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Summary. In this article, an algebraic group on fixed-length bit integer is constructed
and its adaptation to IDEA cryptography is discussed. In the first section, we present some
selected theorems on integers. In the continuous section, we construct an algebraic group on
fixed-length integer. In the third section, operations of IDEA Cryptograms are defined and
some theorems on these operations are proved. In the fourth section, we define sequences of
IDEA Cryptogram’s operations and discuss their nature. Finally, we make a model of IDEA
Cryptogram and prove that the ciphertext that is encrypted by IDEA encryption algorithm can
be decrypted by the IDEA decryption algorithm.

MML Identifier: IDEA_1.

WWW: http://mizar.org/JFM/Vol10/idea_1.html

The articles [17], [21], [18], [19], [12], [1], [23], [22], [5], [10], [13], [7], [6], [2], [4], [16], [8], [3],
[9], [20], [15], [14], and [11] provide the notation and terminology for this paper.

1. SOME SELECTED THEOREMS ONINTEGERS

We adopt the following rules:i, j, k, n are natural numbers andx, y, z aren-tuples ofBoolean.
The following propositions are true:

(1) For alli, j, k such thatj is prime andi < j andk < j andi 6= 0 there exists a natural number
a such thata· i mod j = k anda < j.

(2) For all natural numbersn, k1, k2 such thatn 6= 0 andk1 modn = k2 modn andk1 ≤ k2 there
exists a natural numbert such thatk2−k1 = n· t.

(3) For all natural numbersa, b holdsa−b≤ a.

(4) For all natural numbersb1, b2, c such thatb2 ≤ c holdsb2−b1 ≤ c.

(5) For all natural numbersa, b, c such that 0< a and 0< b anda< c andb< c andc is prime
holdsa·bmodc 6= 0.

(6) For every non empty natural numbern holds 2n 6= 1.

2. BASIC OPERATORS OFIDEA CRYPTOGRAMS

Let us considern. The functor ZEROn yielding an-tuple ofBooleanis defined by:

(Def. 1) ZEROn = n 7→ false.
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Let us considern and letx, y be n-tuples ofBoolean. The functorx⊕ y yielding an-tuple of
Booleanis defined as follows:

(Def. 2) For everyi such thati ∈ Segn holds(x⊕y)i = xi ⊕yi .

One can prove the following propositions:

(7) For alln, x holdsx⊕x = ZEROn.

(8) For alln, x, y holdsx⊕y = y⊕x.

Let us considern and letx, y be n-tuples ofBoolean. Let us notice that the functorx⊕ y is
commutative.

One can prove the following propositions:

(9) For alln, x holds ZEROn⊕x = x.

(10) For alln, x, y, z holds(x⊕y)⊕z= x⊕ (y⊕z).

Let us considern and leti be a natural number. We say thati is expressible byn if and only if:

(Def. 3) i < 2n.

One can prove the following proposition

(11) For everyn holdsn-BinarySequence(0) = ZEROn.

Let us considern and leti, j be natural numbers. The functor ADDMOD(i, j,n) yielding a
natural number is defined by:

(Def. 4) ADD MOD(i, j,n) = (i + j)mod 2n.

Let us considern and leti be a natural number. Let us assume thati is expressible byn. The
functor NEGN(i,n) yielding a natural number is defined as follows:

(Def. 5) NEGN(i,n) = 2n− i.

Let us considern and leti be a natural number. The functor NEGMOD(i,n) yields a natural
number and is defined as follows:

(Def. 6) NEGMOD(i,n) = NEG N(i,n)mod 2n.

Next we state several propositions:

(12) If i is expressible byn, then ADD MOD(i,NEG MOD(i,n),n) = 0.

(13) ADD MOD(i, j,n) = ADD MOD( j, i,n).

(14) If i is expressible byn, then ADD MOD(0, i,n) = i.

(15) ADD MOD(ADD MOD(i, j,n),k,n) = ADD MOD(i,ADD MOD( j,k,n),n).

(16) ADD MOD(i, j,n) is expressible byn.

(17) NEGMOD(i,n) is expressible byn.

Let n, i be natural numbers. The functor ChangeVal1(i,n) yields a natural number and is
defined as follows:

(Def. 7) ChangeVal1(i,n) =
{

2n, if i = 0,
i, otherwise.

Next we state two propositions:

(18) If i is expressible byn, then ChangeVal1(i,n)≤ 2n and ChangeVal1(i,n) > 0.
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(19) Letn, a1, a2 be natural numbers. Supposea1 is expressible byn anda2 is expressible byn
and ChangeVal1(a1,n) = ChangeVal1(a2,n). Thena1 = a2.

Let us considern and leti be a natural number. The functor ChangeVal2(i,n) yields a natural
number and is defined by:

(Def. 8) ChangeVal2(i,n) =
{

0, if i = 2n,
i, otherwise.

The following two propositions are true:

(20) If i is expressible byn, then ChangeVal2(i,n) is expressible byn.

(21) For all natural numbersn, a1, a2 such thata1 6= 0 anda2 6= 0 and ChangeVal2(a1,n) =
ChangeVal2(a2,n) holdsa1 = a2.

Let us considern and leti, j be natural numbers. The functor MULMOD(i, j,n) yields a natural
number and is defined by:

(Def. 9) MUL MOD(i, j,n) = ChangeVal2(ChangeVal1(i,n) ·ChangeVal1( j,n)mod(2n+1),n).

Let n be a non empty natural number and leti be a natural number. Let us assume thati is
expressible byn and 2n + 1 is prime. The functor INVMOD(i,n) yielding a natural number is
defined as follows:

(Def. 10) MUL MOD(i, INV MOD(i,n),n) = 1 and INV MOD(i,n) is expressible byn.

We now state several propositions:

(22) MUL MOD(i, j,n) = MUL MOD( j, i,n).

(23) If i is expressible byn, then MUL MOD(1, i,n) = i.

(24) Suppose 2n + 1 is prime and i is expressible by n and j is expressible
by n and k is expressible byn. Then MUL MOD(MUL MOD(i, j,n),k,n) =
MUL MOD(i,MUL MOD( j,k,n),n).

(25) MUL MOD(i, j,n) is expressible byn.

(26) If ChangeVal2(i,n) = 1, theni = 1.

3. OPERATIONS OFIDEA CRYPTOGRAMS

Let us considernand letm, k be finite sequences of elements ofN. The functor IDEAoperationA(m,k,n)
yields a finite sequence of elements ofN and is defined by the conditions (Def. 11).

(Def. 11)(i) lenIDEAoperationA(m,k,n) = lenm, and

(ii) for every natural numberi such thati ∈dommholds if i = 1, then(IDEAoperationA(m,k,n))(i)=
MUL MOD(m(1),k(1),n) and if i = 2, then(IDEAoperationA(m,k,n))(i)= ADD MOD(m(2),k(2),n)
and if i = 3, then (IDEAoperationA(m,k,n))(i) = ADD MOD(m(3),k(3),n) and if i = 4,
then(IDEAoperationA(m,k,n))(i) = MUL MOD(m(4),k(4),n) and if i 6= 1 andi 6= 2 and
i 6= 3 andi 6= 4, then(IDEAoperationA(m,k,n))(i) = m(i).

In the sequelm, k, k1, k2 denote finite sequences of elements ofN.
Let n be a non empty natural number and letm, k be finite sequences of elements ofN. The

functor IDEAoperationB(m,k,n) yields a finite sequence of elements ofN and is defined by the
conditions (Def. 12).
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(Def. 12)(i) lenIDEAoperationB(m,k,n) = lenm, and

(ii) for every natural numberi such thati ∈dommholds if i = 1, then(IDEAoperationB(m,k,n))(i)=
Absval((n-BinarySequence(m(1)))⊕(n-BinarySequence(MUL MOD(ADD MOD(MUL MOD(Absval((n-BinarySequence(m(1)))⊕
(n-BinarySequence(m(3)))),k(5),n),Absval((n-BinarySequence(m(2)))⊕(n-BinarySequence(m(4)))),n),k(6),n))))
and if i = 2, then (IDEAoperationB(m,k,n))(i) = Absval((n-BinarySequence(m(2))) ⊕
(n-BinarySequence(ADD MOD(MUL MOD(Absval((n-BinarySequence(m(1)))⊕(n-BinarySequence(m(3)))),k(5),n),MUL MOD(ADD MOD(MUL MOD(Absval((n-BinarySequence(m(1)))⊕
(n-BinarySequence(m(3)))),k(5),n),Absval((n-BinarySequence(m(2)))⊕(n-BinarySequence(m(4)))),n),k(6),n),n))))
and if i = 3, then (IDEAoperationB(m,k,n))(i) = Absval((n-BinarySequence(m(3))) ⊕
(n-BinarySequence(MUL MOD(ADD MOD(MUL MOD(Absval((n-BinarySequence(m(1)))⊕
(n-BinarySequence(m(3)))),k(5),n),Absval((n-BinarySequence(m(2)))⊕(n-BinarySequence(m(4)))),n),k(6),n))))
and if i = 4, then (IDEAoperationB(m,k,n))(i) = Absval((n-BinarySequence(m(4))) ⊕
(n-BinarySequence(ADD MOD(MUL MOD(Absval((n-BinarySequence(m(1)))⊕(n-BinarySequence(m(3)))),k(5),n),MUL MOD(ADD MOD(MUL MOD(Absval((n-BinarySequence(m(1)))⊕
(n-BinarySequence(m(3)))),k(5),n),Absval((n-BinarySequence(m(2)))⊕(n-BinarySequence(m(4)))),n),k(6),n),n))))
and if i 6= 1 andi 6= 2 andi 6= 3 andi 6= 4, then(IDEAoperationB(m,k,n))(i) = m(i).

Let m be a finite sequence of elements ofN. The functor IDEAoperationCm yielding a finite
sequence of elements ofN is defined by:

(Def. 13) lenIDEAoperationCm = lenm and for every natural numberi such thati ∈ domm holds
(IDEAoperationCm)(i) = (i = 2→m(3),(i = 3→m(2),m(i))).

One can prove the following propositions:

(27) Suppose lenm≥ 4. Then

(i) (IDEAoperationA(m,k,n))(1) is expressible byn,

(ii) (IDEAoperationA(m,k,n))(2) is expressible byn,

(iii) (IDEAoperationA(m,k,n))(3) is expressible byn, and

(iv) (IDEAoperationA(m,k,n))(4) is expressible byn.

(28) Letn be a non empty natural number. Suppose lenm≥ 4. Then

(i) (IDEAoperationB(m,k,n))(1) is expressible byn,

(ii) (IDEAoperationB(m,k,n))(2) is expressible byn,

(iii) (IDEAoperationB(m,k,n))(3) is expressible byn, and

(iv) (IDEAoperationB(m,k,n))(4) is expressible byn.

(29) Suppose that

(i) lenm≥ 4,

(ii) m(1) is expressible byn,

(iii) m(2) is expressible byn,

(iv) m(3) is expressible byn, and

(v) m(4) is expressible byn.

Then

(vi) (IDEAoperationCm)(1) is expressible byn,

(vii) (IDEAoperationCm)(2) is expressible byn,

(viii) (IDEAoperationCm)(3) is expressible byn, and

(ix) (IDEAoperationCm)(4) is expressible byn.

(30) Let n be a non empty natural number and givenm, k1, k2. Suppose that
2n + 1 is prime and lenm ≥ 4 and m(1) is expressible byn and m(2) is ex-
pressible by n and m(3) is expressible byn and m(4) is expressible byn and
k1(1) is expressible byn and k1(2) is expressible byn and k1(3) is expressible
by n and k1(4) is expressible byn and k2(1) = INV MOD(k1(1),n) and k2(2) =
NEG MOD(k1(2),n) and k2(3) = NEG MOD(k1(3),n) and k2(4) = INV MOD(k1(4),n).
Then IDEAoperationA(IDEAoperationA(m,k1,n),k2,n) = m.
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(31) Let n be a non empty natural number and givenm, k1, k2. Suppose that
2n + 1 is prime and lenm ≥ 4 and m(1) is expressible byn and m(2) is ex-
pressible by n and m(3) is expressible byn and m(4) is expressible byn and
k1(1) is expressible byn and k1(2) is expressible byn and k1(3) is expressible
by n and k1(4) is expressible byn and k2(1) = INV MOD(k1(1),n) and k2(2) =
NEG MOD(k1(3),n) and k2(3) = NEG MOD(k1(2),n) and k2(4) = INV MOD(k1(4),n).
Then IDEAoperationA(IDEAoperationCIDEAoperationA(IDEAoperationCm,k1,n),k2,n)=
m.

(32) Letn be a non empty natural number and givenm, k1, k2. Suppose that 2n +1 is prime and
lenm≥ 4 andm(1) is expressible byn andm(2) is expressible byn andm(3) is expressible by
n andm(4) is expressible byn andk1(5) is expressible byn andk1(6) is expressible byn and
k2(5) = k1(5) andk2(6) = k1(6). Then IDEAoperationB(IDEAoperationB(m,k1,n),k2,n) =
m.

(33) For everym such that lenm≥ 4 holds IDEAoperationCIDEAoperationCm= m.

4. SEQUENCES OFIDEA CRYPTOGRAM’ S OPERATIONS

The set MESSAGES is defined as follows:

(Def. 14) MESSAGES= N∗.

Let us note that MESSAGES is non empty.
Let us observe that every element of MESSAGES is function-like and relation-like.
Let us mention that every element of MESSAGES is finite sequence-like.
Let n be a non empty natural number and let us considerk. The functor IDEAP(k,n) yields a

function from MESSAGES into MESSAGES and is defined as follows:

(Def. 15) For everymholds(IDEA P(k,n))(m)= IDEAoperationA(IDEAoperationCIDEAoperationB(m,k,n),k,n).

Let n be a non empty natural number and let us considerk. The functor IDEAQ(k,n) yields a
function from MESSAGES into MESSAGES and is defined as follows:

(Def. 16) For everymholds(IDEA Q(k,n))(m)= IDEAoperationB(IDEAoperationA(IDEAoperationCm,k,n),k,n).

Let r, l1 be natural numbers, letn be a non empty natural number, and letK1 be a matrix overN
of dimensionl1 × 6. The functor IDEAP F(K1,n, r) yields a finite sequence and is defined by:

(Def. 17) lenIDEAP F(K1,n, r) = r and for everyi such thati ∈ domIDEA P F(K1,n, r) holds
(IDEA P F(K1,n, r))(i) = IDEA P(Line(K1, i),n).

Let r, l1 be natural numbers, letn be a non empty natural number, and letK1 be a matrix overN
of dimensionl1 × 6. Observe that IDEAP F(K1,n, r) is function yielding.

Let r, l1 be natural numbers, letn be a non empty natural number, and letK1 be a matrix overN
of dimensionl1 × 6. The functor IDEAQ F(K1,n, r) yields a finite sequence and is defined by:

(Def. 18) lenIDEAQ F(K1,n, r) = r and for everyi such thati ∈ domIDEA Q F(K1,n, r) holds
(IDEA Q F(K1,n, r))(i) = IDEA Q(Line(K1,(r−′ i)+1),n).

Let r, l1 be natural numbers, letn be a non empty natural number, and letK1 be a matrix overN
of dimensionl1 × 6. One can check that IDEAQ F(K1,n, r) is function yielding.

Let us considerk, n. The functor IDEAPS(k,n) yields a function from MESSAGES into
MESSAGES and is defined as follows:

(Def. 19) For everym holds(IDEA PS(k,n))(m) = IDEAoperationA(m,k,n).

Let us considerk, n. The functor IDEAQS(k,n) yields a function from MESSAGES into
MESSAGES and is defined by:

(Def. 20) For everym holds(IDEA QS(k,n))(m) = IDEAoperationA(m,k,n).
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Let n be a non empty natural number and let us considerk. The functor IDEAPE(k,n) yields a
function from MESSAGES into MESSAGES and is defined by:

(Def. 21) For everymholds(IDEA PE(k,n))(m)= IDEAoperationA(IDEAoperationB(m,k,n),k,n).

Let n be a non empty natural number and let us considerk. The functor IDEAQE(k,n) yields a
function from MESSAGES into MESSAGES and is defined by:

(Def. 22) For everymholds(IDEA QE(k,n))(m)= IDEAoperationB(IDEAoperationA(m,k,n),k,n).

One can prove the following propositions:

(34) Letn be a non empty natural number and givenm, k1, k2. Suppose that 2n +1 is prime and
lenm≥ 4 andm(1) is expressible byn andm(2) is expressible byn andm(3) is expressible
by n andm(4) is expressible byn andk1(1) is expressible byn andk1(2) is expressible byn
andk1(3) is expressible byn andk1(4) is expressible byn andk1(5) is expressible byn and
k1(6) is expressible byn andk2(1) = INV MOD(k1(1),n) andk2(2) = NEG MOD(k1(3),n)
andk2(3) = NEG MOD(k1(2),n) andk2(4) = INV MOD(k1(4),n) andk2(5) = k1(5) and
k2(6) = k1(6). Then(IDEA Q(k2,n) · IDEA P(k1,n))(m) = m.

(35) Let n be a non empty natural number and givenm, k1, k2. Suppose that 2n + 1 is prime
and lenm≥ 4 andm(1) is expressible byn and m(2) is expressible byn and m(3) is ex-
pressible byn andm(4) is expressible byn andk1(1) is expressible byn andk1(2) is ex-
pressible byn and k1(3) is expressible byn and k1(4) is expressible byn and k2(1) =
INV MOD(k1(1),n) and k2(2) = NEG MOD(k1(2),n) and k2(3) = NEG MOD(k1(3),n)
andk2(4) = INV MOD(k1(4),n). Then(IDEA QS(k2,n) · IDEA PS(k1,n))(m) = m.

(36) Letn be a non empty natural number and givenm, k1, k2. Suppose that 2n +1 is prime and
lenm≥ 4 andm(1) is expressible byn andm(2) is expressible byn andm(3) is expressible
by n andm(4) is expressible byn andk1(1) is expressible byn andk1(2) is expressible byn
andk1(3) is expressible byn andk1(4) is expressible byn andk1(5) is expressible byn and
k1(6) is expressible byn andk2(1) = INV MOD(k1(1),n) andk2(2) = NEG MOD(k1(2),n)
andk2(3) = NEG MOD(k1(3),n) andk2(4) = INV MOD(k1(4),n) andk2(5) = k1(5) and
k2(6) = k1(6). Then(IDEA QE(k2,n) · IDEA PE(k1,n))(m) = m.

(37) Let n be a non empty natural number,l1 be a natural number,K1 be a matrix over
N of dimension l1 × 6, and k be a natural number. Then IDEAP F(K1,n,k + 1) =
(IDEA P F(K1,n,k))a 〈IDEA P(Line(K1,k+1),n)〉.

(38) Let n be a non empty natural number,l1 be a natural number,K1 be a matrix over
N of dimension l1 × 6, and k be a natural number. Then IDEAQ F(K1,n,k + 1) =
〈IDEA Q(Line(K1,k+1),n)〉a IDEA Q F(K1,n,k).

(39) Let n be a non empty natural number,l1 be a natural number,K1 be a matrix overN of
dimensionl1 × 6, andk be a natural number. Then IDEAP F(K1,n,k) is a composable finite
sequence.

(40) Let n be a non empty natural number,l1 be a natural number,K1 be a matrix overN of
dimensionl1 × 6, andk be a natural number. Then IDEAQ F(K1,n,k) is a composable finite
sequence.

(41) Let n be a non empty natural number,l1 be a natural number,K1 be a matrix overN
of dimensionl1 × 6, andk be a natural number. Ifk 6= 0, then IDEA P F(K1,n,k) is a
composable sequence from MESSAGES into MESSAGES.

(42) Let n be a non empty natural number,l1 be a natural number,K1 be a matrix overN
of dimensionl1 × 6, andk be a natural number. Ifk 6= 0, then IDEA Q F(K1,n,k) is a
composable sequence from MESSAGES into MESSAGES.
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(43) Letn be a non empty natural number,M be a finite sequence of elements ofN, and given
m, k. SupposeM = (IDEA P(k,n))(m) and lenm≥ 4. Then

(i) lenM ≥ 4,

(ii) M(1) is expressible byn,

(iii) M(2) is expressible byn,

(iv) M(3) is expressible byn, and

(v) M(4) is expressible byn.

(44) Letn be a non empty natural number,l1 be a natural number,K1 be a matrix overN of di-
mensionl1 × 6, andr be a natural number. Then rngcomposeMESSAGESIDEA P F(K1,n, r)⊆
MESSAGES and domcomposeMESSAGESIDEA P F(K1,n, r) = MESSAGES.

(45) Letn be a non empty natural number,l1 be a natural number,K1 be a matrix overN of di-
mensionl1× 6, andr be a natural number. Then rngcomposeMESSAGESIDEA Q F(K1,n, r)⊆
MESSAGES and domcomposeMESSAGESIDEA Q F(K1,n, r) = MESSAGES.

(46) Let n be a non empty natural number,m be a finite sequence of elements ofN, l1 be a
natural number,K1 be a matrix overN of dimensionl1 × 6, r be a natural number, andM be
a finite sequence of elements ofN. If M = (composeMESSAGESIDEA P F(K1,n, r))(m) and
lenm≥ 4, then lenM ≥ 4.

(47) Let n be a non empty natural number,l1 be a natural number,K1 be a matrix overN of
dimensionl1 × 6, r be a natural number,M be a finite sequence of elements ofN, and given
m. Suppose that

(i) M = (composeMESSAGESIDEA P F(K1,n, r))(m),

(ii) lenm≥ 4,

(iii) m(1) is expressible byn,

(iv) m(2) is expressible byn,

(v) m(3) is expressible byn, and

(vi) m(4) is expressible byn.

Then

(vii) lenM ≥ 4,

(viii) M(1) is expressible byn,

(ix) M(2) is expressible byn,

(x) M(3) is expressible byn, and

(xi) M(4) is expressible byn.

5. MODELING OF IDEA CRYPTOGRAM

We now state two propositions:

(48) Letn be a non empty natural number,l1 be a natural number,K2, K3 be matrices overN
of dimensionl1 × 6, r be a natural number, and givenm. Suppose thatl1 ≥ r and 2n + 1
is prime and lenm≥ 4 andm(1) is expressible byn andm(2) is expressible byn andm(3)
is expressible byn andm(4) is expressible byn and for every natural numberi such that
i ≤ r holds K2 ◦ (i,1) is expressible byn and K2 ◦ (i,2) is expressible byn and K2 ◦ (i,3)
is expressible byn andK2 ◦ (i,4) is expressible byn andK2 ◦ (i,5) is expressible byn and
K2 ◦ (i,6) is expressible byn andK3 ◦ (i,1) is expressible byn andK3 ◦ (i,2) is expressible
by n andK3 ◦ (i,3) is expressible byn andK3 ◦ (i,4) is expressible byn andK3 ◦ (i,5) is
expressible byn andK3 ◦ (i,6) is expressible byn andK3 ◦ (i,1) = INV MOD(K2 ◦ (i,1),n)
and K3 ◦ (i,2) = NEG MOD(K2 ◦ (i,3),n) and K3 ◦ (i,3) = NEG MOD(K2 ◦ (i,2),n) and
K3 ◦ (i,4) = INV MOD(K2 ◦ (i,4),n) andK2 ◦ (i,5) = K3 ◦ (i,5) andK2 ◦ (i,6) = K3 ◦ (i,6).
Then(composeMESSAGES((IDEA P F(K2,n, r))a IDEA Q F(K3,n, r)))(m) = m.
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(49) Letn be a non empty natural number,l1 be a natural number,K2, K3 be matrices overN of
dimensionl1 × 6, r be a natural number,k3, k4, k5, k6 be finite sequences of elements ofN,
and givenm. Suppose thatl1≥ r and 2n+1 is prime and lenm≥ 4 andm(1) is expressible by
n andm(2) is expressible byn andm(3) is expressible byn andm(4) is expressible byn and
for every natural numberi such thati ≤ r holdsK2 ◦ (i,1) is expressible byn andK2 ◦ (i,2)
is expressible byn andK2 ◦ (i,3) is expressible byn andK2 ◦ (i,4) is expressible byn and
K2 ◦ (i,5) is expressible byn andK2 ◦ (i,6) is expressible byn andK3 ◦ (i,1) is expressible
by n andK3 ◦ (i,2) is expressible byn andK3 ◦ (i,3) is expressible byn andK3 ◦ (i,4) is
expressible byn andK3 ◦ (i,5) is expressible byn andK3 ◦ (i,6) is expressible byn andK3 ◦
(i,1) = INV MOD(K2 ◦ (i,1),n) andK3 ◦ (i,2) = NEG MOD(K2 ◦ (i,3),n) andK3 ◦ (i,3) =
NEG MOD(K2◦(i,2),n) andK3◦(i,4) = INV MOD(K2◦(i,4),n) andK2◦(i,5) = K3◦(i,5)
andK2◦(i,6) = K3◦(i,6) andk3(1) is expressible byn andk3(2) is expressible byn andk3(3)
is expressible byn andk3(4) is expressible byn andk4(1) = INV MOD(k3(1),n) andk4(2) =
NEG MOD(k3(2),n) and k4(3) = NEG MOD(k3(3),n) and k4(4) = INV MOD(k3(4),n)
and k5(1) is expressible byn and k5(2) is expressible byn and k5(3) is expressible
by n and k5(4) is expressible byn and k5(5) is expressible byn and k5(6) is express-
ible by n andk6(1) = INV MOD(k5(1),n) andk6(2) = NEG MOD(k5(2),n) andk6(3) =
NEG MOD(k5(3),n) and k6(4) = INV MOD(k5(4),n) and k6(5) = k5(5) and k6(6) =
k5(6). Then (IDEA QS(k4,n) · (composeMESSAGESIDEA Q F(K3,n, r) · (IDEA QE(k6,n) ·
(IDEA PE(k5,n) · (composeMESSAGESIDEA P F(K2,n, r) · IDEA PS(k3,n))))))(m) = m.
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