Isomorphisms of Categories

Andrzej Trybulec Warsaw University Białystok

Summary. We continue the development of the category theory basically following [8] (compare also [7]). We define the concept of isomorphic categories and prove basic facts related, e.g. that the Cartesian product of categories is associative up to the isomorphism. We introduce the composition of a functor and a transformation, and of transformation and a functor, and afterwards we define again those concepts for natural transformations. Let us observe, that we have to duplicate those concepts because of the permissiveness: if a functor *F* is not naturally transformable to *G*, then natural transformation from *F* to *G* has no fixed meaning, hence we cannot claim that the composition of it with a functor as a transformation results in a natural transformation. We define also the so called horizontal composition of transformations ([8], p. 140, exercise **4.2,5**(C)) and prove *interchange law* ([7], p.44). We conclude with the definition of equivalent categories.

MML Identifier: ISOCAT_1.

WWW: http://mizar.org/JFM/Vol3/isocat_1.html

The articles [9], [5], [11], [2], [3], [1], [4], [6], and [10] provide the notation and terminology for this paper.

We use the following convention: A, B, C, D denote categories, F denotes a functor from A to B, and G denotes a functor from B to C.

One can prove the following propositions:

- (1) For all functions F, G such that F is one-to-one and G is one-to-one holds [:F, G:] is one-to-one.
- (2) $\operatorname{rng} \pi_1(A \times B) = \text{the morphisms of } A \text{ and } \operatorname{rng} \pi_2(B \times A) = \text{the morphisms of } A.$
- (3) For every morphism f of A such that f is invertible holds F(f) is invertible.
- (4) For every functor *F* from *A* to *B* and for every functor *G* from *B* to *A* holds $F \cdot id_A = F$ and $id_A \cdot G = G$.
- (7)¹ Let F_1 , F_2 be functors from A to B. Suppose F_1 is transformable to F_2 . Let t be a transformation from F_1 to F_2 and a be an object of A. Then $t(a) \in \text{hom}(F_1(a), F_2(a))$.
- (8) Let F_1 , F_2 be functors from A to B and G_1 , G_2 be functors from B to C. Suppose F_1 is transformable to F_2 and G_1 is transformable to G_2 . Then $G_1 \cdot F_1$ is transformable to $G_2 \cdot F_2$.
- (9) Let F_1 , F_2 be functors from A to B. Suppose F_1 is transformable to F_2 . Let t be a transformation from F_1 to F_2 . Suppose t is invertible. Let a be an object of A. Then $F_1(a)$ and $F_2(a)$ are isomorphic.

¹ The propositions (5) and (6) have been removed.

Let us consider C, D. Let us note that the functor from C to D can be characterized by the following (equivalent) condition:

- (Def. 1)(i) For every object c of C there exists an object d of D such that $it(id_c) = id_d$,
 - (ii) for every morphism f of C holds $it(id_{dom f}) = id_{dom it(f)}$ and $it(id_{cod f}) = id_{cod it(f)}$, and
 - (iii) for all morphisms f, g of C such that dom $g = \operatorname{cod} f$ holds $\operatorname{it}(g \cdot f) = \operatorname{it}(g) \cdot \operatorname{it}(f)$.

Let us consider A. Then id_A is a functor from A to A. Let us consider B, C, let F be a functor from A to B, and let G be a functor from B to C. Then $G \cdot F$ is a functor from A to C.

In the sequel *o*, *m* are sets.

We now state three propositions:

- (10) If F is an isomorphism, then for every morphism g of B there exists a morphism f of A such that F(f) = g.
- (11) If F is an isomorphism, then for every object b of B there exists an object a of A such that F(a) = b.
- (12) If F is one-to-one, then Obj F is one-to-one.

Let us consider A, B, F. Let us assume that F is an isomorphism. The functor F^{-1} yielding a functor from B to A is defined as follows:

(Def. 2)
$$F^{-1} = F^{-1}$$
.

Let us consider A, B, F. Let us observe that F is isomorphic if and only if:

- (Def. 3) F is one-to-one and rng F = the morphisms of B.
- We introduce F is an isomorphism as a synonym of F is isomorphic. Next we state several propositions:
 - (13) If F is an isomorphism, then F^{-1} is an isomorphism.
 - (14) If F is an isomorphism, then $(\operatorname{Obj} F)^{-1} = \operatorname{Obj}(F^{-1})$.
 - (15) If F is an isomorphism, then $(F^{-1})^{-1} = F$.
 - (16) If F is an isomorphism, then $F \cdot F^{-1} = id_B$ and $F^{-1} \cdot F = id_A$.
 - (17) If F is an isomorphism and G is an isomorphism, then $G \cdot F$ is an isomorphism.

Let us consider A, B. We say that A and B are isomorphic if and only if:

(Def. 4) There exists a functor from A to B which is an isomorphism.

Let us notice that the predicate A and B are isomorphic is reflexive and symmetric. We introduce $A \cong B$ as a synonym of A and B are isomorphic.

One can prove the following propositions:

- (20)² If $A \cong B$ and $B \cong C$, then $A \cong C$.
- (21) $[: \dot{\bigcirc}(o,m), A:] \cong A.$
- $(22) \quad [:A,B:] \cong [:B,A:].$
- (23) $[: [:A, B:], C:] \cong [:A, [:B, C:]:].$
- (24) If $A \cong B$ and $C \cong D$, then $[:A, C:] \cong [:B, D:]$.

² The propositions (18) and (19) have been removed.

Let us consider A, B, C and let F_1 , F_2 be functors from A to B. Let us assume that F_1 is transformable to F_2 . Let t be a transformation from F_1 to F_2 and let G be a functor from B to C. The functor $G \cdot t$ yielding a transformation from $G \cdot F_1$ to $G \cdot F_2$ is defined by:

(Def. 5) $G \cdot t = G \cdot t$.

Let us consider A, B, C and let G_1 , G_2 be functors from B to C. Let us assume that G_1 is transformable to G_2 . Let F be a functor from A to B and let t be a transformation from G_1 to G_2 . The functor $t \cdot F$ yields a transformation from $G_1 \cdot F$ to $G_2 \cdot F$ and is defined by:

(Def. 6) $t \cdot F = t \cdot \operatorname{Obj} F$.

We now state three propositions:

- (25) Let G_1 , G_2 be functors from B to C. Suppose G_1 is transformable to G_2 . Let F be a functor from A to B, t be a transformation from G_1 to G_2 , and a be an object of A. Then $(t \cdot F)(a) = t(F(a))$.
- (26) Let F_1 , F_2 be functors from A to B. Suppose F_1 is transformable to F_2 . Let t be a transformation from F_1 to F_2 , G be a functor from B to C, and a be an object of A. Then $(G \cdot t)(a) = G(t(a))$.
- (27) Let F_1 , F_2 be functors from A to B and G_1 , G_2 be functors from B to C. Suppose F_1 is naturally transformable to F_2 and G_1 is naturally transformable to G_2 . Then $G_1 \cdot F_1$ is naturally transformable to $G_2 \cdot F_2$.

Let us consider A, B, C and let F_1 , F_2 be functors from A to B. Let us assume that F_1 is naturally transformable to F_2 . Let t be a natural transformation from F_1 to F_2 and let G be a functor from B to C. The functor $G \cdot t$ yields a natural transformation from $G \cdot F_1$ to $G \cdot F_2$ and is defined as follows:

(Def. 7) $G \cdot t = G \cdot t$.

The following proposition is true

(28) Let F_1 , F_2 be functors from A to B. Suppose F_1 is naturally transformable to F_2 . Let t be a natural transformation from F_1 to F_2 , G be a functor from B to C, and a be an object of A. Then $(G \cdot t)(a) = G(t(a))$.

Let us consider A, B, C and let G_1 , G_2 be functors from B to C. Let us assume that G_1 is naturally transformable to G_2 . Let F be a functor from A to B and let t be a natural transformation from G_1 to G_2 . The functor $t \cdot F$ yielding a natural transformation from $G_1 \cdot F$ to $G_2 \cdot F$ is defined as follows:

(Def. 8)
$$t \cdot F = t \cdot F$$
.

We now state the proposition

(29) Let G_1 , G_2 be functors from B to C. Suppose G_1 is naturally transformable to G_2 . Let F be a functor from A to B, t be a natural transformation from G_1 to G_2 , and a be an object of A. Then $(t \cdot F)(a) = t(F(a))$.

For simplicity, we adopt the following convention: F, F_1 , F_2 , F_3 are functors from A to B, G, G_1 , G_2 , G_3 are functors from B to C, H, H_1 , H_2 are functors from C to D, s is a natural transformation from F_1 to F_2 , s' is a natural transformation from F_2 to F_3 , t is a natural transformation from G_1 to G_2 , t' is a natural transformation from G_2 to G_3 , and u is a natural transformation from H_1 to H_2 .

We now state a number of propositions:

- (30) If F_1 is naturally transformable to F_2 , then for every object a of A holds $\hom(F_1(a), F_2(a)) \neq \emptyset$.
- (31) Suppose F_1 is naturally transformable to F_2 . Let t_1 , t_2 be natural transformations from F_1 to F_2 . If for every object *a* of *A* holds $t_1(a) = t_2(a)$, then $t_1 = t_2$.

- (32) If F_1 is naturally transformable to F_2 and F_2 is naturally transformable to F_3 , then $G \cdot (s' \circ s) = G \cdot s' \circ G \cdot s$.
- (33) If G_1 is naturally transformable to G_2 and G_2 is naturally transformable to G_3 , then $(t' \circ t) \cdot F = t' \cdot F \circ t \cdot F$.
- (34) If H_1 is naturally transformable to H_2 , then $(u \cdot G) \cdot F = u \cdot (G \cdot F)$.
- (35) If G_1 is naturally transformable to G_2 , then $(H \cdot t) \cdot F = H \cdot (t \cdot F)$.
- (36) If F_1 is naturally transformable to F_2 , then $(H \cdot G) \cdot s = H \cdot (G \cdot s)$.
- (37) $\operatorname{id}_G \cdot F = \operatorname{id}_{G \cdot F}$.
- (38) $G \cdot \mathrm{id}_F = \mathrm{id}_{G \cdot F}$.
- (39) If G_1 is naturally transformable to G_2 , then $t \cdot id_B = t$.
- (40) If F_1 is naturally transformable to F_2 , then $id_B \cdot s = s$.

Let us consider A, B, C, F_1 , F_2 , G_1 , G_2 and let us consider s, t. The functor t s yields a natural transformation from $G_1 \cdot F_1$ to $G_2 \cdot F_2$ and is defined by:

(Def. 9) $t s = t \cdot F_2 \circ G_1 \cdot s$.

The following propositions are true:

- (41) If F_1 is naturally transformable to F_2 and G_1 is naturally transformable to G_2 , then $t s = G_2 \cdot s \circ t \cdot F_1$.
- (42) If F_1 is naturally transformable to F_2 , then $id_{id_B} s = s$.
- (43) If G_1 is naturally transformable to G_2 , then $t \operatorname{id}_{\operatorname{id}_R} = t$.
- (44) Suppose F_1 is naturally transformable to F_2 and G_1 is naturally transformable to G_2 and H_1 is naturally transformable to H_2 . Then u(ts) = (ut) s.
- (45) If G_1 is naturally transformable to G_2 , then $t \cdot F = t \operatorname{id}_F$.
- (46) If F_1 is naturally transformable to F_2 , then $G \cdot s = id_G s$.
- (47) Suppose that
- (i) F_1 is naturally transformable to F_2 ,
- (ii) F_2 is naturally transformable to F_3 ,
- (iii) G_1 is naturally transformable to G_2 , and
- (iv) G_2 is naturally transformable to G_3 .

Then $(t' \circ t) (s' \circ s) = t' s' \circ t s$.

- (48) Let *F* be a functor from *A* to *B*, *G* be a functor from *C* to *D*, and *I*, *J* be functors from *B* to *C*. If $I \cong J$, then $G \cdot I \cong G \cdot J$ and $I \cdot F \cong J \cdot F$.
- (49) Let *F* be a functor from *A* to *B*, *G* be a functor from *B* to *A*, and *I* be a functor from *A* to *A*. If $I \cong id_A$, then $F \cdot I \cong F$ and $I \cdot G \cong G$.

Let A, B be categories. We say that A is equivalent with B if and only if:

(Def. 10) There exists a functor F from A to B and there exists a functor G from B to A such that $G \cdot F \cong id_A$ and $F \cdot G \cong id_B$.

Let us notice that the predicate A is equivalent with B is reflexive and symmetric. We introduce A and B are equivalent as a synonym of A is equivalent with B.

Next we state two propositions:

- (50) If $A \cong B$, then A is equivalent with B.
- $(53)^3$ If A and B are equivalent and B and C are equivalent, then A and C are equivalent.

Let us consider A, B. Let us assume that A and B are equivalent. A functor from A to B is said to be an equivalence of A and B if:

(Def. 11) There exists a functor G from B to A such that $G \cdot it \cong id_A$ and $it \cdot G \cong id_B$.

Next we state several propositions:

- (54) id_A is an equivalence of A and A.
- (55) Suppose A and B are equivalent and B and C are equivalent. Let F be an equivalence of A and B and G be an equivalence of B and C. Then $G \cdot F$ is an equivalence of A and C.
- (56) Suppose *A* and *B* are equivalent. Let *F* be an equivalence of *A* and *B*. Then there exists an equivalence *G* of *B* and *A* such that $G \cdot F \cong id_A$ and $F \cdot G \cong id_B$.
- (57) For every functor *F* from *A* to *B* and for every functor *G* from *B* to *A* such that $G \cdot F \cong id_A$ holds *F* is faithful.
- (58) Suppose A and B are equivalent. Let F be an equivalence of A and B. Then
 - (i) *F* is full and faithful, and
- (ii) for every object b of B there exists an object a of A such that b and F(a) are isomorphic.

REFERENCES

- Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/funct_3.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [4] Czesław Byliński. Introduction to categories and functors. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/cat_1.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [6] Czesław Byliński. Subcategories and products of categories. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/cat_2.html.
- [7] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer Verlag, New York, Heidelberg, Berlin, 1971.
- [8] Zbigniew Semadeni and Antoni Wiweger. Wstęp do teorii kategorii i funktorów, volume 45 of Biblioteka Matematyczna. PWN, Warszawa, 1978.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [10] Andrzej Trybulec. Natural transformations. Discrete categories. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/V013/nattra_1.html.
- [11] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received November 22, 1991

Published January 2, 2004

³ The propositions (51) and (52) have been removed.