## **Incidence Projective Spaces** Wojciech Leończuk Warsaw University Białystok Krzysztof Prażmowski Warsaw University Białystok **Summary.** A basis for investigations on incidence projective spaces. With every projective space defined in terms of collinearity relation we associate the incidence structure consisting of points and of lines of the given space. We introduce general notion of projective space defined in terms of incidence and define several properties of such structures (like satisfability of the Desargues Axiom or conditions on the dimension). MML Identifier: INCPROJ. WWW: http://mizar.org/JFM/Vol2/incproj.html The articles [4], [1], [6], [7], [5], [3], and [2] provide the notation and terminology for this paper. We adopt the following convention: $C_1$ denotes a proper collinearity space, B denotes an element of $2^{\text{the carrier of } C_1}$ , and X, Y, Y denote sets. Let us consider $C_1$ . We see that the line of $C_1$ is an element of $2^{\text{the carrier of } C_1}$ . Let us consider $C_1$ . The functor $L(C_1)$ yields a set and is defined by: (Def. 1) $L(C_1) = \{B : B \text{ is a line of } C_1\}.$ Let us consider $C_1$ . Observe that $L(C_1)$ is non empty. The following proposition is true $(2)^1$ x is a line of $C_1$ iff x is an element of $L(C_1)$ . Let us consider $C_1$ . The functor $\mathbf{I}_{(C_1)}$ yielding a relation between the carrier of $C_1$ and $L(C_1)$ is defined as follows: (Def. 2) For all x, y holds $\langle x, y \rangle \in \mathbf{I}_{(C_1)}$ iff $x \in C_1$ and $y \in L(C_1)$ and there exists Y such that y = Y and $x \in Y$ . Let us consider $C_1$ . The functor $Inc-ProjSp(C_1)$ yields a projective incidence structure and is defined as follows: (Def. 3) Inc-ProjSp( $C_1$ ) = $\langle$ the carrier of $C_1, L(C_1), \mathbf{I}_{(C_1)} \rangle$ . Let us consider $C_1$ . One can check that Inc-ProjSp $(C_1)$ is strict. We now state three propositions: - (4)<sup>2</sup> The points of Inc-ProjSp( $C_1$ ) = the carrier of $C_1$ and the lines of Inc-ProjSp( $C_1$ ) = $L(C_1)$ and the incidence of Inc-ProjSp( $C_1$ ) = $\mathbf{I}_{(C_1)}$ . - (5) x is a point of $C_1$ iff x is a point of Inc-ProjSp( $C_1$ ). <sup>&</sup>lt;sup>1</sup> The proposition (1) has been removed. <sup>&</sup>lt;sup>2</sup> The proposition (3) has been removed. (6) x is a line of $C_1$ iff x is a line of Inc-ProjSp $(C_1)$ . For simplicity, we follow the rules: a, b, c, p, q, s are points of Inc-ProjSp $(C_1)$ , P, Q, S are lines of Inc-ProjSp $(C_1)$ , a', b', c', p' are points of $C_1$ , and P' is a line of $C_1$ . Next we state several propositions: - $(8)^3$ s lies on S iff $\langle s, S \rangle \in \mathbf{I}_{(C_1)}$ . - (9) If p = p' and P = P', then p lies on P iff $p' \in P'$ . - (10) There exist a', b', c' such that $a' \neq b'$ and $b' \neq c'$ and $c' \neq a'$ . - (11) There exists b' such that $a' \neq b'$ . - (12) If p lies on P and q lies on P and p lies on Q and q lies on Q, then p = q or P = Q. - (13) There exists P such that p lies on P and q lies on P. - (14) Suppose a = a' and b = b' and c = c'. Then a', b' and c' are collinear if and only if there exists P such that a lies on P and b lies on P and c lies on C. - (15) There exist p, P such that p does not lie on P. For simplicity, we adopt the following convention: $C_1$ is a projective space defined in terms of collinearity, a, b, c, d, p, q are points of Inc-ProjSp( $C_1$ ), P, Q, S, M, N are lines of Inc-ProjSp( $C_1$ ), and a', b', c', d', p' are points of $C_1$ . The following propositions are true: - (16) There exist a, b, c such that $a \neq b$ and $b \neq c$ and $c \neq a$ and a lies on P and b lies on P and c lies on P. - (17) Suppose that a lies on M and b lies on M and c lies on N and d lies on N and p lies on M and p lies on p - (18) Suppose that for all a', b', c', d' there exists p' such that a', b' and p' are collinear and c', d' and p' are collinear. Let given M, N. Then there exists q such that q lies on M and q lies on N. - (19) Suppose that it is not true that there exist points p, $p_1$ , r, $r_1$ of $C_1$ and there exists a point s of $C_1$ such that p, $p_1$ and s are collinear and r, $r_1$ and s are collinear. Then it is not true that there exist M, N and there exists q such that q lies on M and q lies on N. - (20) Suppose that for all points p, $p_1$ , q, $q_1$ , $r_2$ of $C_1$ there exist points r, $r_1$ of $C_1$ such that p, q and r are collinear and $p_1$ , $q_1$ and $r_1$ are collinear and $r_2$ , r and $r_1$ are collinear. Let given a, M, N. Then there exist b, c, S such that a lies on S and b lies on S and c lies on S and b lies on C and c C and c lies on C and c lies on C and c lies Let x, y, z be sets. We say that x, y, z are mutually different if and only if: (Def. 5)<sup>4</sup> $x \neq y$ and $y \neq z$ and $z \neq x$ . Let u be a set. We say that x, y, z, u are mutually different if and only if: (Def. 6) $x \neq y$ and $y \neq z$ and $z \neq x$ and $u \neq x$ and $u \neq y$ and $u \neq z$ . Let $C_2$ be a projective incidence structure, let a, b be points of $C_2$ , and let M be a line of $C_2$ . We say that a, b lie on M if and only if: <sup>&</sup>lt;sup>3</sup> The proposition (7) has been removed. <sup>&</sup>lt;sup>4</sup> The definition (Def. 4) has been removed. (Def. 7) a lies on M and b lies on M. Let c be a point of $C_2$ . We say that a, b, c lie on M if and only if: (Def. 8) a lies on M and b lies on M and c lies on M. We now state three propositions: - (21) Suppose that for all points $p_1$ , $r_2$ , q, $r_1$ , $q_1$ , p, r of $C_1$ such that $p_1$ , $r_2$ and q are collinear and $r_1$ , $q_1$ and q are collinear and $p_1$ , $r_1$ and p are collinear and $p_2$ , $q_1$ and p are collinear and $p_2$ , $q_1$ and $p_2$ are collinear and $p_2$ , $p_2$ and $p_3$ are collinear or $p_2$ , $p_3$ and $p_4$ are collinear or $p_4$ , $p_4$ and $p_5$ are collinear or $p_4$ , $p_5$ and $p_6$ are collinear or $p_6$ , $p_7$ , $p_7$ , $p_8$ , $p_8$ , $p_9$ - (22) Suppose that for all points o, $p_1$ , $p_2$ , $p_3$ , $q_1$ , $q_2$ , $q_3$ , $r_1$ , $r_2$ , $r_3$ of $C_1$ such that $o \neq q_1$ and $p_1 \neq q_1$ and $o \neq q_2$ and $p_2 \neq q_2$ and $o \neq q_3$ are not collinear and $o \neq q_3$ q_4$ - (23) Suppose that for all points o, $p_1$ , $p_2$ , $p_3$ , $q_1$ , $q_2$ , $q_3$ , $r_1$ , $r_2$ , $r_3$ of $C_1$ such that $o \neq p_2$ and $o \neq p_3$ and $p_2 \neq p_3$ and $p_1 \neq p_2$ and $p_1 \neq p_3$ and $o \neq q_2$ and $o \neq q_3$ and $q_2 \neq q_3$ and $q_1 \neq q_2$ and $q_1 \neq q_3$ and $q_2 \neq q_3$ and $q_1 \neq q_3$ and $q_2 \neq q_3$ and $q_3 \neq q_3$ are collinear and o, $q_1$ and $q_2$ are collinear and o, $q_1$ and $q_2$ are collinear and o, $q_1$ and $q_3$ are collinear and $p_1$ , $q_2$ and $p_3$ are collinear and $p_3$ , $p_4$ and $p_5$ are collinear and $p_4$ , $p_5$ and $p_7$ are collinear and $p_7$ , $p_8$ and $p_8$ and $p_9$ and $p_9$ and $p_9$ and $p_9$ and $p_9$ and $p_9$ are collinear. Let $p_9$ , $p_$ Let $I_1$ be a projective incidence structure. We say that $I_1$ is partial if and only if the condition (Def. 9) is satisfied. (Def. 9) Let p, q be points of $I_1$ and P, Q be lines of $I_1$ . Suppose p lies on P and q lies on P and q lies on Q and Q lies on Q. Then Q or We say that $I_1$ is linear if and only if: - (Def. 10) For all points p, q of $I_1$ there exists a line P of $I_1$ such that p lies on P and q lies on P. We say that $I_1$ is at least 2-dimensional if and only if: - (Def. 11) There exists a point p of $I_1$ and there exists a line P of $I_1$ such that p does not lie on P. We say that $I_1$ is at least 3-rank if and only if the condition (Def. 12) is satisfied. (Def. 12) Let P be a line of $I_1$ . Then there exist points a, b, c of $I_1$ such that $a \neq b$ and $b \neq c$ and $c \neq a$ and a lies on P and b lies on P and c lies on P. We say that $I_1$ is Vebleian if and only if the condition (Def. 13) is satisfied. - (Def. 13) Let a, b, c, d, p, q be points of $I_1$ and M, N, P, Q be lines of $I_1$ . Suppose that a lies on M and b lies on M and c lies on N and d lies on N and d lies on M and d lies on d - Let $C_1$ be a projective space defined in terms of collinearity. Note that Inc-ProjSp( $C_1$ ) is partial, linear, at least 2-dimensional, at least 3-rank, and Vebleian. One can verify that there exists a projective incidence structure which is strict, partial, linear, at least 2-dimensional, at least 3-rank, and Vebleian. A projective space defined in terms of incidence is a partial linear at least 2-dimensional at least 3-rank Vebleian projective incidence structure. Let $C_1$ be a projective space defined in terms of collinearity. Observe that Inc-ProjSp( $C_1$ ) is partial, linear, at least 2-dimensional, at least 3-rank, and Vebleian. Let $I_1$ be a projective space defined in terms of incidence. We say that $I_1$ is 2-dimensional if and only if: (Def. 14) For all lines M, N of $I_1$ there exists a point q of $I_1$ such that q lies on M and q lies on N. We introduce $I_1$ is up 3-dimensional as an antonym of $I_1$ is 2-dimensional. Let $I_1$ be a projective space defined in terms of incidence. We say that $I_1$ is at most 3 dimensional if and only if the condition (Def. 16) is satisfied. (Def. 16)<sup>5</sup> Let a be a point of $I_1$ and M, N be lines of $I_1$ . Then there exist points b, c of $I_1$ and there exists a line S of $I_1$ such that a lies on S and b lies on S and b lies on M and b lies on M. Let $I_1$ be a projective space defined in terms of incidence. We say that $I_1$ is 3-dimensional if and only if: (Def. 17) $I_1$ is at most 3 dimensional and up 3-dimensional. Let $I_1$ be a projective space defined in terms of incidence. We say that $I_1$ is Fanoian if and only if the condition (Def. 18) is satisfied. Let $I_1$ be a projective space defined in terms of incidence. We say that $I_1$ is Desarguesian if and only if the condition (Def. 19) is satisfied. (Def. 19) Let o, $b_1$ , $a_1$ , $b_2$ , $a_2$ , $b_3$ , $a_3$ , r, s, t be points of $I_1$ and $C_3$ , $C_4$ , $C_5$ , $A_1$ , $A_2$ , $A_3$ , $B_1$ , $B_2$ , $B_3$ be lines of $I_1$ . Suppose that o, $b_1$ , $a_1$ lie on $C_3$ and o, $a_2$ , $b_2$ lie on $C_4$ and o, $a_3$ , $b_3$ lie on $C_5$ and $a_3$ , $a_2$ , t lie on $A_1$ and $a_3$ , r, $a_1$ lie on $A_2$ and $a_2$ , s, $a_1$ lie on $A_3$ and t, $b_2$ , $b_3$ lie on $B_1$ and $b_1$ , r, $b_3$ lie on $B_2$ and $b_1$ , s, $b_2$ lie on $B_3$ and $C_3$ , $C_4$ , $C_5$ are mutually different and $o \neq a_1$ and $o \neq a_2$ and $o \neq a_3$ and $o \neq b_1$ and $o \neq b_2$ and $o \neq b_3$ and $o \neq b_3$ and $o \neq b_4$ and $o \neq b_5$ and $o \neq b_6$ and $o \neq b_7$ and $o \neq b_8$ b_$ Let $I_1$ be a projective space defined in terms of incidence. We say that $I_1$ is Pappian if and only if the condition (Def. 20) is satisfied. <sup>&</sup>lt;sup>5</sup> The definition (Def. 15) has been removed. (Def. 20) Let o, $a_1$ , $a_2$ , $a_3$ , $b_1$ , $b_2$ , $b_3$ , $c_1$ , $c_2$ , $c_3$ be points of $I_1$ and $A_1$ , $A_2$ , $A_3$ , $B_1$ , $B_2$ , $B_3$ , $C_3$ , $C_4$ , $C_5$ be lines of $I_1$ . Suppose that o, $a_1$ , $a_2$ , $a_3$ are mutually different and o, $b_1$ , $b_2$ , $b_3$ are mutually different and $A_3 \neq B_3$ and o lies on $A_3$ and o lies on $B_3$ and $a_2$ , $b_3$ , $c_1$ lie on $A_1$ and $a_3$ , $b_1$ , $c_2$ lie on $B_1$ and $a_1$ , $b_2$ , $c_3$ lie on $C_3$ and $a_1$ , $a_2$ , $a_3$ lie on $A_2$ and $a_3$ , $a_3$ , $a_4$ , $a_5$ lie on $a_5$ and $a_5$ , $a_5$ lie on $a_5$ lies on $a_5$ lies on $a_5$ and $a_5$ , $a_5$ lies on One can check that there exists a projective space defined in terms of incidence which is Desarguesian, Fanoian, at most 3 dimensional, and up 3-dimensional. One can check that there exists a projective space defined in terms of incidence which is Pappian, Fanoian, at most 3 dimensional, and up 3-dimensional. One can verify that there exists a projective space defined in terms of incidence which is Desarguesian, Fanoian, and 2-dimensional. Let us observe that there exists a projective space defined in terms of incidence which is Pappian, Fanoian, and 2-dimensional. ## REFERENCES - Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc\_ 1.html. - [2] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/ JFM/Vol2/anproj\_2.html. - [3] Wojciech Skaba. The collinearity structure. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/collsp.html. - [4] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - [5] Wojciech A. Trybulec. Axioms of incidency. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/incsp\_1. html. - [6] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset\_1.html. - [7] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset\_1.html. Received October 4, 1990 Published January 2, 2004