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Summary. In this article we introduce the ring of Integers, Euclidean rings and Inte-
gers modulop. In particular we prove that the Ring of Integers is an Euclidean ring and that
the Integers modulop constitutes a field if and only ifp is a prime.
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The articles [15], [20], [2], [16], [18], [21], [5], [6], [13], [10], [12], [4], [9], [8], [14], [17], [3], [7],
[11], [1], and [19] provide the notation and terminology for this paper.

1. THE RING OF INTEGERS

The binary operation multint onZ is defined by:

(Def. 1) For all elementsa, b of Z holds(multint)(a, b) = ·R(a, b).

The unary operation compint onZ is defined by:

(Def. 2) For every elementa of Z holds(compint)(a) =−R(a).

The double loop structure INT.Ring is defined as follows:

(Def. 3) INT.Ring= 〈Z,+Z,multint,1(∈ Z),0(∈ Z)〉.

One can check that INT.Ring is strict and non empty.
One can check that INT.Ring is Abelian, add-associative, right zeroed, right complementable,

well unital, distributive, commutative, associative, integral domain-like, and non degenerated.
Let a, b be elements of INT.Ring. The predicatea≤ b is defined by:

(Def. 4) There exist integersa′, b′ such thata′ = a andb′ = b anda′ ≤ b′.

Let us notice that the predicatea≤ b is reflexive and connected. We introduceb≥ a as a synonym
of a≤ b. We introduceb < a anda > b as antonyms ofa≤ b.

Let a be an element of INT.Ring. The functor|a| yields an element of INT.Ring and is defined
by:

(Def. 5) |a|=
{

a, if a≥ 0INT.Ring,
−a, otherwise.

The function absint from the carrier of INT.Ring intoN is defined by:

(Def. 6) For every elementa of INT.Ring holds(absint)(a) = |�|R(a).
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Next we state two propositions:

(1) For every elementa of INT.Ring holds(absint)(a) = |a|.

(2) Let a, b, q1, q2, r1, r2 be elements of INT.Ring. Supposeb 6= 0INT.Ring anda = q1 ·b+ r1

and 0INT.Ring≤ r1 andr1 < |b| anda= q2 ·b+ r2 and 0INT.Ring≤ r2 andr2 < |b|. Thenq1 = q2

andr1 = r2.

Let a, b be elements of INT.Ring. Let us assume thatb 6= 0INT.Ring. The functora÷b yields an
element of INT.Ring and is defined by:

(Def. 7) There exists an elementr of INT.Ring such thata = (a÷b) ·b+ r and 0INT.Ring ≤ r and
r < |b|.

Let a, b be elements of INT.Ring. Let us assume thatb 6= 0INT.Ring. The functoramodb yielding
an element of INT.Ring is defined by:

(Def. 8) There exists an elementqof INT.Ring such thata= q·b+(amodb) and 0INT.Ring≤ amodb
andamodb < |b|.

We now state the proposition

(3) For all elementsa, b of INT.Ring such thatb 6= 0INT.Ring holdsa = (a÷b) ·b+(amodb).

2. EUCLIDEAN RINGS

Let I be a non empty double loop structure. We say thatI is Euclidian if and only if the condition
(Def. 9) is satisfied.

(Def. 9) There exists a functionf from the carrier ofI into N such that for all elementsa, b of I if
b 6= 0I , then there exist elementsq, r of I such thata = q·b+ r but r = 0I or f (r) < f (b).

One can verify that INT.Ring is Euclidian.
One can check that there exists a ring which is strict, Euclidian, integral domain-like, non de-

generated, well unital, distributive, and commutative.
An EuclidianRing is an Euclidian integral domain-like non degenerated well unital distributive

commutative ring.
Let us note that there exists an EuclidianRing which is strict.
Let E be an Euclidian non empty double loop structure. A function from the carrier ofE into N

is said to be a DegreeFunction ofE if:

(Def. 10) For all elementsa, b of E such thatb 6= 0E there exist elementsq, r of E such thata =
q·b+ r but r = 0E or it(r) < it(b).

Next we state the proposition

(4) Every EuclidianRing is a gcdDomain.

One can verify that every integral domain-like non degenerated Abelian add-associative right ze-
roed right complementable associative commutative right unital right distributive non empty double
loop structure which is Euclidian is also gcd-like.

absint is a DegreeFunction of INT.Ring.
One can prove the following proposition

(5) Every commutative associative left unital field-like right zeroed non empty double loop
structure is Euclidian.

Let us note that every non empty double loop structure which is commutative, associative, left
unital, field-like, right zeroed, and field-like is also Euclidian.

One can prove the following proposition

(6) LetF be a commutative associative left unital field-like right zeroed non empty double loop
structure. Then every function from the carrier ofF into N is a DegreeFunction ofF .



THE RING OF INTEGERS, EUCLIDEAN RINGS AND . . . 3

3. SOME THEOREMS ABOUTDIV AND MOD

Next we state several propositions:

(8)1 For every natural numbern such thatn > 0 and for all integersa, k holds(a+n ·k)÷n =
(a÷n)+k and(a+n·k)modn = amodn.

(9) For every natural numbern such thatn > 0 and for every integera holdsamodn≥ 0 and
amodn < n.

(10) Letn be a natural number. Supposen > 0. Let a be an integer. Then

(i) if 0 ≤ a anda < n, thenamodn = a, and

(ii) if 0 > a anda≥−n, thenamodn = n+a.

(11) For every natural numbern such thatn > 0 and for every integera holdsamodn = 0 iff
n | a.

(12) For every natural numbern such thatn> 0 and for all integersa, b holdsamodn= bmodn
iff a≡ b(modn).

(13) For every natural numbern such thatn > 0 and for every integera holdsamodnmodn =
amodn.

(14) For every natural numbern such thatn > 0 and for all integersa, b holds(a+b)modn =
((amodn)+(bmodn))modn.

(15) For every natural numbern such thatn > 0 and for all integersa, b holdsa · bmodn =
(amodn) · (bmodn)modn.

(16) For all integersa, b there exist integerss, t such thatagcdb = s·a+ t ·b.

4. MODULO INTEGERS

Let n be a natural number. Let us assume thatn > 0. The functor multintn yields a binary operation
onZn and is defined as follows:

(Def. 11) For all elementsk, l of Zn holds(multintn)(k, l) = k · l modn.

Let n be a natural number. Let us assume thatn > 0. The functor compintn yields a unary
operation onZn and is defined as follows:

(Def. 12) For every elementk of Zn holds(compintn)(k) = (n−k)modn.

The following three propositions are true:

(17) Letn be a natural number. Supposen > 0. Let a, b be elements ofZn. Then

(i) a+b < n iff +n(a, b) = a+b, and

(ii) a+b≥ n iff +n(a, b) = (a+b)−n.

(18) Letn be a natural number. Supposen > 0. Let a, b be elements ofZn andk be a natural
number. Thenk ·n≤ a·b anda·b < (k+1) ·n if and only if (multintn)(a, b) = a·b−k ·n.

(19) Letn be a natural number. Supposen > 0. Let a be an element ofZn. Then

(i) a = 0 iff (compintn)(a) = 0, and

(ii) a 6= 0 iff (compintn)(a) = n−a.

Let n be a natural number. The functor INT.Ringn yielding a double loop structure is defined
by:

1 The proposition (7) has been removed.
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(Def. 13) INT.Ringn = 〈Zn,+n,multintn,1(∈ Zn),0(∈ Zn)〉.

Let n be a natural number. One can check that INT.Ringn is strict and non empty.
Next we state the proposition

(20) INT.Ring1 is degenerated and INT.Ring1 is a ring and INT.Ring1 is field-like, well unital,
distributive, and commutative.

One can verify that there exists a ring which is strict, degenerated, well unital, distributive,
field-like, and commutative.

Next we state two propositions:

(21) Let n be a natural number. Supposen > 1. Then INT.Ringn is non degenerated and
INT.Ringn is a well unital distributive commutative ring.

(22) Let p be a natural number. Supposep > 1. Then INT.Ringp is an add-associative right
zeroed right complementable Abelian commutative associative left unital distributive field-
like non degenerated non empty double loop structure if and only ifp is a prime number.

Let p be a prime number. Note that INT.Ringp is add-associative, right zeroed, right comple-
mentable, Abelian, commutative, associative, left unital, distributive, field-like, and non degener-
ated.
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