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Summary. All these results have been obtained by Darboux’s theorem in our previous
article [10]. In addition, we have proved the first mean value theorem to Riemann integral.

MML Identifier: INTEGRAA4.

WWW: http://mizar.org/JFM/Voll2/integrad.html

The articles[[211],[[244],[11],[[22],[[12],[13],.18],[125],[12],[[15],.[16],.16],[114],[[13] . [20],[19] . [17],
[23], [7], [9], [21], [18], [5], and [4] provide the notation and terminology for this paper.

1. BASICINTEGRABLE FUNCTIONS AND FIRST MEAN VALUE THEOREM

For simplicity, we adopt the following convention:n denote natural numbera,r, x, y denote real
numbersA denotes a closed-interval subsefigfC denotes a non empty set, akdlenotes a set.
We now state several propositions:

(1) Forevery elemer of divsA such that vglA) = 0 holds lerD = 1.
(2) Xaa isintegrable orA and integraKa a = voI(A).

(3) For every partial functiorf from Ato R and for everyr holdsf is total and rndg = {r} iff
f=r XA,A~

(4) For every functionf from A into R and for everyr such that rng = {r} holds f is inte-
grable onA and integraf =r - vol(A).

(5) For every there exists a functiofi from Ainto R such that rnd = {r} andf is bounded
OnA.

(6) Letf be a partial function from\ to R andD be an element of div&. If vol (A) = 0, then
f is integrable orA and integraf = 0.

(7) Letf be a function fromA into R. Supposef is bounded orA and f is integrable orA.
Then there exista such that infrngd < aanda < suprngf and integraf = a- vol(A).

2. INTEGRABILITY OF BOUNDED TOTAL FUNCTIONS
One can prove the following propositions:

(8) Letf be a function fromA into R andT be a DivSequence d&. Supposef is bounded
on A and ot is convergent and lifdr) = 0. Then lowersum(f,T) is convergent and
limlower_sum(f, T) = lower.integralf.
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(9) Letf be a function fromA into R andT be a DivSequence &&. Supposef is bounded
on A and ot is convergent and lifdy) = 0. Then uppersum(f,T) is convergent and
limuppersum(f, T) = uppetintegralf.

(10) Letf be a function fromA into R. Supposef is bounded o\. Thenf is upper integrable
onAandf is lower integrable o

Let A be a closed-interval subsetBf let1; be an element of div&, and let us considar. We
say that; divides into equah if and only if:

(Def. 1) lenly = nand for everyi such thai € doml; holdsly(i) = inf A+ \fgm) .

We now state a number of propositions:
(11) There exists a DivSequen€eof A such thadr is convergent and lifdr) = 0.

(12) Letf be a function fromA into R. Supposef is bounded orA. Thenf is integrable orA
if and only if for every DivSequenc€ of A such thadr is convergent and lifdr ) = 0 holds
limuppersum(f,T) — limlower_sum(f,T) = 0.

(13) For every functiorf from C into R holds max (f) is total and max(f) is total.

(14) For every partial functior from C to R such thatf is upper bounded oX holds max (f)
is upper bounded oX.

(15) For every partial functior from C to R holds max_(f) is lower bounded oiX.

(16) For every partial functiori from C to R such thatf is lower bounded oX holds max (f)
is upper bounded oX.

(17) For every partial functio from C to R holds max (f) is lower bounded oiX.

(18) For every partial functior from Ato R such thatf is upper bounded oA holds rng f [ X)
is upper bounded.

(19) For every partial functiom from Ato R such thatf is lower bounded o holds rng f [ X)
is lower bounded.

(20) Letf be a function fromA into R. Supposef is bounded orA and f is integrable orA.
Then max (f) is integrable orA.

(21) For every partial functior from C to R holds max (f) = max; (—f).

(22) Letf be a function fromA into R. Supposef is bounded orA and f is integrable orA.
Then max (f) is integrable orA.

(23) Letf be a function fromA into R. Supposef is bounded orA and f is integrable orA.
Then|f| is integrable orA and|integralf| < integral f|.

(24) For every functiorf from A into R such that for alk, y such thatx € A andy € A holds
|f(x)— f(y)| <aholds suprng —infrngf < a.

(25) Letf, gbe functions fromA into R. Supposef is bounded o anda > 0 and for allx, y
such thax € A andy € A holds|g(x) — g(y)| < a-|f(x) — f(y)|. Then suprng —infrngg <
a- (suprngf —infrng f).
(26) Letf, g, hbe functions fromA into R. Suppose that
(i) fisbounded o,
(i) gis bounded o,
(i) a>0,and
(iv) forall x,ysuch thak e Aandy € Aholds|h(x) —h(y)| <a- (| f(x)— f(y)|+|9(x) —a(y)])-
Then suprngp —infrngh < a- ((suprngf —infrng f) + (suprngy — infrngg)).
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(27) Letf, g be functions fromA into R. Suppose that
(i) fisbounded o,
(i)  fisintegrable orA,
(i)  gis bounded o,
(v) a>0,and
(v) forallx, ysuch thak € Aandy € Aholds|g(x) —g(y)| <a-|f(x)— f(y)|.
Theng is integrable orA.
(28) Letf, g, hbe functions fromA into R. Suppose that is bounded o\ and f is integrable
on A andg is bounded o\ andg is integrable oA andh is bounded oA anda > 0 and for

all x, y such thak € Aandy € A holds|h(x) — h(y)| < a- (| f(x) — f(y)|+|9(X) —g(y)|). Then
his integrable orA.

(29) Letf, gbe functions fromA into R. Supposef is bounded oA and f is integrable orA
andg is bounded o andg is integrable orA. Thenf gis integrable orA.

(30) Letf be afunction fromAinto R. Supposd is bounded o andf is integrable orA and
0¢ rngf and$ is bounded or\. Then is integrable omA.
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