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Summary. This article introduces the Riemann definite integral on the closed interval
of real. We present the definitions and related lemmas of the closed interval. We formalize
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1. DEFINITION OF CLOSED INTERVAL AND ITS PROPERTIES

For simplicity, we adopt the following rules:a, b denote real numbers,F , G, H denote finite
sequences of elements ofR, i, j, k denote natural numbers,X denotes a non empty set, andx1

denotes a set.
Let I1 be a subset ofR. We say thatI1 is closed-interval if and only if:

(Def. 1) There exist real numbersa, b such thata≤ b andI1 = [a,b].

Let us note that there exists a subset ofR which is closed-interval.
In the sequelA denotes a closed-interval subset ofR.
Next we state two propositions:

(1) A is compact.

(2) A is non empty.

One can verify that every subset ofR which is closed-interval is also non empty and compact.
Next we state the proposition

(3) A is lower bounded and upper bounded.

Let us observe that every subset ofR which is closed-interval is also bounded.
Let us note that there exists a subset ofR which is closed-interval.
In the sequelA denotes a closed-interval subset ofR.
The following propositions are true:

(4) There exista, b such thata≤ b anda = inf A andb = supA.
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(5) A = [inf A,supA].

(6) For all real numbersa1, a2, b1, b2 such thatA = [a1,b1] andA = [a2,b2] holdsa1 = a2 and
b1 = b2.

2. DEFINITION OF DIVISION OF CLOSED INTERVAL AND ITS PROPERTIES

Let A be a non empty compact subset ofR. A non empty increasing finite sequence of elements of
R is said to be a DivisionPoint ofA if:

(Def. 2) rng it⊆ A and it(len it) = supA.

Let A be a non empty compact subset ofR. The functor divsA is defined by:

(Def. 3) x1 ∈ divsA iff x1 is a DivisionPoint ofA.

Let A be a non empty compact subset ofR. One can verify that divsA is non empty.
Let A be a non empty compact subset ofR. A non empty set is called a Division ofA if:

(Def. 4) x1 ∈ it iff x1 is a DivisionPoint ofA.

Let A be a non empty compact subset ofR. Observe that there exists a Division ofA which is
non empty.

Let A be a non empty compact subset ofR and letSbe a non empty Division ofA. We see that
the element ofS is a DivisionPoint ofA.

In the sequelSdenotes a non empty Division ofA andD denotes an element ofS.
The following propositions are true:

(8)1 If i ∈ domD, thenD(i) ∈ A.

(9) If i ∈ domD andi 6= 1, theni−1∈ domD andD(i−1) ∈ A andi−1∈ N.

Let A be a closed-interval subset ofR, let Sbe a non empty Division ofA, let D be an element
of S, and leti be a natural number. Let us assume thati ∈ domD. The functor divset(D, i) yielding
a closed-interval subset ofR is defined as follows:

(Def. 5)(i) infdivset(D, i) = inf A and supdivset(D, i) = D(i) if i = 1,

(ii) infdivset(D, i) = D(i−1) and supdivset(D, i) = D(i), otherwise.

Next we state the proposition

(10) If i ∈ domD, then divset(D, i)⊆ A.

Let A be a subset ofR. The functor vol(A) yielding a real number is defined as follows:

(Def. 6) vol(A) = supA− inf A.

We now state the proposition

(11) For every bounded non empty subsetA of R holds 0≤ vol(A).

3. DEFINITIONS OF INTEGRABILITY AND RELATED TOPICS

Let A be a closed-interval subset ofR, let f be a partial function fromA to R, let Sbe a non empty
Division of A, and letD be an element ofS. The functor uppervolume( f ,D) yielding a finite
sequence of elements ofR is defined by:

(Def. 7) lenuppervolume( f ,D) = lenD and for every i such that i ∈ SeglenD holds
(uppervolume( f ,D))(i) = suprng( f �divset(D, i)) ·vol(divset(D, i)).

1 The proposition (7) has been removed.
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The functor lowervolume( f ,D) yielding a finite sequence of elements ofR is defined as follows:

(Def. 8) len lowervolume( f ,D) = lenD and for every i such that i ∈ SeglenD holds
(lower volume( f ,D))(i) = inf rng( f �divset(D, i)) ·vol(divset(D, i)).

Let A be a closed-interval subset ofR, let f be a partial function fromA to R, let S be a non
empty Division ofA, and letD be an element ofS. The functor uppersum( f ,D) yielding a real
number is defined by:

(Def. 9) uppersum( f ,D) = ∑uppervolume( f ,D).

The functor lowersum( f ,D) yielding a real number is defined as follows:

(Def. 10) lowersum( f ,D) = ∑ lower volume( f ,D).

Let A be a closed-interval subset ofR. Then divsA is a Division ofA.
Let A be a closed-interval subset ofR and let f be a partial function fromA to R. The functor

uppersumsetf yielding a partial function from divsA to R is defined by:

(Def. 11) domuppersumsetf = divsA and for every elementD of divsA such that D ∈
domuppersumsetf holds(uppersumsetf )(D) = uppersum( f ,D).

The functor lowersumsetf yields a partial function from divsA to R and is defined by:

(Def. 12) domlowersumsetf = divsA and for every elementD of divsA such that D ∈
domlowersumsetf holds(lower sumsetf )(D) = lower sum( f ,D).

Let A be a closed-interval subset ofR and let f be a partial function fromA to R. We say thatf
is upper integrable onA if and only if:

(Def. 13) rnguppersumsetf is lower bounded.

We say thatf is lower integrable onA if and only if:

(Def. 14) rng lowersumsetf is upper bounded.

Let A be a closed-interval subset ofR and let f be a partial function fromA to R. The functor
upperintegralf yielding a real number is defined by:

(Def. 15) upperintegralf = inf rnguppersumsetf .

Let A be a closed-interval subset ofR and let f be a partial function fromA to R. The functor
lower integralf yielding a real number is defined by:

(Def. 16) lowerintegralf = suprnglowersumsetf .

Let A be a closed-interval subset ofR and let f be a partial function fromA to R. We say thatf
is integrable onA if and only if:

(Def. 17) f is upper integrable onA and f is lower integrable onA and upperintegralf =
lower integralf .

Let A be a closed-interval subset ofR and let f be a partial function fromA to R. The functor
integralf yielding a real number is defined by:

(Def. 18) integralf = upperintegralf .
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4. REAL FUNCTION’ S PROPERTIES

One can prove the following propositions:

(12) For all partial functionsf , g from X to R holds rng( f +g)⊆ rng f + rngg.

(13) For every partial functionf from X to R such thatf is lower bounded onX holds rngf is
lower bounded.

(14) For every partial functionf from X to R such that rngf is lower bounded holdsf is lower
bounded onX.

(15) For every partial functionf from X to R such thatf is upper bounded onX holds rngf is
upper bounded.

(16) For every partial functionf from X to R such that rngf is upper bounded holdsf is upper
bounded onX.

(17) For every partial functionf fromX toR such thatf is bounded onX holds rngf is bounded.

5. CHARACTERISTIC FUNCTION’ S PROPERTIES

The following propositions are true:

(18) For every non empty setA holdsχA,A is a constant onA.

(19) For every non empty subsetA of X holds rng(χA,A) = {1}.

(20) For every non empty subsetA of X and for every setB such thatB meets dom(χA,A) holds
rng(χA,A�B) = {1}.

(21) If i ∈ SeglenD, then vol(divset(D, i)) = (lower volume(χA,A,D))(i).

(22) If i ∈ SeglenD, then vol(divset(D, i)) = (uppervolume(χA,A,D))(i).

(23) If lenF = lenGand lenF = lenH and for everyk such thatk∈ domF holdsH(k) = Fk+Gk,
then∑H = ∑F +∑G.

(24) If lenF = lenGand lenF = lenH and for everyk such thatk∈ domF holdsH(k) = Fk−Gk,
then∑H = ∑F−∑G.

(25) LetA be a closed-interval subset ofR, Sbe a non empty Division ofA, andD be an element
of S. Then∑ lower volume(χA,A,D) = vol(A).

(26) LetA be a closed-interval subset ofR, Sbe a non empty Division ofA, andD be an element
of S. Then∑uppervolume(χA,A,D) = vol(A).

6. SOME PROPERTIES OFDARBOUX SUM

Let A be a closed-interval subset ofR, let f be a partial function fromA to R, let Sbe a non empty
Division of A, and letD be an element ofS. Then uppervolume( f ,D) is a non empty finite sequence
of elements ofR.

Let A be a closed-interval subset ofR, let f be a partial function fromA to R, let S be a non
empty Division ofA, and letD be an element ofS. Then lowervolume( f ,D) is a non empty finite
sequence of elements ofR.

One can prove the following propositions:

(27) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, andD be an element ofS. If f is lower bounded onA, then inf rngf ·vol(A)≤
lower sum( f ,D).
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(28) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, D be an element ofS, andi be a natural number. Iff is upper bounded onA and
i ∈ SeglenD, then suprngf ·vol(divset(D, i))≥ suprng( f �divset(D, i)) ·vol(divset(D, i)).

(29) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, andD be an element ofS. If f is upper bounded onA, then uppersum( f ,D)≤
suprngf ·vol(A).

(30) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, andD be an element ofS. If f is bounded onA, then lowersum( f ,D) ≤
uppersum( f ,D).

Let x be a non empty finite sequence of elements ofR. Then rngx is a finite non empty subset
of R.

Let A be a closed-interval subset ofR and letD be an element of divsA. The functorδD yields
a real number and is defined as follows:

(Def. 19) δD = maxrnguppervolume(χA,A,D).

Let A be a closed-interval subset ofR, let S be a non empty Division ofA, and letD1, D2 be
elements ofS. The predicateD1 ≤ D2 is defined as follows:

(Def. 20) lenD1 ≤ lenD2 and rngD1 ⊆ rngD2.

We introduceD2 ≥ D1 as a synonym ofD1 ≤ D2.
Next we state several propositions:

(31) Let A be a closed-interval subset ofR, S be a non empty Division ofA, andD1, D2 be
elements ofS. If lenD1 = 1, thenD1 ≤ D2.

(32) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, andD1, D2 be elements ofS. If f is upper bounded onA and lenD1 = 1, then
uppersum( f ,D1)≥ uppersum( f ,D2).

(33) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, andD1, D2 be elements ofS. If f is lower bounded onA and lenD1 = 1, then
lower sum( f ,D1)≤ lower sum( f ,D2).

(34) Let A be a closed-interval subset ofR, S be a non empty Division ofA, andD be an
element ofS. Supposei ∈ domD. Then there exist closed-interval subsetsA1, A2 of R such
thatA1 = [inf A,D(i)] andA2 = [D(i),supA] andA = A1∪A2.

(35) Let A be a closed-interval subset ofR, S be a non empty Division ofA, andD1, D2 be
elements ofS. If i ∈ domD1, then if D1 ≤ D2, then there existsj such thatj ∈ domD2 and
D1(i) = D2( j).

Let A be a closed-interval subset ofR, letSbe a non empty Division ofA, letD1, D2 be elements
of S, and leti be a natural number. Let us assume thatD1≤D2. The functor indx(D2,D1, i) yielding
a natural number is defined as follows:

(Def. 21)(i) indx(D2,D1, i) ∈ domD2 andD1(i) = D2(indx(D2,D1, i)) if i ∈ domD1,

(ii) indx(D2,D1, i) = 0, otherwise.

We now state four propositions:

(36) Letp be an increasing finite sequence of elements ofR andn be a natural number. Suppose
n≤ lenp. Thenp�n is an increasing finite sequence of elements ofR.

(37) Let p be an increasing finite sequence of elements ofR andi, j be natural numbers. Sup-
pose j ∈ domp and i ≤ j. Then mid(p, i, j) is an increasing finite sequence of elements of
R.
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(38) Let A be a closed-interval subset ofR, S be a non empty Division ofA, D be an ele-
ment of S, and i, j be natural numbers. Supposei ∈ domD and j ∈ domD and i ≤ j.
Then there exists a closed-interval subsetB of R such that infB = (mid(D, i, j))(1) and
supB = (mid(D, i, j))(lenmid(D, i, j)) and lenmid(D, i, j) = ( j − i) + 1 and mid(D, i, j) is
a DivisionPoint ofB.

(39) LetA, B be closed-interval subsets ofR, Sbe a non empty Division ofA, S1 be a non empty
Division of B, D be an element ofS, and i, j be natural numbers. Supposei ∈ domD and
j ∈ domD andi ≤ j andD(i)≥ inf B andD( j) = supB. Then mid(D, i, j) is an element ofS1.

Let p be a finite sequence of elements ofR. The functor PartSumsp yielding a finite sequence
of elements ofR is defined by:

(Def. 22) lenPartSumsp = lenp and for everyi such thati ∈ Seglenp holds (PartSumsp)(i) =
∑(p�i).

We now state a number of propositions:

(40) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, andD1, D2 be elements ofS. SupposeD1 ≤ D2 and f is upper bounded on
A. Let i be a non empty natural number. Ifi ∈ domD1, then∑(uppervolume( f ,D1)�i) ≥
∑(uppervolume( f ,D2)� indx(D2,D1, i)).

(41) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, andD1, D2 be elements ofS. SupposeD1 ≤ D2 and f is lower bounded on
A. Let i be a non empty natural number. Ifi ∈ domD1, then∑(lower volume( f ,D1)�i) ≤
∑(lower volume( f ,D2)� indx(D2,D1, i)).

(42) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non
empty Division ofA, D1, D2 be elements ofS, and i be a natural number. IfD1 ≤ D2

and i ∈ domD1 and f is upper bounded onA, then (PartSumsuppervolume( f ,D1))(i) ≥
(PartSumsuppervolume( f ,D2))(indx(D2,D1, i)).

(43) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non
empty Division ofA, D1, D2 be elements ofS, and i be a natural number. IfD1 ≤ D2

and i ∈ domD1 and f is lower bounded onA, then (PartSumslowervolume( f ,D1))(i) ≤
(PartSumslowervolume( f ,D2))(indx(D2,D1, i)).

(44) LetA be a closed-interval subset ofR, f be a partial function fromA to R, Sbe a non empty
Division of A, andD be an element ofS. Then (PartSumsuppervolume( f ,D))(lenD) =
uppersum( f ,D).

(45) LetA be a closed-interval subset ofR, f be a partial function fromA to R, Sbe a non empty
Division of A, andD be an element ofS. Then (PartSumslowervolume( f ,D))(lenD) =
lower sum( f ,D).

(46) Let A be a closed-interval subset ofR, S be a non empty Division ofA, andD1, D2 be
elements ofS. If D1 ≤ D2, then indx(D2,D1, lenD1) = lenD2.

(47) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, andD1, D2 be elements ofS. If D1 ≤ D2 and f is upper bounded onA, then
uppersum( f ,D2)≤ uppersum( f ,D1).

(48) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, andD1, D2 be elements ofS. If D1 ≤ D2 and f is lower bounded onA, then
lower sum( f ,D2)≥ lower sum( f ,D1).

(49) Let A be a closed-interval subset ofR, S be a non empty Division ofA, andD1, D2 be
elements ofS. Then there exists an elementD of Ssuch thatD1 ≤ D andD2 ≤ D.

(50) Let A be a closed-interval subset ofR, f be a function fromA into R, S be a non empty
Division of A, andD1, D2 be elements ofS. If f is bounded onA, then lowersum( f ,D1) ≤
uppersum( f ,D2).
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7. ADDITIVITY OF INTEGRAL

Next we state several propositions:

(51) LetA be a closed-interval subset ofR and f be a function fromA into R. If f is bounded
onA, then upperintegralf ≥ lower integralf .

(52) For all subsetsX, Y of R holds−X +−Y =−(X +Y).

(53) For all subsetsX, Y of R such thatX is upper bounded andY is upper bounded holdsX +Y
is upper bounded.

(54) For all non empty subsetsX, Y of R such thatX is upper bounded andY is upper bounded
holds sup(X +Y) = supX +supY.

(55) LetA be a closed-interval subset ofR, f , g be functions fromA into R, Sbe a non empty
Division of A, andD be an element ofS. Supposei ∈ SeglenD and f is upper bounded onA
andg is upper bounded onA. Then(uppervolume( f +g,D))(i)≤ (uppervolume( f ,D))(i)+
(uppervolume(g,D))(i).

(56) LetA be a closed-interval subset ofR, f , g be functions fromA into R, Sbe a non empty
Division of A, andD be an element ofS. Supposei ∈ SeglenD and f is lower bounded on
A andg is lower bounded onA. Then(lower volume( f ,D))(i)+(lower volume(g,D))(i)≤
(lower volume( f +g,D))(i).

(57) LetA be a closed-interval subset ofR, f , g be functions fromA into R, Sbe a non empty
Division of A, andD be an element ofS. Supposef is upper bounded onA andg is upper
bounded onA. Then uppersum( f +g,D)≤ uppersum( f ,D)+uppersum(g,D).

(58) LetA be a closed-interval subset ofR, f , g be functions fromA into R, Sbe a non empty
Division of A, andD be an element ofS. Supposef is lower bounded onA andg is lower
bounded onA. Then lowersum( f ,D)+ lower sum(g,D)≤ lower sum( f +g,D).

(59) LetA be a closed-interval subset ofR and f , g be functions fromA into R. Supposef is
bounded onA andg is bounded onA and f is integrable onA andg is integrable onA. Then
f +g is integrable onA and integralf +g = integralf + integralg.
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[4] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.
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[7] Czesław Bylínski. Some basic properties of sets.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
zfmisc_1.html.
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