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Summary. The concept of indexing of a category (a part of indexed category, see
[14]) is introduced as a pair formed by a many sorted category and a many sorted functor. The
indexing of a categor against to[[14] is not a functor but it can be treated as a functor from
C into some categorial category (seéé [1]). The goal of the article is to work out the notation
necessary to define institutions (seel[11]).
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The articles([15],[[8],[20],[[16],[121],14],L15],[071,[[18],[1[7],.[19] [ T12] [ 13],.16],.[9],L[10],[12] [ 113],
and [1] provide the notation and terminology for this paper.

1. CATEGORY-YIELDING FUNCTIONS

Let A be a non empty set. One can verify that there exists a many sorted set indeXechiph is
non empty yielding.

Let A be a non empty set. One can verify that every many sorted set indexaduch is
non-empty is also non empty yielding.

Let C be a categorial category and lebe a morphism o€. Thenf; is a functor fromfy ; to

f12.
One can prove the following propositions:

(1) For every categorial catego@/and for all morphismd, g of C such that dorg = codf
holdsg- f = ({domf, codg), gz f2).

(2) LetC be a categonp, E be categorial categoriel, be a functor fronC to D, andG be a
functor fromC to E. If F = G, then Obf = ObjG.

Letl1 be a function. We say th#f is category-yielding if and only if:
(Def. 1) For every set such tha € domly holdsly(x) is a category.

Let us note that there exists a function which is category-yielding.

Let X be a set. One can verify that there exists a many sorted set indeXedhigh is category-
yielding.

Let A be a set. A many sorted category indexedfig a category-yielding many sorted set
indexed byA.

LetC be a category. A many sorted set indexedig a many sorted set indexed by the objects
of C. A many sorted category indexed Byis a many sorted category indexed by the objects.of

Let X be a set and letbe a category. Observe that— x is category-yielding.
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Let X be a non empty set. Note that every many sorted set index¥ddyon empty.

Let f be a category-yielding function. Observe that frig categorial.

Let X be a non empty set, ldtbe a many sorted category indexedXyand letx be an element
of X. Thenf(x) is a category.

Let f be afunction and leg be a category-yielding function. One can verify tgaf is category-
yielding.

Let F be a category-yielding function. The functor Ofj$ yielding a non-empty function is
defined by the conditions (Def. 2).

(Def. 2)(i) domObj$F) = domF, and

(i) for every setx such thatx € domF and for every categorg€ such thatC = F(x) holds
(Objs(F))(x) = the objects of.

The functor MphéF) yields a non-empty function and is defined by the conditions (Def. 3).

(Def. 3)() domMphg¢F) = domF, and
(i) for every setx such thatx € domF and for every categor€ such thatC = F(x) holds
(Mphs(F))(x) = the morphisms o€.

Let A be a non empty set and IEtbe a many sorted category indexedAyThen Obj$F) is a
non-empty many sorted set indexedAyThen MphgF) is a non-empty many sorted set indexed
by A.

Next we state the proposition

(3) For every seX and for every categorg holds Obj$X — C) = X — the objects ofC
and MphgX — C) = X — the morphisms o€f.

2. PAIRS OFMANY SORTED SETS

Let A, B be sets. Pair of many sorted sets indexed\andB is defined by:

(Def. 4) There exists a many sorted $ehdexed byA and there exists a many sorted gétdexed
by B such that it= (f, g).

Let A B be sets, lef be a many sorted set indexed Ayand letg be a many sorted set indexed
by B. Then(f, g} is a pair of many sorted sets indexedApndB.

Let A, B be sets and IeX be a pair of many sorted sets indexedfgndB. ThenX; is a many
sorted set indexed b§. ThenX; is a many sorted set indexed By

Let A, B be sets and ld be a pair of many sorted sets indexedbdgndB. We say that; is
category-yielding on first if and only if:

(Def. 5) (l1)1 is category-yielding.
We say that; is function-yielding on second if and only if:
(Def. 6) (l1)2 is function yielding.

Let A, B be sets. Note that there exists a pair of many sorted sets index@ayB which is
category-yielding on first and function-yielding on second.

Let A, B be sets and leX be a category-yielding on first pair of many sorted sets indexel by
andB. ThenX; is a many sorted category indexed Ay

Let A, B be sets and leX be a function-yielding on second pair of many sorted sets indexed by
A andB. ThenX; is a many sorted function indexed By

Let f be a function yielding function. One can verify that g functional.

Let A, B be sets, letf be a many sorted category indexed Ayand letg be a many sorted
function indexed byB. Then(f, g) is a category-yielding on first function-yielding on second pair
of many sorted sets indexed ByandB.

Let A be a non empty set and IEt G be many sorted categories indexedAyA many sorted
function indexed by is said to be a many sorted functor frdarto G if:



INDEXED CATEGORY 3

(Def. 7) For every elemerat of A holds ifa) is a functor fromF (a) to G(a).

The scheméambdaMSFideals with a non empty set, many sorted categorieB, C indexed
by 4, and a unary functof yielding a set, and states that:
There exists a many sorted functerfrom B to C such that for every elemenatof
4 holdsF(a) = ¥ (a)
provided the parameters meet the following condition:
e For every elemerd of 4 holds ¥ (a) is a functor fromB(a) to C(a).
Let A be a non empty set, I&, G be many sorted categories indexedAylet f be a many
sorted functor fronf to G, and leta be an element oA. Thenf (a) is a functor fromF (a) to G(a).

3. INDEXING

Let A, B be non empty sets and IEt G be functions fronB into A. A category-yielding on first
pair of many sorted sets indexed AyandB is said to be an indexing &f andG if:

(Def. 8) ity is a many sorted functor fromitF toit; - G.

The following two propositions are true:

(4) LetA, B be non empty set§;, G be functions fronB into A, | be an indexing ofF andG,
andmbe an element d8. Thenly(m) is a functor fromly(F(m)) to 11(G(m)).

(5) LetC be a categonry, be an indexing of the dom-map @fand the cod-map &, andmbe
a morphism ofc. Thenly(m) is a functor froml; (domm) to I3 (codm).

Let A, B be non empty sets, I€t, G be functions fronB into A, and letl be an indexing of
andG. Thenl; is a many sorted functor from -F to |- G.

Let A, B be non empty sets, I&, G be functions fronB into A, and letl be an indexing of
andG. A categorial category is said to be a target categotyifot satisfies the conditions (Def. 9).

(Def. 9)(i) For every elemera of A holdsly(a) is an object of it, and
(i) for every elemenb of B holds{{l1(F (b)), 1.(G(b))}, I>(b)) is a morphism of it.

Let A, B be non empty sets, I€t, G be functions fronB into A, and letl be an indexing of
andG. Note that there exists a target category wfich is full and strict.

Let A, B be non empty sets, I&, G be functions fronB into A, let ¢ be a partial function from
[ B, B] to B, and leti be a function fromA into B. Let us assume that there exists a categbsyich
thatC = (A B,F,G,c,i). An indexing of F andG is said to be an indexing d¥, G, c andi if it
satisfies the conditions (Def. 10).

(Def. 10)(i) For every elemeratof A holds ib(i(a)) = idy, (a), and
(i) for all elementsmy, my of B such thaf (my) = G(my) holds ib(c({mp, my))) = ita(mp) -
itz ().

Let C be a category. An indexing & is an indexing of the dom-map &, the cod-map o€,
the composition o€ and the id-map of. A coindexing ofC is an indexing of the cod-map &,
the dom-map o€, ~\(the composition o€) and the id-map of.

One can prove the following propositions:

(6) LetC be a category andbe an indexing of the dom-map 6fand the cod-map @&. Then
| is an indexing ofC if and only if the following conditions are satisfied:

(i) for every object of C holdsl;(ida) = idj, (a), and
(i)  for all morphismsmy, mp of C such that domm, = codmy holds Iz (mp - my) = (M) -
I2(m1).
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(7) LetC be a category andbe an indexing of the cod-map Gfand the dom-map @&. Then
| is a coindexing o€ if and only if the following conditions are satisfied:

(i) for every object of C holdsl;(ida) = idj, (a), and
(i)  for all morphismsmy, mp of C such that domm, = codmy holds Iz (M -my) = 1a(my) -
l2(mp).

(8) For every categor§ and for every set holdsx is a coindexing o€ iff x is an indexing of
C°p,

(9) LetC be a category, be an indexing o€, andc;, ¢z be objects o€. Suppose hoifts, c;)
is non empty. Leim be a morphism frone; to c,. Thenly(m) is a functor fromly(cy) to

|1(Cz).

(10) LetC be a category, be a coindexing of, andcs, ¢, be objects o€. Suppose hofft,, ¢;)
is non empty. Leinbe a morphism from; to ¢;. Thenly(m) is a functor fromly(c,) tol1(cy).

Let C be a category, lét be an indexing o€, and letT be a target category of The functor
| -functor(C, T) yielding a functor fronC to T is defined by:

(Def. 11) For every morphism of C holds(l -functorC, T))(f) = {({l.(domf), I1(codf)), 12(f)).

The following propositions are true:

(11) LetC be a categoryl be an indexing ofZ, andT;, T, be target categories ¢f Then
| -functor(C, T1) = | -functor(C, T>) and ObjI -functor(C, T1)) = Obj(l -functor(C, T»)).

(12) For every categor¢ and for every indexing of C and for every target categofly of |
holds Objl -functor(C,T)) = I;.

(13) LetC be a category, be an indexing o€, T be a target category ¢f andx be an object
of C. Then(l -functor(C, T))(x) = I1(X).

LetC be a category and létbe an indexing o€. The functor rng yields a strict target category
of I and is defined as follows:

(Def. 12) For every target categofyof | holds rnd = Im(l -functor(C, T)).

The following proposition is true

(14) LetC be a categony, be an indexing o€, andD be a categorial category. Then inig a
subcategory ob if and only if D is a target category df

Let C be a category, ldtbe an indexing o€, and letm be a morphism o€. The functorl (m)
yielding a functor froml(domm) to I;(codm) is defined as follows:

(Def. 13) [(m) = Iz(m).

LetC be a category, ldtbe a coindexing of, and letm be a morphism of. The functor (m)
yielding a functor from1(codm) to I;(domm) is defined by:

(Def. 14) 1(m) = Ix(m).
The following proposition is true

(15) LetC, D be categories. Then
(i)  {(the objects o) — D, (the morphisms of) — idp) is an indexing ofZ, and
(i)  {((the objects o) — D, (the morphisms of) — idp) is a coindexing of.
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4. INDEXING VS FUNCTORS

Let C be a category, ldb be a categorial category, and Fetbe a functor fronC to D. One can
verify that ObjF is category-yielding.
Next we state the proposition

(16) LetC be a categoryD be a categorial category, akdbe a functor fromC to D. Then
(ODbjF, pr2(F)) is an indexing ofC.

Let C be a category, leD be a categorial category, and letbe a functor fronC to D. The
functorF-indexing ofC yields an indexing o€ and is defined by:

(Def. 15) F-indexing ofC = ( ObjF, pr2(F)).
Next we state several propositions:

(17) LetC be a categonp be a categorial category, afdbe a functor fronC to D. ThenD is
a target category d¥-indexing ofC.

(18) LetC be a categoryD be a categorial categorl, be a functor fronC to D, andT be a
target category of -indexing ofC. ThenF = F-indexing ofC-functor(C,T).

(19) LetC be a categonb, E be categorial categorieB,be a functor fronC to D, andG be a
functor fromC to E. If F = G, thenF-indexing ofC = G-indexing ofC.

(20) For every categor€ and for every indexing of C and for every target categofly of |
holds prZl -functorC, T)) = I,.

(21) For every categor€ and for every indexing of C and for every target categorly of |
holds(I -functor(C, T))-indexing ofC = 1.

5. COMPOSINGINDEXINGS AND FUNCTORS

Let C, D, E be categories, |€f be a functor fronC to D, and letl be an indexing oE. Let us
assume that Irf is a subcategory dE. The functor - F yields an indexing o€ and is defined by:

(Def. 16) For every functoF’ from C to E such that~’ = F holds! - F = ((I -functoE,rngl)) -
F’)-indexing ofC.
Next we state several propositions:
(22) LetC, D1, Do, E be categoried, be an indexing ok, F be a functor fronC to D1, andG

be a functor fronC to D,. Suppose Irf is a subcategory dE and ImG is a subcategory of
E andF =G. Thenl -F =1-G.

(23) LetC, D be categoried; be a functor fronC to D, | be an indexing oD, andT be a target
category ofl. Thenl -F = ((I -functorD, T)) - F)-indexing ofC.

(24) LetC, D be categoried; be a functor fronC to D, andl be an indexing oD. Then every
target category of is a target category df F.

(25) LetC, D be categories; be a functor fronC to D, | be an indexing oD, andT be a target
category ofl. Then rndl - F) is a subcategory of.

(26) LetC, D, E be categories; be a functor fronC to D, G be a functor fronD to E, andl
be an indexing oE. Then(l -G)-F =1-(G-F).

LetC be a category, ldtbe an indexing o€, and letD be a categorial category. Let us assume
thatD is a target category df Let E be a categorial category and letbe a functor fronD to E.
The functorF - | yields an indexing o€ and is defined as follows:
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(Def. 17) For every target categofyof | and for every functoG from T to E such thafl = D and
G =F holdsF -1 = (G- (I -functor{C, T)))-indexing ofC.

Next we state several propositions:

(27) LetC be a category, be an indexing o€, T be a target category ¢f D, E be categorial
categoriesf be a functor fromT to D, andG be a functor fromT to E. If F = G, then
Fl=G-I.

(28) LetC be a category, be an indexing o€, T be a target category ¢f D be a categorial
category, andF be a functor fron to D. Then ImF is a target category d¢% - I.

(29) LetC be a categoryl, be an indexing o€, T be a target category ¢f D be a categorial
category, andr be a functor froni to D. ThenD is a target category d% - |.

(30) LetC be a categoryl, be an indexing o€, T be a target category o¢f D be a categorial
category, andr be a functor fronT to D. Then rndgF - 1) is a subcategory of If.

(31) LetC be a category, be an indexing o€, T be a target category of D, E be categorial
categoriesF be a functor fronil to D, andG be a functor fronD to E. Then(G-F)-I =
G-(F-1).

Let C, D be categories, ldp be an indexing o€, and letls be an indexing oD. The functor
I3- 1, yields an indexing o€ and is defined by:

(Def. 18) I3-12=13-(l2-functor(C,rngl>)).
Next we state several propositions:

(32) LetC be a categonyh be a categorial categorls be an indexing o€, 13 be an indexing
of D, andT be a target category dp. If D is a target category db, thenls-l, = I3-
(I2-functornC,T)).

(33) LetC be a categoryD be a categorial category, be an indexing ofC, I3 be an in-
dexing of D, and T be a target category di. If D is a target category of,, then
I3-12 = (I3-functorD,T)) - .

(34) LetC, D be categoried; be a functor fronC to D, | be an indexing oD, T be a target
category ofl, E be a categorial category, atbe a functor fronil to E. Then(G-1)-F =
G-(I-F).

(35) LetC be a categoryl, be an indexing o€, T be a target category ¢f D be a categorial
categoryF be a functor fronil to D, andJ be an indexing oD. Then(J-F) -1 =J-(F-1).

(36) LetC be a categony, be an indexing o€, T; be a target category ¢f J be an indexing of
T1, T2 be a target category df D be a categorial category, akdbe a functor fromT, to D.
Then(F-J)-1=F-(J3-I).

(87) LetC, D be categoried; be a functor fronC to D, | be an indexing oD, T be a target
category ofl, andJ be an indexing off. Then(J-1)-F=J-(I -F).

(38) LetC be a category, be an indexing o€, D be a target category ¢f J be an indexing of
D, E be a target category df andK be an indexing oE. Then(K-J)-1 =K (J-1).
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