorphism.

(34) C[:A,B:] ~ (CB)A.

4. THE ISOMORPHISM BETWEEN]:B,C]* AND [BA,CA]
We now state the proposition

(35) LetFy,  be functors fromA to B andG be a functor fronB to C. Supposd; is naturally
transformable td~. Lett be a natural transformation frof to F,. ThenG-t = G- (t qua
function).

Let us consideA, B. Thenty (A x B) is a functor from: A, B to A. Thent(A x B) is a functor
from[[A B]toB.

Let us consideA, B, C, letF be a functor fronA to B, and letG be a functor fromAto C. Then
(F,G) is a functor fromAto [ B, C1.

Let us consideA, B, C and letF be a functor fromA to B, CJ. The functorry - F yields a
functor fromA to B and is defined by:

(Def.7) m-F=m(BxC)-F.
The functorm- F yields a functor fromA to C and is defined by:
(Def.8) To-F =m(BxC)-F.
Next we state two propositions:

(36) For every functoF from A to B and for every functoG from Ato C holdsty - (F,G) = F
andm- (F,G) =G.

(37) For all functors=, G from Ato [B,C] such thaty-F = -G andmp- F = - G holds
F=G.

Let us consideA, B, C, let F1, F, be functors fromA to [ B, CJ, and lett be a natural transfor-
mation fromF; to F,. The functormy - t yielding a natural transformation fromy - F; to T4 - F is
defined as follows:

(Def.9) m-t=m(BxC)-t.
The functorm,- t yields a natural transformation from- F; to T+ F» and is defined as follows:
(Def. 10) m-t=m(BxC)-t.
Next we state several propositions:

(38) LetF, G be functors fromA to 1B, C]. Supposé- is naturally transformable t6. Then
14 - F is naturally transformable tmy - G andtn- F is naturally transformable tp- G.
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(39) LetFy, R, G1, G2 be functors fromAto 1B, C]. Supposé- is naturally transformable to
F andG; is naturally transformable tG&;. Let s be a natural transformation frof to
andt be a natural transformation fro@®y to G,. If Ty-s=1m-t andmp-s=To-t, thens=t.

(40) For every functoF from Ato 1B, C holds idy.r = 1 (idr) and idy,r = To- (idF).

(41) LetF, G, H be functors fromA to [ B, C:. Supposé- is naturally transformable t6 and
G is naturally transformable tBl. Lets be a natural transformation fromto G andt be a
natural transformation fror® toH. Thenmy - (t°s) =1y -t° - sandmp- (t°s) = Th-t° Th- S.

(42) LetF be a functor fromA to B, G be a functor fromA to C, anda, b be objects ofA. If
hom(a, b) = 0, then for every morphisni fromato b holds(F,G)(f) = (F(f), G(f)).

(43) LetF be a functor fromA to B, G be a functor fromA to C, anda be an object oAA. Then
(F.G)(a) = (F(a), G(a))-

(44) LetF, G1 be functors fromA to B andF,, G, be functors fromA to C. Suppose is
transformable t@; andF; is transformable t&,. Then(F,F,) is transformable tdG;, G,).

Let us consideA, B, C, let F;, G; be functors fromA to B, and letF,, G, be functors from
Ato C. Let us assume thdd; is transformable t&G; andF; is transformable td5,. Lett; be a
transformation froni; to G; and lett; be a transformation frorf, to G,. The functor(ty, tp) yields
a transformation fronF;, ) to (G1,G2) and is defined as follows:

(Def. 11) (t1,t2) = (t1,t2).
Next we state two propositions:
(45) LetF, G; be functors fromA to B and R, G, be functors fromA to C. Supposéd is

transformable t@; andF; is transformable t@,. Lett; be a transformation fror; to G4,
to be a transformation frorf, to G,, anda be an object oA. Then(ty,t2)(a) = {t1(a), t2(a)).

(46) LetFy, Gy be functors fromA to B and F, Gy be functors fromA to C. Supposer
is naturally transformable t®1 andF, is naturally transformable t®,. Then(Fi,F) is

naturally transformable t(G1, Gy).

Let us consideA, B, C, letF, G;1 be functors fromA to B, and letR, G, be functors fromA to
C. Let us assume th& is naturally transformable t&; andF; is naturally transformable tG,.
Let t; be a natural transformation frof to G; and lett, be a natural transformation frof® to
G,. The functor(ty,tz) yields a natural transformation froff1, ) to (G1,Gy) and is defined as
follows:

(Def. 12) ({t1,tp) = (t1,t2).
One can prove the following proposition

(47) LetFy, Gy be functors fromA to B andF,, G, be functors fromA to C. Supposédr is
naturally transformable t&1 andF, is naturally transformable t&,. Lett; be a natural
transformation fronfF; to G; andty be a natural transformation frof to Go,. Thenty -

<t1,t2> =t; andTp- <t1,t2> =15.

Let us consideA, B, C. The functordistribute o g ¢ yields a functor fronf. B, C]*to[BA, CP]
and is defined by the condition (Def. 13).

(Def. 13) LetFy, F» be functors fromAto B, C]. Supposé- is naturally transformable tB,. Let
t be a natural transformation frof to . Thendistribute pgc(({F1, F2),t}) = ({{Tu- F1,

- Fz)7 TTl-t>7 ((T[Z' Fi, % F), T[Z't))'

One can prove the following two propositions:
(48) distribute ogc is an isomorphism.

(49) [B,CJA=~[BA CA.
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