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Summary. The concept of indexing of a category (a part of indexed category, see
[14]) is introduced as a pair formed by a many sorted category and a many sorted functor. The
indexing of a categoryC against to [14] is not a functor but it can be treated as a functor from
C into some categorial category (see [1]). The goal of the article is to work out the notation
necessary to define institutions (see [11]).
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The articles [15], [8], [20], [16], [21], [4], [5], [7], [18], [17], [19], [12], [3], [6], [9], [10], [2], [13],
and [1] provide the notation and terminology for this paper.

1. CATEGORY-YIELDING FUNCTIONS

Let A be a non empty set. One can verify that there exists a many sorted set indexed byA which is
non empty yielding.

Let A be a non empty set. One can verify that every many sorted set indexed byA which is
non-empty is also non empty yielding.

Let C be a categorial category and letf be a morphism ofC. Then f2 is a functor fromf1,1 to
f1,2.

One can prove the following propositions:

(1) For every categorial categoryC and for all morphismsf , g of C such that domg = cod f
holdsg· f = 〈〈〈〈dom f , codg〉〉, g2 · f2〉〉.

(2) LetC be a category,D, E be categorial categories,F be a functor fromC to D, andG be a
functor fromC to E. If F = G, then ObjF = ObjG.

Let I1 be a function. We say thatI1 is category-yielding if and only if:

(Def. 1) For every setx such thatx∈ domI1 holdsI1(x) is a category.

Let us note that there exists a function which is category-yielding.
Let X be a set. One can verify that there exists a many sorted set indexed byX which is category-

yielding.
Let A be a set. A many sorted category indexed byA is a category-yielding many sorted set

indexed byA.
LetC be a category. A many sorted set indexed byC is a many sorted set indexed by the objects

of C. A many sorted category indexed byC is a many sorted category indexed by the objects ofC.
Let X be a set and letx be a category. Observe thatX 7−→ x is category-yielding.
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Let X be a non empty set. Note that every many sorted set indexed byX is non empty.
Let f be a category-yielding function. Observe that rngf is categorial.
Let X be a non empty set, letf be a many sorted category indexed byX, and letx be an element

of X. Then f (x) is a category.
Let f be a function and letg be a category-yielding function. One can verify thatg· f is category-

yielding.
Let F be a category-yielding function. The functor Objs(F) yielding a non-empty function is

defined by the conditions (Def. 2).

(Def. 2)(i) domObjs(F) = domF, and

(ii) for every setx such thatx ∈ domF and for every categoryC such thatC = F(x) holds
(Objs(F))(x) = the objects ofC.

The functor Mphs(F) yields a non-empty function and is defined by the conditions (Def. 3).

(Def. 3)(i) domMphs(F) = domF, and

(ii) for every setx such thatx ∈ domF and for every categoryC such thatC = F(x) holds
(Mphs(F))(x) = the morphisms ofC.

Let A be a non empty set and letF be a many sorted category indexed byA. Then Objs(F) is a
non-empty many sorted set indexed byA. Then Mphs(F) is a non-empty many sorted set indexed
by A.

Next we state the proposition

(3) For every setX and for every categoryC holds Objs(X 7−→C) = X 7−→ the objects ofC
and Mphs(X 7−→C) = X 7−→ the morphisms ofC.

2. PAIRS OF MANY SORTED SETS

Let A, B be sets. Pair of many sorted sets indexed byA andB is defined by:

(Def. 4) There exists a many sorted setf indexed byA and there exists a many sorted setg indexed
by B such that it= 〈〈 f , g〉〉.

Let A, B be sets, letf be a many sorted set indexed byA, and letg be a many sorted set indexed
by B. Then〈〈 f , g〉〉 is a pair of many sorted sets indexed byA andB.

Let A, B be sets and letX be a pair of many sorted sets indexed byA andB. ThenX1 is a many
sorted set indexed byA. ThenX2 is a many sorted set indexed byB.

Let A, B be sets and letI1 be a pair of many sorted sets indexed byA andB. We say thatI1 is
category-yielding on first if and only if:

(Def. 5) (I1)1 is category-yielding.

We say thatI1 is function-yielding on second if and only if:

(Def. 6) (I1)2 is function yielding.

Let A, B be sets. Note that there exists a pair of many sorted sets indexed byA andB which is
category-yielding on first and function-yielding on second.

Let A, B be sets and letX be a category-yielding on first pair of many sorted sets indexed byA
andB. ThenX1 is a many sorted category indexed byA.

Let A, B be sets and letX be a function-yielding on second pair of many sorted sets indexed by
A andB. ThenX2 is a many sorted function indexed byB.

Let f be a function yielding function. One can verify that rngf is functional.
Let A, B be sets, letf be a many sorted category indexed byA, and letg be a many sorted

function indexed byB. Then〈〈 f , g〉〉 is a category-yielding on first function-yielding on second pair
of many sorted sets indexed byA andB.

Let A be a non empty set and letF , G be many sorted categories indexed byA. A many sorted
function indexed byA is said to be a many sorted functor fromF to G if:
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(Def. 7) For every elementa of A holds it(a) is a functor fromF(a) to G(a).

The schemeLambdaMSFrdeals with a non empty setA , many sorted categoriesB, C indexed
by A , and a unary functorF yielding a set, and states that:

There exists a many sorted functorF from B to C such that for every elementa of
A holdsF(a) = F (a)

provided the parameters meet the following condition:
• For every elementa of A holdsF (a) is a functor fromB(a) to C (a).

Let A be a non empty set, letF , G be many sorted categories indexed byA, let f be a many
sorted functor fromF to G, and leta be an element ofA. Then f (a) is a functor fromF(a) to G(a).

3. INDEXING

Let A, B be non empty sets and letF , G be functions fromB into A. A category-yielding on first
pair of many sorted sets indexed byA andB is said to be an indexing ofF andG if:

(Def. 8) it2 is a many sorted functor from it1 ·F to it1 ·G.

The following two propositions are true:

(4) Let A, B be non empty sets,F , G be functions fromB into A, I be an indexing ofF andG,
andmbe an element ofB. ThenI2(m) is a functor fromI1(F(m)) to I1(G(m)).

(5) LetC be a category,I be an indexing of the dom-map ofC and the cod-map ofC, andmbe
a morphism ofC. ThenI2(m) is a functor fromI1(domm) to I1(codm).

Let A, B be non empty sets, letF , G be functions fromB into A, and letI be an indexing ofF
andG. ThenI2 is a many sorted functor fromI1 ·F to I1 ·G.

Let A, B be non empty sets, letF , G be functions fromB into A, and letI be an indexing ofF
andG. A categorial category is said to be a target category ofI if it satisfies the conditions (Def. 9).

(Def. 9)(i) For every elementa of A holdsI1(a) is an object of it, and

(ii) for every elementb of B holds〈〈〈〈I1(F(b)), I1(G(b))〉〉, I2(b)〉〉 is a morphism of it.

Let A, B be non empty sets, letF , G be functions fromB into A, and letI be an indexing ofF
andG. Note that there exists a target category ofI which is full and strict.

Let A, B be non empty sets, letF , G be functions fromB into A, let c be a partial function from
[:B, B:] to B, and leti be a function fromA into B. Let us assume that there exists a categoryC such
thatC = 〈A,B,F,G,c, i〉. An indexing ofF andG is said to be an indexing ofF , G, c and i if it
satisfies the conditions (Def. 10).

(Def. 10)(i) For every elementa of A holds it2(i(a)) = idit1(a), and

(ii) for all elementsm1, m2 of B such thatF(m2) = G(m1) holds it2(c(〈〈m2, m1〉〉)) = it2(m2) ·
it2(m1).

Let C be a category. An indexing ofC is an indexing of the dom-map ofC, the cod-map ofC,
the composition ofC and the id-map ofC. A coindexing ofC is an indexing of the cod-map ofC,
the dom-map ofC, x(the composition ofC) and the id-map ofC.

One can prove the following propositions:

(6) LetC be a category andI be an indexing of the dom-map ofC and the cod-map ofC. Then
I is an indexing ofC if and only if the following conditions are satisfied:

(i) for every objecta of C holdsI2(ida) = idI1(a), and

(ii) for all morphismsm1, m2 of C such that domm2 = codm1 holds I2(m2 ·m1) = I2(m2) ·
I2(m1).
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(7) LetC be a category andI be an indexing of the cod-map ofC and the dom-map ofC. Then
I is a coindexing ofC if and only if the following conditions are satisfied:

(i) for every objecta of C holdsI2(ida) = idI1(a), and

(ii) for all morphismsm1, m2 of C such that domm2 = codm1 holds I2(m2 ·m1) = I2(m1) ·
I2(m2).

(8) For every categoryC and for every setx holdsx is a coindexing ofC iff x is an indexing of
Cop.

(9) LetC be a category,I be an indexing ofC, andc1, c2 be objects ofC. Suppose hom(c1,c2)
is non empty. Letm be a morphism fromc1 to c2. ThenI2(m) is a functor fromI1(c1) to
I1(c2).

(10) LetC be a category,I be a coindexing ofC, andc1, c2 be objects ofC. Suppose hom(c1,c2)
is non empty. Letmbe a morphism fromc1 toc2. ThenI2(m) is a functor fromI1(c2) to I1(c1).

Let C be a category, letI be an indexing ofC, and letT be a target category ofI . The functor
I -functor(C,T) yielding a functor fromC to T is defined by:

(Def. 11) For every morphismf of C holds(I -functor(C,T))( f ) = 〈〈〈〈I1(dom f ), I1(cod f )〉〉, I2( f )〉〉.

The following propositions are true:

(11) Let C be a category,I be an indexing ofC, andT1, T2 be target categories ofI . Then
I -functor(C,T1) = I -functor(C,T2) and Obj(I -functor(C,T1)) = Obj(I -functor(C,T2)).

(12) For every categoryC and for every indexingI of C and for every target categoryT of I
holds Obj(I -functor(C,T)) = I1.

(13) LetC be a category,I be an indexing ofC, T be a target category ofI , andx be an object
of C. Then(I -functor(C,T))(x) = I1(x).

LetC be a category and letI be an indexing ofC. The functor rngI yields a strict target category
of I and is defined as follows:

(Def. 12) For every target categoryT of I holds rngI = Im(I -functor(C,T)).

The following proposition is true

(14) LetC be a category,I be an indexing ofC, andD be a categorial category. Then rngI is a
subcategory ofD if and only if D is a target category ofI .

Let C be a category, letI be an indexing ofC, and letm be a morphism ofC. The functorI(m)
yielding a functor fromI1(domm) to I1(codm) is defined as follows:

(Def. 13) I(m) = I2(m).

Let C be a category, letI be a coindexing ofC, and letmbe a morphism ofC. The functorI(m)
yielding a functor fromI1(codm) to I1(domm) is defined by:

(Def. 14) I(m) = I2(m).

The following proposition is true

(15) LetC, D be categories. Then

(i) 〈〈(the objects ofC) 7−→ D, (the morphisms ofC) 7−→ idD〉〉 is an indexing ofC, and

(ii) 〈〈(the objects ofC) 7−→ D, (the morphisms ofC) 7−→ idD〉〉 is a coindexing ofC.
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4. INDEXING VS FUNCTORS

Let C be a category, letD be a categorial category, and letF be a functor fromC to D. One can
verify that ObjF is category-yielding.

Next we state the proposition

(16) LetC be a category,D be a categorial category, andF be a functor fromC to D. Then
〈〈ObjF, pr2(F)〉〉 is an indexing ofC.

Let C be a category, letD be a categorial category, and letF be a functor fromC to D. The
functorF-indexing ofC yields an indexing ofC and is defined by:

(Def. 15) F-indexing ofC = 〈〈ObjF, pr2(F)〉〉.

Next we state several propositions:

(17) LetC be a category,D be a categorial category, andF be a functor fromC to D. ThenD is
a target category ofF-indexing ofC.

(18) LetC be a category,D be a categorial category,F be a functor fromC to D, andT be a
target category ofF-indexing ofC. ThenF = F-indexing ofC-functor(C,T).

(19) LetC be a category,D, E be categorial categories,F be a functor fromC to D, andG be a
functor fromC to E. If F = G, thenF-indexing ofC = G-indexing ofC.

(20) For every categoryC and for every indexingI of C and for every target categoryT of I
holds pr2(I -functor(C,T)) = I2.

(21) For every categoryC and for every indexingI of C and for every target categoryT of I
holds(I -functor(C,T))-indexing ofC = I .

5. COMPOSINGINDEXINGS AND FUNCTORS

Let C, D, E be categories, letF be a functor fromC to D, and letI be an indexing ofE. Let us
assume that ImF is a subcategory ofE. The functorI ·F yields an indexing ofC and is defined by:

(Def. 16) For every functorF ′ from C to E such thatF ′ = F holds I ·F = ((I -functor(E, rngI)) ·
F ′)-indexing ofC.

Next we state several propositions:

(22) LetC, D1, D2, E be categories,I be an indexing ofE, F be a functor fromC to D1, andG
be a functor fromC to D2. Suppose ImF is a subcategory ofE and ImG is a subcategory of
E andF = G. ThenI ·F = I ·G.

(23) LetC, D be categories,F be a functor fromC to D, I be an indexing ofD, andT be a target
category ofI . ThenI ·F = ((I -functor(D,T)) ·F)-indexing ofC.

(24) LetC, D be categories,F be a functor fromC to D, andI be an indexing ofD. Then every
target category ofI is a target category ofI ·F.

(25) LetC, D be categories,F be a functor fromC to D, I be an indexing ofD, andT be a target
category ofI . Then rng(I ·F) is a subcategory ofT.

(26) LetC, D, E be categories,F be a functor fromC to D, G be a functor fromD to E, andI
be an indexing ofE. Then(I ·G) ·F = I · (G·F).

Let C be a category, letI be an indexing ofC, and letD be a categorial category. Let us assume
thatD is a target category ofI . Let E be a categorial category and letF be a functor fromD to E.
The functorF · I yields an indexing ofC and is defined as follows:
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(Def. 17) For every target categoryT of I and for every functorG from T to E such thatT = D and
G = F holdsF · I = (G· (I -functor(C,T)))-indexing ofC.

Next we state several propositions:

(27) LetC be a category,I be an indexing ofC, T be a target category ofI , D, E be categorial
categories,F be a functor fromT to D, andG be a functor fromT to E. If F = G, then
F · I = G· I .

(28) LetC be a category,I be an indexing ofC, T be a target category ofI , D be a categorial
category, andF be a functor fromT to D. Then ImF is a target category ofF · I .

(29) LetC be a category,I be an indexing ofC, T be a target category ofI , D be a categorial
category, andF be a functor fromT to D. ThenD is a target category ofF · I .

(30) LetC be a category,I be an indexing ofC, T be a target category ofI , D be a categorial
category, andF be a functor fromT to D. Then rng(F · I) is a subcategory of ImF.

(31) LetC be a category,I be an indexing ofC, T be a target category ofI , D, E be categorial
categories,F be a functor fromT to D, andG be a functor fromD to E. Then(G ·F) · I =
G· (F · I).

Let C, D be categories, letI2 be an indexing ofC, and letI3 be an indexing ofD. The functor
I3 · I2 yields an indexing ofC and is defined by:

(Def. 18) I3 · I2 = I3 · (I2 -functor(C, rngI2)).

Next we state several propositions:

(32) LetC be a category,D be a categorial category,I2 be an indexing ofC, I3 be an indexing
of D, and T be a target category ofI2. If D is a target category ofI2, then I3 · I2 = I3 ·
(I2 -functor(C,T)).

(33) Let C be a category,D be a categorial category,I2 be an indexing ofC, I3 be an in-
dexing of D, and T be a target category ofI3. If D is a target category ofI2, then
I3 · I2 = (I3 -functor(D,T)) · I2.

(34) LetC, D be categories,F be a functor fromC to D, I be an indexing ofD, T be a target
category ofI , E be a categorial category, andG be a functor fromT to E. Then(G · I) ·F =
G· (I ·F).

(35) LetC be a category,I be an indexing ofC, T be a target category ofI , D be a categorial
category,F be a functor fromT to D, andJ be an indexing ofD. Then(J ·F) · I = J · (F · I).

(36) LetC be a category,I be an indexing ofC, T1 be a target category ofI , J be an indexing of
T1, T2 be a target category ofJ, D be a categorial category, andF be a functor fromT2 to D.
Then(F ·J) · I = F · (J · I).

(37) LetC, D be categories,F be a functor fromC to D, I be an indexing ofD, T be a target
category ofI , andJ be an indexing ofT. Then(J · I) ·F = J · (I ·F).

(38) LetC be a category,I be an indexing ofC, D be a target category ofI , J be an indexing of
D, E be a target category ofJ, andK be an indexing ofE. Then(K ·J) · I = K · (J · I).
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