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Summary. In this article we introduce the ring of Integers, Euclidean rings and Inte-
gers modulop. In particular we prove that the Ring of Integers is an Euclidean ring and that
the Integers modulp constitutes a field if and only i is a prime.
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The articles[[15],[[20],[12],[[16],118] [[21],15] /6], [13]/[10], [12] [ [4] . [9], [8] [114], [17] [I3],17],
[11], [1]], and [19] provide the notation and terminology for this paper.

1. THE RING OF INTEGERS

The binary operation multint o# is defined by:
(Def. 1) For all elements, b of Z holds(multint)(a, b) = -g(a, b).
The unary operation compint dhis defined by:
(Def. 2) For every elemerat of Z holds(compind(a) = —r(a).
The double loop structure INRing is defined as follows:
(Def. 3) INT.Ring= (Z,+z,multint, 1(€ Z),0(c Z)).

One can check that INRing is strict and non empty.

One can check that INRing is Abelian, add-associative, right zeroed, right complementable,
well unital, distributive, commutative, associative, integral domain-like, and non degenerated.

Leta, b be elements of INTRing. The predicata < b is defined by:

(Def. 4) There exist integew®, b’ such thal =aandb =banda <b'.

Let us notice that the predicage< b is reflexive and connected. We introduze a as a synonym
of a< b. We introduceb < aanda > b as antonyms cd < b.
Let abe an element of IN'Ring. The functota| yields an element of IN'Ring and is defined

by:

a, if a> OINT Ring,
—a, otherwise.

(Def.5) |a = {

The function absint from the carrier of INRing intoN is defined by:

(Def. 6) For every elemeratof INT.Ring holds(absiny(a) = |0z (a).
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Next we state two propositions:

(1) For every elemerd of INT.Ring holds(absiny(a) = |a|.

(2) Leta, b, qi, ap, r1, r2 be elements of INRing. Suppos® # OinT Ring anda =gz -b+r1
and QnT.ring < r1 andry < |bj anda=qz-b+rz and Qnr.ring < r2 andrz < |b|. Thengy = g
andr; =ro.

Let a, b be elements of INTRing. Let us assume thbt# Ot Rring. The functora=-b yields an
element of INTRing and is defined by:
(Def. 7) There exists an elemenof INT.Ring such thaa = (a+b)-b+r and Qut.ring < r and
r <|bl.
Leta, b be elements of INTRing. Let us assume that# Ot Rring.- The functoramodb yielding
an element of INTRing is defined by:
(Def. 8) There exists an elemanof INT .Ring such thai= g- b+ (amodb) and QnT ring < amodb
andamodb < |b|.

We now state the proposition
(3) Forall elements, b of INT.Ring such thab # Ot ring holdsa = (a+b) - b+ (amodb).

2. BucCLIDEAN RINGS

Let| be a non empty double loop structure. We say thatEuclidian if and only if the condition
(Def. 9) is satisfied.

(Def. 9) There exists a functioh from the carrier of into N such that for all elements, b of | if
b # 0, then there exist elemengsr of | such tha=q-b+r butr =0, or f(r) < f(b).

One can verify that INTRing is Euclidian.
One can check that there exists a ring which is strict, Euclidian, integral domain-like, non de-

generated, well unital, distributive, and commutative.
An EuclidianRing is an Euclidian integral domain-like non degenerated well unital distributive

commutative ring.
Let us note that there exists an EuclidianRing which is strict.
Let E be an Euclidian non empty double loop structure. A function from the carri€riofo N

is said to be a DegreeFunctionBfif:
(Def. 10) For all elements, b of E such thatb # Og there exist elements, r of E such thata =
g-b+r butr =0 orit(r) < it(b).
Next we state the proposition

(4) Every EuclidianRing is a gcdDomain.

One can verify that every integral domain-like non degenerated Abelian add-associative right ze-
roed right complementable associative commutative right unital right distributive non empty double
loop structure which is Euclidian is also gcd-like.

absint is a DegreeFunction of INRing.

One can prove the following proposition

(5) Every commutative associative left unital field-like right zeroed non empty double loop

structure is Euclidian.
Let us note that every non empty double loop structure which is commutative, associative, left
unital, field-like, right zeroed, and field-like is also Euclidian.
One can prove the following proposition

(6) LetF be acommutative associative left unital field-like right zeroed non empty double loop
structure. Then every function from the carriefrointo N is a DegreeFunction df.
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3. SOME THEOREMS ABOUTDIV AND MOD
Next we state several propositions:

(8H For every natural numbersuch than > 0 and for all integers, k holds(a+n-k) +~n=
(a+n)+kand(a+n-k)modn=amodn.

(9) For every natural numbersuch thain > 0 and for every integea holdsamodn > 0 and
amodn < n.

(10) Letn be a natural number. Suppase- 0. Let a be an integer. Then
(i) if0 <aanda< n,thenamodn=a, and
(i) if0 >aanda> —n,thenamodn=n+a.

(11) For every natural numbersuch thatn > 0 and for every integea holdsamodn = O iff
nja

(12) For every natural numbarsuch thah > 0 and for all integers, b holdsamodn = bmodn
iff a= b(modn).

(13) For every natural numbersuch than > 0 and for every integes holdsamodnmodn =
amodn.

(14) For every natural numbersuch thah > 0 and for all integers, b holds(a+ b) modn =
((amodn) + (bmodn)) modn.

(15) For every natural numbersuch thatn > 0 and for all integers, b holdsa-bmodn =
(amodn) - (bmodn) modn.

(16) For all integers, b there exist integers t such thaagcdb=s-a-+t-b.

4, MODULO INTEGERS

Letn be a natural number. Let us assume that0. The functor multinh yields a binary operation
onZn and is defined as follows:

(Def. 11) For all elementk, | of Zy holds(multintn)(k, ) = k-1 modn.

Let n be a natural number. Let us assume that 0. The functor compint yields a unary
operation or¥Z, and is defined as follows:

(Def. 12) For every elememtof Z, holds(compintn)(k) = (n— k) modn.
The following three propositions are true:
(17) Letnbe a natural number. Suppase- 0. Let a, b be elements af,. Then

(i) a+b<niff +4(a, b)=a+b,and
(i) a+b>niff +4(a,b)=(a+b)—n.

(18) Letn be a natural number. Suppose- 0. Let a, b be elements of,, andk be a natural
number. Therk-n <a-banda-b < (k+1)-nifand only if (multintn)(a, b) =a-b—k-n.
(19) Letnbe a natural number. Suppase- 0. Let a be an element df,,. Then
() a=0iff (compintn)(a) =0, and
(i) a#£OQiff (compinn)(a)=n—a.
Let n be a natural number. The functor INRingn yielding a double loop structure is defined
by:

1 The proposition (7) has been removed.
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(Def. 13) INT.Ringn = (Zn, +n, multintn, 1(€ Zy),0(€ Zn)).

Let n be a natural number. One can check that IRifign is strict and non empty.
Next we state the proposition

(20) INT.Ring1is degenerated and INJing 1 is aring and INTRing 1 is field-like, well unital,

distributive, and commutative.

One can verify that there exists a ring which is strict, degenerated, well unital, distributive,

field-like, and commutative.

Next we state two propositions:

(21) Letn be a natural number. Suppose> 1. Then INT.Ringn is non degenerated and

INT.Ringn is a well unital distributive commutative ring.

(22) Letp be a natural number. Suppope> 1. Then INT.Ringp is an add-associative right

zeroed right complementable Abelian commutative associative left unital distributive field-
like non degenerated non empty double loop structure if and omlysifa prime number.

Let p be a prime number. Note that INRingp is add-associative, right zeroed, right comple-

mentable, Abelian, commutative, associative, left unital, distributive, field-like, and non degener-
ated.
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