# Definition of Integrability for Partial Functions from $\mathbb{R}$ to $\mathbb{R}$ and Integrability for Continuous Functions

Noboru Endou Shinshu University Nagano Katsumi Wasaki Shinshu University Nagano

Yasunari Shidama Shinshu University Nagano

**Summary.** In this article, we defined the Riemann definite integral of partial function from  $\mathbb{R}$  to  $\mathbb{R}$ . Then we have proved the integrability for the continuous function and differentiable function. Moreover, we have proved an elementary theorem of calculus.

MML Identifier: INTEGRA5.

WWW: http://mizar.org/JFM/Vol12/integra5.html

The articles [19], [21], [1], [20], [9], [3], [22], [4], [18], [7], [2], [12], [13], [5], [11], [10], [17], [15], [6], [8], [16], and [14] provide the notation and terminology for this paper.

## 1. Some Useful Properties of Finite Sequence

For simplicity, we use the following convention: i denotes a natural number, a, b,  $r_1$ ,  $r_2$  denote real numbers, A denotes a closed-interval subset of  $\mathbb{R}$ , and X denotes a set.

One can prove the following three propositions:

- (1) Let F,  $F_1$ ,  $F_2$  be finite sequences of elements of  $\mathbb{R}$  and given  $r_1$ ,  $r_2$ . If  $F_1 = \langle r_1 \rangle \cap F$  or  $F_1 = F \cap \langle r_1 \rangle$  and if  $F_2 = \langle r_2 \rangle \cap F$  or  $F_2 = F \cap \langle r_2 \rangle$ , then  $\sum (F_1 F_2) = r_1 r_2$ .
- (2) Let  $F_1$ ,  $F_2$  be finite sequences of elements of  $\mathbb{R}$ . If  $\operatorname{len} F_1 = \operatorname{len} F_2$ , then  $\operatorname{len}(F_1 + F_2) = \operatorname{len} F_1$  and  $\operatorname{len}(F_1 F_2) = \operatorname{len} F_1$  and  $\sum (F_1 + F_2) = \sum F_1 + \sum F_2$  and  $\sum (F_1 F_2) = \sum F_1 \sum F_2$ .
- (3) Let  $F_1$ ,  $F_2$  be finite sequences of elements of  $\mathbb{R}$ . If len  $F_1 = \text{len } F_2$  and for every i such that  $i \in \text{dom } F_1 \text{ holds } F_1(i) \leq F_2(i)$ , then  $\sum F_1 \leq \sum F_2$ .

#### 2. Integrability for Partial Function of $\mathbb{R}$ , $\mathbb{R}$

Let C be a non empty subset of  $\mathbb{R}$  and let f be a partial function from  $\mathbb{R}$  to  $\mathbb{R}$ . The functor  $f \upharpoonright C$  yielding a partial function from C to  $\mathbb{R}$  is defined as follows:

(Def. 1) 
$$f \upharpoonright C = f \upharpoonright C$$
.

The following two propositions are true:

- (4) For all partial functions f, g from  $\mathbb{R}$  to  $\mathbb{R}$  and for every non empty subset C of  $\mathbb{R}$  holds  $(f \upharpoonright C) (g \upharpoonright C) = (f g) \upharpoonright C$ .
- (5) For all partial functions f, g from  $\mathbb{R}$  to  $\mathbb{R}$  and for every non empty subset C of  $\mathbb{R}$  holds  $(f+g) \upharpoonright C = f \upharpoonright C + g \upharpoonright C$ .

Let *A* be a closed-interval subset of  $\mathbb{R}$  and let *f* be a partial function from  $\mathbb{R}$  to  $\mathbb{R}$ . We say that *f* is integrable on *A* if and only if:

(Def. 2)  $f \upharpoonright A$  is integrable on A.

Let A be a closed-interval subset of  $\mathbb R$  and let f be a partial function from  $\mathbb R$  to  $\mathbb R$ . The functor  $\int f(x)dx$  yielding a real number is defined as follows:

(Def. 3) 
$$\int_{A} f(x)dx = \operatorname{integral} f \upharpoonright A.$$

Next we state four propositions:

- (6) For every partial function f from  $\mathbb{R}$  to  $\mathbb{R}$  such that  $A \subseteq \text{dom } f$  holds  $f \upharpoonright A$  is total.
- (7) For every partial function f from  $\mathbb{R}$  to  $\mathbb{R}$  such that f is upper bounded on A holds  $f \upharpoonright A$  is upper bounded on A.
- (8) For every partial function f from  $\mathbb{R}$  to  $\mathbb{R}$  such that f is lower bounded on A holds  $f \upharpoonright A$  is lower bounded on A.
- (9) For every partial function f from  $\mathbb{R}$  to  $\mathbb{R}$  such that f is bounded on A holds  $f \upharpoonright A$  is bounded on A.

## 3. Integrability for Continuous Function

The following propositions are true:

- (10) For every partial function f from  $\mathbb{R}$  to  $\mathbb{R}$  such that f is continuous on A holds f is bounded on A.
- (11) For every partial function f from  $\mathbb{R}$  to  $\mathbb{R}$  such that f is continuous on A holds f is integrable on A.
- (12) Let f be a partial function from  $\mathbb{R}$  to  $\mathbb{R}$  and D be an element of divs A. Suppose  $A\subseteq X$  and f is differentiable on X and  $f'_{\upharpoonright X}$  is bounded on A. Then lower\_sum $(f'_{\upharpoonright X}\upharpoonright A, D) \leq f(\sup A) f(\inf A)$  and  $f(\sup A) f(\inf A) \leq \operatorname{upper\_sum}(f'_{\upharpoonright X}\upharpoonright A, D)$ .
- (13) Let f be a partial function from  $\mathbb{R}$  to  $\mathbb{R}$ . Suppose  $A \subseteq X$  and f is differentiable on X and  $f'_{|X}$  is integrable on A and  $f'_{|X}$  is bounded on A. Then  $\int_A f'_{|X}(x)dx = f(\sup A) f(\inf A)$ .
- (14) For every partial function f from  $\mathbb{R}$  to  $\mathbb{R}$  such that f is non-decreasing on A and  $A \subseteq \text{dom } f$  holds  $\text{rng}(f \mid A)$  is bounded.
- (15) Let f be a partial function from  $\mathbb{R}$  to  $\mathbb{R}$ . If f is non-decreasing on A and  $A \subseteq \text{dom } f$ , then  $\inf \text{rng}(f \mid A) = f(\inf A)$  and  $\sup \text{rng}(f \mid A) = f(\sup A)$ .
- (16) For every partial function f from  $\mathbb{R}$  to  $\mathbb{R}$  such that f is monotone on A and  $A \subseteq \text{dom } f$  holds f is integrable on A.
- (17) Let f be a partial function from  $\mathbb{R}$  to  $\mathbb{R}$  and A, B be closed-interval subsets of  $\mathbb{R}$ . If f is continuous on A and  $B \subseteq A$ , then f is integrable on B.
- (18) Let f be a partial function from  $\mathbb{R}$  to  $\mathbb{R}$ , A, B, C be closed-interval subsets of  $\mathbb{R}$ , and given X. Suppose  $A \subseteq X$  and f is differentiable on X and  $f'_{|X}$  is continuous on A and  $\inf A = \inf B$  and  $\sup B = \inf C$  and  $\sup C = \sup A$ . Then  $B \subseteq A$  and  $C \subseteq A$  and  $\int_A f'_{|X}(x) dx = \int_B f'_{|X}(x) dx + \int_C f'_{|X}(x) dx$ .

Let a, b be real numbers. Let us assume that  $a \le b$ . The functor ['a,b'] yielding a closed-interval subset of  $\mathbb{R}$  is defined by:

(Def. 4) 
$$['a,b'] = [a,b].$$

Let a, b be real numbers and let f be a partial function from  $\mathbb{R}$  to  $\mathbb{R}$ . The functor  $\int_a^b f(x)dx$  yields a real number and is defined by:

(Def. 5) 
$$\int_{a}^{b} f(x)dx = \begin{cases} \int_{['a,b']} f(x)dx, & \text{if } a \leq b, \\ -\int_{['b,a']} f(x)dx, & \text{otherwise.} \end{cases}$$

The following three propositions are true:

- (19) Let f be a partial function from  $\mathbb{R}$  to  $\mathbb{R}$ , A be a closed-interval subset of  $\mathbb{R}$ , and given a, b. If A = [a,b], then  $\int_{\mathbb{R}} f(x)dx = \int_{\mathbb{R}} f(x)dx$ .
- (20) Let f be a partial function from  $\mathbb{R}$  to  $\mathbb{R}$ , A be a closed-interval subset of  $\mathbb{R}$ , and given a, b. If A = [b, a], then  $-\int_A f(x)dx = \int_a^b f(x)dx$ .
- (21) Let f, g be partial functions from  $\mathbb{R}$  to  $\mathbb{R}$  and X be an open subset of  $\mathbb{R}$ . Suppose that f is differentiable on X and g is differentiable on X and  $A \subseteq X$  and  $f'_{|X}$  is integrable on A and  $f'_{|X}$  is bounded on A and  $g'_{|X}$  is integrable on A and  $g'_{|X}$  is bounded on A. Then  $\int_A f'_{|X} g(x) dx = f(\sup A) \cdot g(\sup A) f(\inf A) \cdot g(\inf A) \int_A f g'_{|X}(x) dx.$

# REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq\_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct\_2.html.
- [4] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/partfunl.html.
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq\_2.html.
- [6] Czesław Byliński. The sum and product of finite sequences of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rvsum\_1.html.
- [7] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in £<sup>2</sup>. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/pscomp\_1.html.
- [8] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. *Journal of Formalized Mathematics*, 11, 1999. http://mizar.org/JFM/Voll1/integral.html.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real 1.html.
- [10] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/seq\_4.html.
- [11] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq\_2.html.
- [12] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seg\_1.html.

- [13] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct\_1.html.
- [14] Jaroslaw Kotowicz. Properties of real functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct\_ 2.html.
- [15] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp\_1.html.
- [16] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/fcont\_1.html.
- [17] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fdiff\_1.html.
- [18] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rcomp\_1.html.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [20] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html
- $[21] \ \ \textbf{Zinaida Trybulec. Properties of subsets. } \textbf{\textit{Journal of Formalized Mathematics}}, 1, 1989. \ \texttt{http://mizar.org/JFM/Voll/subset\_1.html}.$
- [22] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset\_1.html.

Received March 23, 2000

Published January 2, 2004