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Summary. All these results have been obtained by Darboux’s theorem in our previous
article [10]. In addition, we have proved the first mean value theorem to Riemann integral.
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The articles [21], [24], [1], [22], [12], [3], [8], [25], [2], [15], [16], [6], [14], [13], [20], [19], [17],
[23], [7], [9], [11], [18], [5], and [4] provide the notation and terminology for this paper.

1. BASIC INTEGRABLE FUNCTIONS AND FIRST MEAN VALUE THEOREM

For simplicity, we adopt the following convention:i, n denote natural numbers,a, r, x, y denote real
numbers,A denotes a closed-interval subset ofR, C denotes a non empty set, andX denotes a set.

We now state several propositions:

(1) For every elementD of divsA such that vol(A) = 0 holds lenD = 1.

(2) χA,A is integrable onA and integralχA,A = vol(A).

(3) For every partial functionf from A to R and for everyr holds f is total and rngf = {r} iff
f = r χA,A.

(4) For every functionf from A into R and for everyr such that rngf = {r} holds f is inte-
grable onA and integralf = r ·vol(A).

(5) For everyr there exists a functionf from A into R such that rngf = {r} and f is bounded
onA.

(6) Let f be a partial function fromA to R andD be an element of divsA. If vol(A) = 0, then
f is integrable onA and integralf = 0.

(7) Let f be a function fromA into R. Supposef is bounded onA and f is integrable onA.
Then there existsa such that inf rngf ≤ a anda≤ suprngf and integralf = a·vol(A).

2. INTEGRABILITY OF BOUNDED TOTAL FUNCTIONS

One can prove the following propositions:

(8) Let f be a function fromA into R andT be a DivSequence ofA. Supposef is bounded
on A and δT is convergent and lim(δT) = 0. Then lowersum( f ,T) is convergent and
limlower sum( f ,T) = lower integralf .
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(9) Let f be a function fromA into R andT be a DivSequence ofA. Supposef is bounded
on A and δT is convergent and lim(δT) = 0. Then uppersum( f ,T) is convergent and
limuppersum( f ,T) = upperintegralf .

(10) Let f be a function fromA into R. Supposef is bounded onA. Then f is upper integrable
onA and f is lower integrable onA.

Let A be a closed-interval subset ofR, let I1 be an element of divsA, and let us considern. We
say thatI1 divides into equaln if and only if:

(Def. 1) lenI1 = n and for everyi such thati ∈ domI1 holdsI1(i) = inf A+ vol(A)
lenI1

· i.

We now state a number of propositions:

(11) There exists a DivSequenceT of A such thatδT is convergent and lim(δT) = 0.

(12) Let f be a function fromA into R. Supposef is bounded onA. Then f is integrable onA
if and only if for every DivSequenceT of A such thatδT is convergent and lim(δT) = 0 holds
limuppersum( f ,T)− limlower sum( f ,T) = 0.

(13) For every functionf from C into R holds max+( f ) is total and max−( f ) is total.

(14) For every partial functionf fromC to R such thatf is upper bounded onX holds max+( f )
is upper bounded onX.

(15) For every partial functionf from C to R holds max+( f ) is lower bounded onX.

(16) For every partial functionf fromC to R such thatf is lower bounded onX holds max−( f )
is upper bounded onX.

(17) For every partial functionf from C to R holds max−( f ) is lower bounded onX.

(18) For every partial functionf from A to R such thatf is upper bounded onA holds rng( f �X)
is upper bounded.

(19) For every partial functionf from A to R such thatf is lower bounded onA holds rng( f �X)
is lower bounded.

(20) Let f be a function fromA into R. Supposef is bounded onA and f is integrable onA.
Then max+( f ) is integrable onA.

(21) For every partial functionf from C to R holds max−( f ) = max+(− f ).

(22) Let f be a function fromA into R. Supposef is bounded onA and f is integrable onA.
Then max−( f ) is integrable onA.

(23) Let f be a function fromA into R. Supposef is bounded onA and f is integrable onA.
Then| f | is integrable onA and|integralf | ≤ integral| f |.

(24) For every functionf from A into R such that for allx, y such thatx∈ A andy∈ A holds
| f (x)− f (y)| ≤ a holds suprngf − inf rng f ≤ a.

(25) Let f , g be functions fromA into R. Supposef is bounded onA anda≥ 0 and for allx, y
such thatx∈ A andy∈ A holds|g(x)−g(y)| ≤ a · | f (x)− f (y)|. Then suprngg− inf rngg≤
a· (suprngf − inf rng f ).

(26) Let f , g, h be functions fromA into R. Suppose that

(i) f is bounded onA,

(ii) g is bounded onA,

(iii) a≥ 0, and

(iv) for all x, y such thatx∈A andy∈A holds|h(x)−h(y)| ≤ a·(| f (x)− f (y)|+ |g(x)−g(y)|).
Then suprngh− inf rngh≤ a· ((suprngf − inf rng f )+(suprngg− inf rngg)).
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(27) Let f , g be functions fromA into R. Suppose that

(i) f is bounded onA,

(ii) f is integrable onA,

(iii) g is bounded onA,

(iv) a > 0, and

(v) for all x, y such thatx∈ A andy∈ A holds|g(x)−g(y)| ≤ a· | f (x)− f (y)|.
Theng is integrable onA.

(28) Let f , g, h be functions fromA into R. Suppose thatf is bounded onA and f is integrable
onA andg is bounded onA andg is integrable onA andh is bounded onA anda > 0 and for
all x, y such thatx∈ A andy∈ A holds|h(x)−h(y)| ≤ a· (| f (x)− f (y)|+ |g(x)−g(y)|). Then
h is integrable onA.

(29) Let f , g be functions fromA into R. Supposef is bounded onA and f is integrable onA
andg is bounded onA andg is integrable onA. Then f g is integrable onA.

(30) Let f be a function fromA into R. Supposef is bounded onA and f is integrable onA and
0 /∈ rng f and 1

f is bounded onA. Then 1
f is integrable onA.
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[23] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root.Journal of
Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/square_1.html.

[24] Zinaida Trybulec. Properties of subsets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html.

[25] Edmund Woronowicz. Relations defined on sets.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
relset_1.html.

Received February 1, 2000

Published January 2, 2004

http://mizar.org/JFM/Vol5/rfunct_3.html
http://mizar.org/JFM/Vol1/absvalue.html
http://mizar.org/JFM/Vol1/absvalue.html
http://mizar.org/JFM/Vol2/rcomp_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Vol1/square_1.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relset_1.html
http://mizar.org/JFM/Vol1/relset_1.html

	integrability of bounded total functions By noboru endou et al.

