Integrability of Bounded Total Functions

Noboru Endou Shinshu University Nagano Katsumi Wasaki Shinshu University Nagano

Yasunari Shidama Shinshu University Nagano

Summary. All these results have been obtained by Darboux's theorem in our previous article [10]. In addition, we have proved the first mean value theorem to Riemann integral.

MML Identifier: INTEGRA4.

WWW: http://mizar.org/JFM/Vol12/integra4.html

The articles [21], [24], [1], [22], [12], [3], [8], [25], [2], [15], [16], [6], [14], [13], [20], [19], [17], [23], [7], [9], [11], [18], [5], and [4] provide the notation and terminology for this paper.

1. BASIC INTEGRABLE FUNCTIONS AND FIRST MEAN VALUE THEOREM

For simplicity, we adopt the following convention: i, n denote natural numbers, a, r, x, y denote real numbers, A denotes a closed-interval subset of \mathbb{R} , C denotes a non empty set, and X denotes a set. We now state several propositions:

- (1) For every element *D* of divs *A* such that vol(A) = 0 holds len D = 1.
- (2) $\chi_{A,A}$ is integrable on A and integral $\chi_{A,A} = \text{vol}(A)$.
- (3) For every partial function f from A to \mathbb{R} and for every r holds f is total and rng $f = \{r\}$ iff $f = r \chi_{A,A}$.
- (4) For every function f from A into \mathbb{R} and for every r such that $\operatorname{rng} f = \{r\}$ holds f is integrable on A and integral $f = r \cdot \operatorname{vol}(A)$.
- (5) For every r there exists a function f from A into \mathbb{R} such that $\operatorname{rng} f = \{r\}$ and f is bounded on A.
- (6) Let f be a partial function from A to \mathbb{R} and D be an element of divs A. If vol(A) = 0, then f is integrable on A and integral f = 0.
- (7) Let f be a function from A into \mathbb{R} . Suppose f is bounded on A and f is integrable on A. Then there exists a such that $\inf \operatorname{rng} f \leq a$ and $a \leq \operatorname{suprng} f$ and $\inf \operatorname{integral} f = a \cdot \operatorname{vol}(A)$.

2. Integrability of Bounded Total Functions

One can prove the following propositions:

(8) Let f be a function from A into \mathbb{R} and T be a DivSequence of A. Suppose f is bounded on A and δ_T is convergent and $\lim(\delta_T) = 0$. Then $\operatorname{lower_sum}(f,T)$ is convergent and $\operatorname{limlower_sum}(f,T) = \operatorname{lower_integral} f$.

- (9) Let f be a function from A into \mathbb{R} and T be a DivSequence of A. Suppose f is bounded on A and δ_T is convergent and $\lim(\delta_T) = 0$. Then upper_sum(f,T) is convergent and $\lim \operatorname{upper_sum}(f,T) = \operatorname{upper_integral} f$.
- (10) Let f be a function from A into \mathbb{R} . Suppose f is bounded on A. Then f is upper integrable on A and f is lower integrable on A.

Let *A* be a closed-interval subset of \mathbb{R} , let I_1 be an element of divs *A*, and let us consider *n*. We say that I_1 divides into equal *n* if and only if:

(Def. 1) $\operatorname{len} I_1 = n$ and for every i such that $i \in \operatorname{dom} I_1$ holds $I_1(i) = \inf A + \frac{\operatorname{vol}(A)}{\operatorname{len} I_1} \cdot i$.

We now state a number of propositions:

- (11) There exists a DivSequence T of A such that δ_T is convergent and $\lim(\delta_T) = 0$.
- (12) Let f be a function from A into \mathbb{R} . Suppose f is bounded on A. Then f is integrable on A if and only if for every DivSequence T of A such that δ_T is convergent and $\lim(\delta_T) = 0$ holds $\lim \operatorname{upper_sum}(f,T) \lim \operatorname{lower_sum}(f,T) = 0$.
- (13) For every function f from C into \mathbb{R} holds $\max_+(f)$ is total and $\max_-(f)$ is total.
- (14) For every partial function f from C to \mathbb{R} such that f is upper bounded on X holds $\max_+(f)$ is upper bounded on X.
- (15) For every partial function f from C to \mathbb{R} holds $\max_+(f)$ is lower bounded on X.
- (16) For every partial function f from C to \mathbb{R} such that f is lower bounded on X holds $\max_{-}(f)$ is upper bounded on X.
- (17) For every partial function f from C to \mathbb{R} holds $\max_{-}(f)$ is lower bounded on X.
- (18) For every partial function f from A to \mathbb{R} such that f is upper bounded on A holds $\operatorname{rng}(f \upharpoonright X)$ is upper bounded.
- (19) For every partial function f from A to \mathbb{R} such that f is lower bounded on A holds $\operatorname{rng}(f \upharpoonright X)$ is lower bounded.
- (20) Let f be a function from A into \mathbb{R} . Suppose f is bounded on A and f is integrable on A. Then $\max_+(f)$ is integrable on A.
- (21) For every partial function f from C to \mathbb{R} holds $\max_{-}(f) = \max_{+}(-f)$.
- (22) Let f be a function from A into \mathbb{R} . Suppose f is bounded on A and f is integrable on A. Then $\max_{-}(f)$ is integrable on A.
- (23) Let f be a function from A into \mathbb{R} . Suppose f is bounded on A and f is integrable on A. Then |f| is integrable on A and $|\text{integral } f| \leq |\text{integral } |f|$.
- (24) For every function f from A into \mathbb{R} such that for all x, y such that $x \in A$ and $y \in A$ holds $|f(x) f(y)| \le a$ holds suprng $f \inf \operatorname{rng} f \le a$.
- (25) Let f, g be functions from A into \mathbb{R} . Suppose f is bounded on A and $a \ge 0$ and for all x, y such that $x \in A$ and $y \in A$ holds $|g(x) g(y)| \le a \cdot |f(x) f(y)|$. Then sup rng g inf rng $g \le a \cdot (\sup \operatorname{rng} f \inf \operatorname{rng} f)$.
- (26) Let f, g, h be functions from A into \mathbb{R} . Suppose that
 - (i) f is bounded on A,
- (ii) g is bounded on A,
- (iii) $a \ge 0$, and
- (iv) for all x, y such that $x \in A$ and $y \in A$ holds $|h(x) h(y)| \le a \cdot (|f(x) f(y)| + |g(x) g(y)|)$. Then suprng h – infrng $h \le a \cdot ((\operatorname{suprng} f - \operatorname{infrng} f) + (\operatorname{suprng} g - \operatorname{infrng} g))$.

- (27) Let f, g be functions from A into \mathbb{R} . Suppose that
 - f is bounded on A,
- (ii) f is integrable on A,
- (iii) g is bounded on A,
- (iv) a > 0, and
- (v) for all x, y such that $x \in A$ and $y \in A$ holds $|g(x) g(y)| \le a \cdot |f(x) f(y)|$. Then g is integrable on A.
- (28) Let f, g, h be functions from A into \mathbb{R} . Suppose that f is bounded on A and f is integrable on A and g is bounded on A and g is integrable on A and h is bounded on A and g and for all g, g such that $g \in A$ and $g \in A$ holds $|h(g) h(g)| \le a \cdot (|f(g) f(g)| + |g(g) g(g)|)$. Then g is integrable on g.
- (29) Let f, g be functions from A into \mathbb{R} . Suppose f is bounded on A and f is integrable on A and g is bounded on A and g is integrable on A. Then f g is integrable on A.
- (30) Let f be a function from A into \mathbb{R} . Suppose f is bounded on A and f is integrable on A and $0 \notin \operatorname{rng} f$ and $\frac{1}{f}$ is bounded on A. Then $\frac{1}{f}$ is integrable on A.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [5] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [7] Czesław Byliński. The sum and product of finite sequences of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rvsum_1.html.
- [8] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/pscomp_1.html.
- [9] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. *Journal of Formalized Mathematics*, 11, 1999. http://mizar.org/JFM/Voll1/integral.html.
- [10] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Darboux's theorem. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Voll1/integra3.html.
- [11] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Voll1/integra2.html.
- [12] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/real_1.html.
- [13] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/seq_4.html.
- [14] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_2.html.
- [15] Jaroslaw Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seq_1.html.
- [16] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_1.html.
- [17] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board part I. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/goboard1.html.

- [18] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vol5/rfunct_3.html.
- [19] Jan Popiotek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/absvalue.html.
- [20] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [21] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [22] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [23] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/square_1.html.
- [24] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [25] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.

Received February 1, 2000

Published January 2, 2004