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Summary. In this article, we defined the Riemann definite integral of partial function
from R to R. Then we have proved the integrability for the continuous function and differen-
tiable function. Moreover, we have proved an elementary theorem of calculus.
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The articles [19], [21], [1], [20], [9], [3], [22], [4], [18], [7], [2], [12], [13], [5], [11], [10], [17],
[15], [6], [8], [16], and [14] provide the notation and terminology for this paper.

1. SOME USEFUL PROPERTIES OFFINITE SEQUENCE

For simplicity, we use the following convention:i denotes a natural number,a, b, r1, r2 denote real
numbers,A denotes a closed-interval subset ofR, andX denotes a set.

One can prove the following three propositions:

(1) Let F , F1, F2 be finite sequences of elements ofR and givenr1, r2. If F1 = 〈r1〉a F or
F1 = F a 〈r1〉 and ifF2 = 〈r2〉a F or F2 = F a 〈r2〉, then∑(F1−F2) = r1− r2.

(2) LetF1, F2 be finite sequences of elements ofR. If lenF1 = lenF2, then len(F1+F2) = lenF1

and len(F1−F2) = lenF1 and∑(F1 +F2) = ∑F1 +∑F2 and∑(F1−F2) = ∑F1−∑F2.

(3) Let F1, F2 be finite sequences of elements ofR. If lenF1 = lenF2 and for everyi such that
i ∈ domF1 holdsF1(i)≤ F2(i), then∑F1 ≤ ∑F2.

2. INTEGRABILITY FOR PARTIAL FUNCTION OF R, R

Let C be a non empty subset ofR and let f be a partial function fromR to R. The functor f � C
yielding a partial function fromC to R is defined as follows:

(Def. 1) f � C = f �C.

The following two propositions are true:

(4) For all partial functionsf , g from R to R and for every non empty subsetC of R holds
( f � C) (g � C) = ( f g) � C.

(5) For all partial functionsf , g from R to R and for every non empty subsetC of R holds
( f +g) � C = f � C+g � C.
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Let A be a closed-interval subset ofR and let f be a partial function fromR to R. We say thatf
is integrable onA if and only if:

(Def. 2) f � A is integrable onA.

Let A be a closed-interval subset ofR and let f be a partial function fromR to R. The functor∫
A

f (x)dx yielding a real number is defined as follows:

(Def. 3)
∫
A

f (x)dx= integralf � A.

Next we state four propositions:

(6) For every partial functionf from R to R such thatA⊆ dom f holds f � A is total.

(7) For every partial functionf from R to R such thatf is upper bounded onA holds f � A is
upper bounded onA.

(8) For every partial functionf from R to R such thatf is lower bounded onA holds f � A is
lower bounded onA.

(9) For every partial functionf from R to R such thatf is bounded onA holds f � A is bounded
onA.

3. INTEGRABILITY FOR CONTINUOUS FUNCTION

The following propositions are true:

(10) For every partial functionf from R to R such thatf is continuous onA holds f is bounded
onA.

(11) For every partial functionf from R to R such thatf is continuous onA holds f is integrable
onA.

(12) Let f be a partial function fromR to R andD be an element of divsA. SupposeA⊆ X and
f is differentiable onX and f ′�X is bounded onA. Then lowersum( f ′�X � A,D)≤ f (supA)−
f (inf A) and f (supA)− f (inf A)≤ uppersum( f ′�X � A,D).

(13) Let f be a partial function fromR to R. SupposeA⊆ X and f is differentiable onX and

f ′�X is integrable onA and f ′�X is bounded onA. Then
∫
A

f ′�X(x)dx= f (supA)− f (inf A).

(14) For every partial functionf from R to R such thatf is non-decreasing onA andA⊆ dom f
holds rng( f �A) is bounded.

(15) Let f be a partial function fromR to R. If f is non-decreasing onA andA⊆ dom f , then
inf rng( f �A) = f (inf A) and suprng( f �A) = f (supA).

(16) For every partial functionf from R to R such thatf is monotone onA andA⊆ dom f holds
f is integrable onA.

(17) Let f be a partial function fromR to R andA, B be closed-interval subsets ofR. If f is
continuous onA andB⊆ A, then f is integrable onB.

(18) Let f be a partial function fromR to R, A, B, C be closed-interval subsets ofR, and given
X. SupposeA⊆ X and f is differentiable onX and f ′�X is continuous onA and infA = inf B

and supB = infC and supC = supA. ThenB⊆ A andC⊆ A and
∫
A

f ′�X(x)dx=
∫
B

f ′�X(x)dx+∫
C

f ′�X(x)dx.
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Let a, b be real numbers. Let us assume thata≤ b. The functor[′a,b′] yielding a closed-interval
subset ofR is defined by:

(Def. 4) [′a,b′] = [a,b].

Let a, b be real numbers and letf be a partial function fromR to R. The functor

b∫
a

f (x)dx

yields a real number and is defined by:

(Def. 5)

b∫
a

f (x)dx=



∫
[′a,b′]

f (x)dx, if a≤ b,

−
∫

[′b,a′]

f (x)dx, otherwise.

The following three propositions are true:

(19) Let f be a partial function fromR to R, A be a closed-interval subset ofR, and givena, b.

If A = [a,b], then
∫
A

f (x)dx=
b∫

a

f (x)dx.

(20) Let f be a partial function fromR to R, A be a closed-interval subset ofR, and givena, b.

If A = [b,a], then−
∫
A

f (x)dx=
b∫

a

f (x)dx.

(21) Let f , g be partial functions fromR to R andX be an open subset ofR. Suppose that
f is differentiable onX and g is differentiable onX and A ⊆ X and f ′�X is integrable on
A and f ′�X is bounded onA and g′�X is integrable onA and g′�X is bounded onA. Then∫
A

f ′�X g(x)dx= f (supA) ·g(supA)− f (inf A) ·g(inf A)−
∫
A

f g′�X(x)dx.
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