Indexed Category

Grzegorz Bancerek Institute of Mathematics Polish Academy of Sciences

Summary. The concept of indexing of a category (a part of indexed category, see [14]) is introduced as a pair formed by a many sorted category and a many sorted functor. The indexing of a category C against to [14] is not a functor but it can be treated as a functor from C into some categorial category (see [1]). The goal of the article is to work out the notation necessary to define institutions (see [11]).

MML Identifier: INDEX_1.

WWW: http://mizar.org/JFM/Vol7/index_1.html

The articles [15], [8], [20], [16], [21], [4], [5], [7], [18], [17], [19], [12], [3], [6], [9], [10], [2], [13], and [1] provide the notation and terminology for this paper.

1. CATEGORY-YIELDING FUNCTIONS

Let A be a non empty set. One can verify that there exists a many sorted set indexed by A which is non empty yielding.

Let A be a non empty set. One can verify that every many sorted set indexed by A which is non-empty is also non empty yielding.

Let C be a categorial category and let f be a morphism of C. Then f_2 is a functor from $f_{1,1}$ to $f_{1,2}$.

One can prove the following propositions:

- (1) For every categorial category C and for all morphisms f, g of C such that dom g = cod f holds $g \cdot f = \langle \langle dom f, cod g \rangle, g_2 \cdot f_2 \rangle$.
- (2) Let C be a category, D, E be categorial categories, F be a functor from C to D, and G be a functor from C to E. If F = G, then Obj F = Obj G.

Let I_1 be a function. We say that I_1 is category-yielding if and only if:

(Def. 1) For every set x such that $x \in \text{dom } I_1$ holds $I_1(x)$ is a category.

Let us note that there exists a function which is category-yielding.

Let *X* be a set. One can verify that there exists a many sorted set indexed by *X* which is category-yielding.

Let A be a set. A many sorted category indexed by A is a category-yielding many sorted set indexed by A.

Let C be a category. A many sorted set indexed by C is a many sorted set indexed by the objects of C. A many sorted category indexed by C is a many sorted category indexed by the objects of C.

Let X be a set and let x be a category. Observe that $X \longmapsto x$ is category-yielding.

Let *X* be a non empty set. Note that every many sorted set indexed by *X* is non empty.

Let f be a category-yielding function. Observe that rng f is categorial.

Let X be a non empty set, let f be a many sorted category indexed by X, and let x be an element of X. Then f(x) is a category.

Let f be a function and let g be a category-yielding function. One can verify that $g \cdot f$ is category-yielding.

Let F be a category-yielding function. The functor Objs(F) yielding a non-empty function is defined by the conditions (Def. 2).

- (Def. 2)(i) $\operatorname{dom} \operatorname{Objs}(F) = \operatorname{dom} F$, and
 - (ii) for every set x such that $x \in \text{dom } F$ and for every category C such that C = F(x) holds (Objs(F))(x) = the objects of C.

The functor Mphs(F) yields a non-empty function and is defined by the conditions (Def. 3).

- (Def. 3)(i) $\operatorname{dom} \operatorname{Mphs}(F) = \operatorname{dom} F$, and
 - (ii) for every set x such that $x \in \text{dom } F$ and for every category C such that C = F(x) holds (Mphs(F))(x) = the morphisms of C.

Let A be a non empty set and let F be a many sorted category indexed by A. Then $\operatorname{Objs}(F)$ is a non-empty many sorted set indexed by A. Then $\operatorname{Mphs}(F)$ is a non-empty many sorted set indexed by A.

Next we state the proposition

(3) For every set X and for every category C holds $Objs(X \longmapsto C) = X \longmapsto$ the objects of C and $Mphs(X \longmapsto C) = X \longmapsto$ the morphisms of C.

2. Pairs of Many Sorted Sets

Let A, B be sets. Pair of many sorted sets indexed by A and B is defined by:

- (Def. 4) There exists a many sorted set f indexed by A and there exists a many sorted set g indexed by B such that it $= \langle f, g \rangle$.
- Let A, B be sets, let f be a many sorted set indexed by A, and let g be a many sorted set indexed by B. Then $\langle f, g \rangle$ is a pair of many sorted sets indexed by A and B.
- Let A, B be sets and let X be a pair of many sorted sets indexed by A and B. Then X_1 is a many sorted set indexed by A. Then X_2 is a many sorted set indexed by B.
- Let A, B be sets and let I_1 be a pair of many sorted sets indexed by A and B. We say that I_1 is category-yielding on first if and only if:
- (Def. 5) $(I_1)_1$ is category-yielding.

We say that I_1 is function-yielding on second if and only if:

(Def. 6) $(I_1)_2$ is function yielding.

Let A, B be sets. Note that there exists a pair of many sorted sets indexed by A and B which is category-yielding on first and function-yielding on second.

Let A, B be sets and let X be a category-yielding on first pair of many sorted sets indexed by A and B. Then X_1 is a many sorted category indexed by A.

Let A, B be sets and let X be a function-yielding on second pair of many sorted sets indexed by A and B. Then X_2 is a many sorted function indexed by B.

Let f be a function yielding function. One can verify that rng f is functional.

Let A, B be sets, let f be a many sorted category indexed by A, and let g be a many sorted function indexed by B. Then $\langle f, g \rangle$ is a category-yielding on first function-yielding on second pair of many sorted sets indexed by A and B.

Let A be a non empty set and let F, G be many sorted categories indexed by A. A many sorted function indexed by A is said to be a many sorted functor from F to G if:

(Def. 7) For every element a of A holds it(a) is a functor from F(a) to G(a).

The scheme LambdaMSFr deals with a non empty set \mathcal{A} , many sorted categories \mathcal{B} , \mathcal{C} indexed by \mathcal{A} , and a unary functor \mathcal{F} yielding a set, and states that:

There exists a many sorted functor F from \mathcal{B} to \mathcal{C} such that for every element a of \mathcal{A} holds $F(a) = \mathcal{F}(a)$

provided the parameters meet the following condition:

• For every element a of \mathcal{A} holds $\mathcal{F}(a)$ is a functor from $\mathcal{B}(a)$ to $\mathcal{C}(a)$.

Let A be a non empty set, let F, G be many sorted categories indexed by A, let f be a many sorted functor from F to G, and let a be an element of A. Then f(a) is a functor from F(a) to G(a).

3. Indexing

Let A, B be non empty sets and let F, G be functions from B into A. A category-yielding on first pair of many sorted sets indexed by A and B is said to be an indexing of F and G if:

(Def. 8) it₂ is a many sorted functor from it₁ · F to it₁ · G.

The following two propositions are true:

- (4) Let A, B be non empty sets, F, G be functions from B into A, I be an indexing of F and G, and m be an element of B. Then $I_2(m)$ is a functor from $I_1(F(m))$ to $I_1(G(m))$.
- (5) Let C be a category, I be an indexing of the dom-map of C and the cod-map of C, and m be a morphism of C. Then $I_2(m)$ is a functor from $I_1(\text{dom } m)$ to $I_1(\text{cod } m)$.

Let A, B be non empty sets, let F, G be functions from B into A, and let I be an indexing of F and G. Then I_2 is a many sorted functor from $I_1 \cdot F$ to $I_1 \cdot G$.

Let A, B be non empty sets, let F, G be functions from B into A, and let I be an indexing of F and G. A categorial category is said to be a target category of I if it satisfies the conditions (Def. 9).

- (Def. 9)(i) For every element a of A holds $I_1(a)$ is an object of it, and
 - (ii) for every element b of B holds $\langle \langle I_1(F(b)), I_1(G(b)) \rangle, I_2(b) \rangle$ is a morphism of it.

Let A, B be non empty sets, let F, G be functions from B into A, and let I be an indexing of F and G. Note that there exists a target category of I which is full and strict.

Let A, B be non empty sets, let F, G be functions from B into A, let c be a partial function from [B, B] to B, and let i be a function from A into B. Let us assume that there exists a category C such that $C = \langle A, B, F, G, c, i \rangle$. An indexing of F and G is said to be an indexing of F, G, G and G if it satisfies the conditions (Def. 10).

- (Def. 10)(i) For every element a of A holds it₂ $(i(a)) = id_{it_1(a)}$, and
 - (ii) for all elements m_1 , m_2 of B such that $F(m_2) = G(m_1)$ holds $it_2(c(\langle m_2, m_1 \rangle)) = it_2(m_2) \cdot it_2(m_1)$.

Let C be a category. An indexing of C is an indexing of the dom-map of C, the cod-map of C, the composition of C and the id-map of C. A coindexing of C is an indexing of the cod-map of C, the dom-map of C, \curvearrowleft (the composition of C) and the id-map of C.

One can prove the following propositions:

- (6) Let *C* be a category and *I* be an indexing of the dom-map of *C* and the cod-map of *C*. Then *I* is an indexing of *C* if and only if the following conditions are satisfied:
- (i) for every object a of C holds $I_2(id_a) = id_{I_1(a)}$, and
- (ii) for all morphisms m_1 , m_2 of C such that $dom m_2 = cod m_1$ holds $I_2(m_2 \cdot m_1) = I_2(m_2) \cdot I_2(m_1)$.

- (7) Let *C* be a category and *I* be an indexing of the cod-map of *C* and the dom-map of *C*. Then *I* is a coindexing of *C* if and only if the following conditions are satisfied:
- (i) for every object a of C holds $I_2(id_a) = id_{I_1(a)}$, and
- (ii) for all morphisms m_1 , m_2 of C such that $dom m_2 = cod m_1$ holds $I_2(m_2 \cdot m_1) = I_2(m_1) \cdot I_2(m_2)$.
- (8) For every category C and for every set x holds x is a coindexing of C iff x is an indexing of C^{op} .
- (9) Let C be a category, I be an indexing of C, and c_1 , c_2 be objects of C. Suppose hom (c_1, c_2) is non empty. Let m be a morphism from c_1 to c_2 . Then $I_2(m)$ is a functor from $I_1(c_1)$ to $I_1(c_2)$.
- (10) Let C be a category, I be a coindexing of C, and c_1 , c_2 be objects of C. Suppose hom (c_1, c_2) is non empty. Let m be a morphism from c_1 to c_2 . Then $I_2(m)$ is a functor from $I_1(c_2)$ to $I_1(c_1)$.

Let C be a category, let I be an indexing of C, and let T be a target category of I. The functor I-functor(C, T) yielding a functor from C to T is defined by:

- (Def. 11) For every morphism f of C holds (I-functor $(C,T))(f) = \langle \langle I_1(\text{dom } f), I_1(\text{cod } f) \rangle, I_2(f) \rangle$. The following propositions are true:
 - (11) Let C be a category, I be an indexing of C, and T_1 , T_2 be target categories of I. Then I-functor(C, T_1) = I-functor(C, T_2) and Obj(I-functor(C, T_1)) = Obj(I-functor(C, T_2)).
 - (12) For every category C and for every indexing I of C and for every target category T of I holds $Obj(I-functor(C,T)) = I_1$.
 - (13) Let C be a category, I be an indexing of C, T be a target category of I, and x be an object of C. Then (I-functor $(C,T))(x) = I_1(x)$.

Let *C* be a category and let *I* be an indexing of *C*. The functor rng *I* yields a strict target category of *I* and is defined as follows:

(Def. 12) For every target category T of I holds $\operatorname{rng} I = \operatorname{Im}(I\operatorname{-functor}(C,T))$.

The following proposition is true

(14) Let C be a category, I be an indexing of C, and D be a categorial category. Then $\operatorname{rng} I$ is a subcategory of D if and only if D is a target category of I.

Let C be a category, let I be an indexing of C, and let m be a morphism of C. The functor I(m) yielding a functor from $I_1(\text{dom } m)$ to $I_1(\text{cod } m)$ is defined as follows:

(Def. 13)
$$I(m) = I_2(m)$$
.

Let C be a category, let I be a coindexing of C, and let m be a morphism of C. The functor I(m) yielding a functor from $I_1(\operatorname{cod} m)$ to $I_1(\operatorname{dom} m)$ is defined by:

(Def. 14)
$$I(m) = I_2(m)$$
.

The following proposition is true

- (15) Let C, D be categories. Then
 - (i) $\langle \text{(the objects of } C) \longmapsto D, \text{ (the morphisms of } C) \longmapsto \mathrm{id}_D \rangle$ is an indexing of C, and
- (ii) $\langle \text{(the objects of } C) \longmapsto D, \text{ (the morphisms of } C) \longmapsto \mathrm{id}_D \rangle$ is a coindexing of C.

4. Indexing vs Functors

Let C be a category, let D be a categorial category, and let F be a functor from C to D. One can verify that Obj F is category-yielding.

Next we state the proposition

(16) Let C be a category, D be a categorial category, and F be a functor from C to D. Then $\langle \text{Obj } F, \text{pr2}(F) \rangle$ is an indexing of C.

Let C be a category, let D be a categorial category, and let F be a functor from C to D. The functor F-indexing of C yields an indexing of C and is defined by:

(Def. 15) F-indexing of $C = \langle \text{Obj } F, \text{pr2}(F) \rangle$.

Next we state several propositions:

- (17) Let C be a category, D be a categorial category, and F be a functor from C to D. Then D is a target category of F-indexing of C.
- (18) Let C be a category, D be a categorial category, F be a functor from C to D, and T be a target category of F-indexing of C. Then F = F-indexing of C-functor(C, T).
- (19) Let C be a category, D, E be categorial categories, F be a functor from C to D, and G be a functor from C to E. If F = G, then F-indexing of C = G-indexing of C.
- (20) For every category C and for every indexing I of C and for every target category T of I holds $pr2(I-functor(C,T)) = I_2$.
- (21) For every category C and for every indexing I of C and for every target category T of I holds (I-functor(C, T))-indexing of C = I.

5. Composing Indexings and Functors

- Let C, D, E be categories, let F be a functor from C to D, and let I be an indexing of E. Let us assume that Im F is a subcategory of E. The functor $I \cdot F$ yields an indexing of C and is defined by:
- (Def. 16) For every functor F' from C to E such that F' = F holds $I \cdot F = ((I \text{functor}(E, \text{rng } I)) \cdot F')$ -indexing of C.

Next we state several propositions:

- (22) Let C, D_1 , D_2 , E be categories, I be an indexing of E, F be a functor from C to D_1 , and G be a functor from C to D_2 . Suppose $\operatorname{Im} F$ is a subcategory of E and $\operatorname{Im} G$ is a subcategory of E and E and E and E are E. Then E is a subcategory of E and E are E is a subcategory of E and E is a subcategory of E is a subcategory of
- (23) Let C, D be categories, F be a functor from C to D, I be an indexing of D, and T be a target category of I. Then $I \cdot F = ((I \text{functor}(D, T)) \cdot F)$ -indexing of C.
- (24) Let C, D be categories, F be a functor from C to D, and I be an indexing of D. Then every target category of I is a target category of $I \cdot F$.
- (25) Let C, D be categories, F be a functor from C to D, I be an indexing of D, and T be a target category of I. Then $rrg(I \cdot F)$ is a subcategory of T.
- (26) Let C, D, E be categories, F be a functor from C to D, G be a functor from D to E, and I be an indexing of E. Then $(I \cdot G) \cdot F = I \cdot (G \cdot F)$.

Let C be a category, let I be an indexing of C, and let D be a categorial category. Let us assume that D is a target category of I. Let E be a categorial category and let F be a functor from D to E. The functor $F \cdot I$ yields an indexing of C and is defined as follows:

(Def. 17) For every target category T of I and for every functor G from T to E such that T = D and G = F holds $F \cdot I = (G \cdot (I - \text{functor}(C, T)))$ -indexing of C.

Next we state several propositions:

- (27) Let C be a category, I be an indexing of C, T be a target category of I, D, E be categorial categories, F be a functor from T to D, and G be a functor from T to E. If F = G, then $F \cdot I = G \cdot I$.
- (28) Let C be a category, I be an indexing of C, T be a target category of I, D be a categorial category, and F be a functor from T to D. Then Im F is a target category of $F \cdot I$.
- (29) Let C be a category, I be an indexing of C, T be a target category of I, D be a categorial category, and F be a functor from T to D. Then D is a target category of $F \cdot I$.
- (30) Let C be a category, I be an indexing of C, T be a target category of I, D be a categorial category, and F be a functor from T to D. Then $rng(F \cdot I)$ is a subcategory of Im F.
- (31) Let C be a category, I be an indexing of C, T be a target category of I, D, E be categorial categories, F be a functor from T to D, and G be a functor from D to E. Then $(G \cdot F) \cdot I = G \cdot (F \cdot I)$.
- Let C, D be categories, let I_2 be an indexing of C, and let I_3 be an indexing of D. The functor $I_3 \cdot I_2$ yields an indexing of C and is defined by:
- (Def. 18) $I_3 \cdot I_2 = I_3 \cdot (I_2 \operatorname{-functor}(C, \operatorname{rng} I_2)).$

Next we state several propositions:

- (32) Let C be a category, D be a categorial category, I_2 be an indexing of C, I_3 be an indexing of D, and T be a target category of I_2 . If D is a target category of I_2 , then $I_3 \cdot I_2 = I_3 \cdot (I_2 \text{functor}(C, T))$.
- (33) Let C be a category, D be a categorial category, I_2 be an indexing of C, I_3 be an indexing of D, and T be a target category of I_3 . If D is a target category of I_2 , then $I_3 \cdot I_2 = (I_3 \cdot \text{functor}(D, T)) \cdot I_2$.
- (34) Let C, D be categories, F be a functor from C to D, I be an indexing of D, T be a target category of I, E be a categorial category, and G be a functor from T to E. Then $(G \cdot I) \cdot F = G \cdot (I \cdot F)$.
- (35) Let C be a category, I be an indexing of C, T be a target category of I, D be a categorial category, F be a functor from T to D, and J be an indexing of D. Then $(J \cdot F) \cdot I = J \cdot (F \cdot I)$.
- (36) Let C be a category, I be an indexing of C, T_1 be a target category of I, J be an indexing of T_1 , T_2 be a target category of J, D be a categorial category, and F be a functor from T_2 to D. Then $(F \cdot J) \cdot I = F \cdot (J \cdot I)$.
- (37) Let C, D be categories, F be a functor from C to D, I be an indexing of D, T be a target category of I, and J be an indexing of T. Then $(J \cdot I) \cdot F = J \cdot (I \cdot F)$.
- (38) Let C be a category, I be an indexing of C, D be a target category of I, J be an indexing of D, E be a target category of J, and K be an indexing of E. Then $(K \cdot J) \cdot I = K \cdot (J \cdot I)$.

REFERENCES

- [1] Grzegorz Bancerek. Categorial categories and slice categories. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/cat_5.html.
- [2] Grzegorz Bancerek and Agata Darmochwał. Comma category. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/ Vol4/commacat.html.
- [3] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/dtconstr.html.

- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [6] Czesław Byliński. Introduction to categories and functors. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/cat_1.html.
- [7] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [8] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [9] Czesław Byliński. Subcategories and products of categories. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/cat 2.html.
- [10] Czesław Byliński. Opposite categories and contravariant functors. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/oppcat_1.html.
- [11] Joseph A. Goguen and Rod M. Burstall. Introducing institutions. Lecture Notes in Computer Science, 164:221–256, 1984.
- [12] Beata Madras. Product of family of universal algebras. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vo15/pralg 1.html.
- [13] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/pre_circ.html.
- [14] Andrzej Tarlecki, Rod M. Burstall, and A. Goguen, Joseph. Some fundamental algebraic tools for the semantics of computation: Part 3. indexed categories. *Theoretical Computer Science*, 91:239–264, 1991.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [16] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/moart_1.html.
- [17] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel.html.
- [18] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [19] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1.html.
- [21] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.

Received June 8, 1995

Published January 2, 2004