Algebraic Group on Fixed-length Bit Integer and its Adaptation to IDEA Cryptography

Yasushi Fuwa Shinshu University Nagano Yoshinori Fujisawa Shinshu University Nagano

Summary. In this article, an algebraic group on fixed-length bit integer is constructed and its adaptation to IDEA cryptography is discussed. In the first section, we present some selected theorems on integers. In the continuous section, we construct an algebraic group on fixed-length integer. In the third section, operations of IDEA Cryptograms are defined and some theorems on these operations are proved. In the fourth section, we define sequences of IDEA Cryptogram's operations and discuss their nature. Finally, we make a model of IDEA Cryptogram and prove that the ciphertext that is encrypted by IDEA encryption algorithm can be decrypted by the IDEA decryption algorithm.

MML Identifier: IDEA_1.
WWW: http://mizar.org/JFM/Vol10/idea_1.html

The articles [17], [21], [18], [19], [12], [1], [23], [22], [5], [10], [13], [7], [6], [2], [4], [16], [8], [3], [9], [20], [15], [14], and [11] provide the notation and terminology for this paper.

1. Some Selected Theorems on Integers

We adopt the following rules: *i*, *j*, *k*, *n* are natural numbers and *x*, *y*, *z* are *n*-tuples of *Boolean*. The following propositions are true:

- (1) For all *i*, *j*, *k* such that *j* is prime and i < j and k < j and $i \neq 0$ there exists a natural number *a* such that $a \cdot i \mod j = k$ and a < j.
- (2) For all natural numbers n, k_1 , k_2 such that $n \neq 0$ and $k_1 \mod n = k_2 \mod n$ and $k_1 \leq k_2$ there exists a natural number t such that $k_2 k_1 = n \cdot t$.
- (3) For all natural numbers a, b holds $a b \le a$.
- (4) For all natural numbers b_1 , b_2 , c such that $b_2 \le c$ holds $b_2 b_1 \le c$.
- (5) For all natural numbers a, b, c such that 0 < a and 0 < b and a < c and b < c and c is prime holds $a \cdot b \mod c \neq 0$.
- (6) For every non empty natural number *n* holds $2^n \neq 1$.

2. BASIC OPERATORS OF IDEA CRYPTOGRAMS

Let us consider *n*. The functor ZERO*n* yielding a *n*-tuple of *Boolean* is defined by:

(Def. 1) ZERO $n = n \mapsto false$.

Let us consider *n* and let *x*, *y* be *n*-tuples of *Boolean*. The functor $x \oplus y$ yielding a *n*-tuple of *Boolean* is defined as follows:

(Def. 2) For every *i* such that $i \in \text{Seg } n$ holds $(x \oplus y)_i = x_i \oplus y_i$.

One can prove the following propositions:

- (7) For all n, x holds $x \oplus x = \text{ZERO} n$.
- (8) For all *n*, *x*, *y* holds $x \oplus y = y \oplus x$.

Let us consider *n* and let *x*, *y* be *n*-tuples of *Boolean*. Let us notice that the functor $x \oplus y$ is commutative.

One can prove the following propositions:

- (9) For all *n*, *x* holds ZERO $n \oplus x = x$.
- (10) For all *n*, *x*, *y*, *z* holds $(x \oplus y) \oplus z = x \oplus (y \oplus z)$.

Let us consider n and let i be a natural number. We say that i is expressible by n if and only if:

(Def. 3) $i < 2^n$.

One can prove the following proposition

(11) For every *n* holds *n*-BinarySequence(0) = ZERO n.

Let us consider *n* and let *i*, *j* be natural numbers. The functor ADD_MOD(i, j, n) yielding a natural number is defined by:

(Def. 4) ADD_MOD $(i, j, n) = (i + j) \mod 2^n$.

Let us consider *n* and let *i* be a natural number. Let us assume that *i* is expressible by *n*. The functor NEG_N(*i*, *n*) yielding a natural number is defined as follows:

(Def. 5) NEG_N(i, n) = $2^n - i$.

Let us consider *n* and let *i* be a natural number. The functor NEG_MOD(*i*,*n*) yields a natural number and is defined as follows:

(Def. 6) NEG_MOD $(i,n) = NEG_N(i,n) \mod 2^n$.

Next we state several propositions:

- (12) If *i* is expressible by *n*, then ADD_MOD $(i, \text{NEG}_MOD(i, n), n) = 0$.
- (13) $ADD_MOD(i, j, n) = ADD_MOD(j, i, n).$
- (14) If *i* is expressible by *n*, then ADD_MOD(0, i, n) = i.
- (15) ADD_MOD(ADD_MOD(i, j, n), k, n) = ADD_MOD($i, ADD_MOD(j, k, n), n$).
- (16) ADD_MOD(i, j, n) is expressible by n.
- (17) NEG_MOD(i, n) is expressible by n.

Let *n*, *i* be natural numbers. The functor ChangeVal_1(i,n) yields a natural number and is defined as follows:

(Def. 7) ChangeVal_1 $(i,n) = \begin{cases} 2^n, \text{ if } i = 0, \\ i, \text{ otherwise.} \end{cases}$

Next we state two propositions:

(18) If *i* is expressible by *n*, then ChangeVal_1(*i*,*n*) $\leq 2^n$ and ChangeVal_1(*i*,*n*) > 0.

(19) Let n, a_1, a_2 be natural numbers. Suppose a_1 is expressible by n and a_2 is expressible by n and ChangeVal_1 (a_1, n) = ChangeVal_1 (a_2, n) . Then $a_1 = a_2$.

Let us consider *n* and let *i* be a natural number. The functor ChangeVal_2(i,n) yields a natural number and is defined by:

(Def. 8) ChangeVal_2(*i*, *n*) =
$$\begin{cases} 0, \text{ if } i = 2^n, \\ i, \text{ otherwise.} \end{cases}$$

The following two propositions are true:

- (20) If *i* is expressible by *n*, then ChangeVal_2(i,n) is expressible by *n*.
- (21) For all natural numbers n, a_1 , a_2 such that $a_1 \neq 0$ and $a_2 \neq 0$ and ChangeVal_2 $(a_1, n) =$ ChangeVal_2 (a_2, n) holds $a_1 = a_2$.

Let us consider *n* and let *i*, *j* be natural numbers. The functor $MUL_MOD(i, j, n)$ yields a natural number and is defined by:

(Def. 9) MUL_MOD(i, j, n) = ChangeVal_2(ChangeVal_1(i, n) · ChangeVal_1(j, n) mod $(2^n + 1), n$).

Let *n* be a non empty natural number and let *i* be a natural number. Let us assume that *i* is expressible by *n* and $2^n + 1$ is prime. The functor INV_MOD(*i*,*n*) yielding a natural number is defined as follows:

(Def. 10) MUL_MOD $(i, INV_MOD(i, n), n) = 1$ and INV_MOD(i, n) is expressible by n.

We now state several propositions:

- (22) $MUL_MOD(i, j, n) = MUL_MOD(j, i, n).$
- (23) If *i* is expressible by *n*, then MUL_MOD(1, i, n) = i.
- (24) Suppose $2^n + 1$ is prime and *i* is expressible by *n* and *j* is expressible by *n* and *k* is expressible by *n*. Then MUL_MOD(MUL_MOD(*i*, *j*, *n*), *k*, *n*) = MUL_MOD(*i*, MUL_MOD(*j*, *k*, *n*), *n*).
- (25) MUL_MOD(i, j, n) is expressible by n.
- (26) If ChangeVal_2(i, n) = 1, then i = 1.

3. OPERATIONS OF IDEA CRYPTOGRAMS

Let us consider *n* and let *m*, *k* be finite sequences of elements of \mathbb{N} . The functor IDEAoperationA(*m*,*k*,*n*) yields a finite sequence of elements of \mathbb{N} and is defined by the conditions (Def. 11).

(Def. 11)(i) len IDEA operation A(m,k,n) = len m, and

(ii) for every natural number *i* such that $i \in \text{dom} m$ holds if i = 1, then (IDEAoperationA(m,k,n)) $(i) = MUL_MOD(m(1),k(1),n)$ and if i = 2, then (IDEAoperationA(m,k,n)) $(i) = ADD_MOD(m(2),k(2),n)$ and if i = 3, then (IDEAoperationA(m,k,n)) $(i) = ADD_MOD(m(3),k(3),n)$ and if i = 4, then (IDEAoperationA(m,k,n)) $(i) = MUL_MOD(m(4),k(4),n)$ and if $i \neq 1$ and $i \neq 2$ and $i \neq 3$ and $i \neq 4$, then (IDEAoperationA(m,k,n))(i) = m(i).

In the sequel *m*, *k*, k_1 , k_2 denote finite sequences of elements of \mathbb{N} .

Let *n* be a non empty natural number and let *m*, *k* be finite sequences of elements of \mathbb{N} . The functor IDEAoperationB(m,k,n) yields a finite sequence of elements of \mathbb{N} and is defined by the conditions (Def. 12).

- (Def. 12)(i) len IDEA operation B(m, k, n) = len m, and

Let *m* be a finite sequence of elements of \mathbb{N} . The functor IDEAoperationC*m* yielding a finite sequence of elements of \mathbb{N} is defined by:

(Def. 13) len IDEA operation
$$Cm = \text{len}m$$
 and for every natural number *i* such that $i \in \text{dom}m$ holds
(IDEA operation Cm) $(i) = (i = 2 \rightarrow m(3), (i = 3 \rightarrow m(2), m(i)))$.

One can prove the following propositions:

- (27) Suppose len $m \ge 4$. Then
 - (i) (IDEAoperationA(m,k,n))(1) is expressible by n,
- (ii) (IDEAoperationA(m, k, n))(2) is expressible by n,
- (iii) (IDEAoperationA(m,k,n))(3) is expressible by *n*, and
- (iv) (IDEAoperationA(m,k,n))(4) is expressible by n.
- (28) Let *n* be a non empty natural number. Suppose len $m \ge 4$. Then
- (i) (IDEAoperationB(m,k,n))(1) is expressible by n,
- (ii) (IDEAoperationB(m,k,n))(2) is expressible by n,
- (iii) (IDEAoperationB(m,k,n))(3) is expressible by n, and
- (iv) (IDEAoperation B(m, k, n))(4) is expressible by n.
- (29) Suppose that
- (i) $\operatorname{len} m \geq 4$,
- (ii) m(1) is expressible by n,
- (iii) m(2) is expressible by n,
- (iv) m(3) is expressible by *n*, and
- (v) m(4) is expressible by n.

Then

- (vi) (IDEAoperationCm)(1) is expressible by n,
- (vii) (IDEAoperationCm)(2) is expressible by n,
- (viii) (IDEAoperation Cm)(3) is expressible by n, and
- (ix) (IDEAoperationCm)(4) is expressible by n.
- (30) Let *n* be a non empty natural number and given *m*, k_1 , k_2 . Suppose that $2^n + 1$ is prime and len $m \ge 4$ and m(1) is expressible by *n* and m(2) is expressible by *n* and m(3) is expressible by *n* and m(4) is expressible by *n* and $k_1(1)$ is expressible by *n* and $k_1(2)$ is expressible by *n* and $k_1(3)$ is expressible by *n* and $k_1(4)$ is expressible by *n* and $k_2(1) = \text{INV}_{\text{MOD}}(k_1(1), n)$ and $k_2(2) = \text{NEG}_{\text{MOD}}(k_1(2), n)$ and $k_2(3) = \text{NEG}_{\text{MOD}}(k_1(3), n)$ and $k_2(4) = \text{INV}_{\text{MOD}}(k_1(4), n)$. Then IDEAoperationA(IDEAoperationA(m, k_1, n), k_2, n) = m.

- (31) Let *n* be a non empty natural number and given *m*, k_1 , k_2 . Suppose that $2^n + 1$ is prime and len $m \ge 4$ and m(1) is expressible by *n* and m(2) is expressible by *n* and m(3) is expressible by *n* and m(4) is expressible by *n* and $k_1(1)$ is expressible by *n* and $k_1(2)$ is expressible by *n* and $k_1(3)$ is expressible by *n* and $k_1(4)$ is expressible by *n* and $k_2(1) = INV_MOD(k_1(1),n)$ and $k_2(2) = NEG_MOD(k_1(3),n)$ and $k_2(3) = NEG_MOD(k_1(2),n)$ and $k_2(4) = INV_MOD(k_1(4),n)$. Then IDEAoperationA(IDEAoperationCIDEAoperationA(IDEAoperationC*m*, k_1,n), k_2,n) = *m*.
- (32) Let *n* be a non empty natural number and given *m*, k_1 , k_2 . Suppose that $2^n + 1$ is prime and len $m \ge 4$ and m(1) is expressible by *n* and m(2) is expressible by *n* and m(3) is expressible by *n* and m(4) is expressible by *n* and $k_1(5)$ is expressible by *n* and $k_1(6)$ is expressible by *n* and $k_2(5) = k_1(5)$ and $k_2(6) = k_1(6)$. Then IDEAoperationB(IDEAoperationB(m, k_1, n), k_2, n) = *m*.
- (33) For every *m* such that $\text{len } m \ge 4$ holds IDEAoperationCIDEAoperationC*m* = *m*.

4. SEQUENCES OF IDEA CRYPTOGRAM'S OPERATIONS

The set MESSAGES is defined as follows:

(Def. 14) MESSAGES = \mathbb{N}^* .

Let us note that MESSAGES is non empty.

Let us observe that every element of MESSAGES is function-like and relation-like.

Let us mention that every element of MESSAGES is finite sequence-like.

Let *n* be a non empty natural number and let us consider *k*. The functor IDEA_P(k, n) yields a function from MESSAGES into MESSAGES and is defined as follows:

(Def. 15) For every *m* holds (IDEA_P(k, n))(m) = IDEA operationA(IDEA operationCIDEA operationB(m, k, n), k, n).

Let *n* be a non empty natural number and let us consider *k*. The functor IDEA_Q(k,n) yields a function from MESSAGES into MESSAGES and is defined as follows:

(Def. 16) For every *m* holds (IDEA₋Q(k,n))(*m*) = IDEAoperationB(IDEAoperationA(IDEAoperationC*m*, *k*, *n*), *k*, *n*).

Let r, l_1 be natural numbers, let n be a non empty natural number, and let K_1 be a matrix over \mathbb{N} of dimension $l_1 \times 6$. The functor IDEA_P_F(K_1, n, r) yields a finite sequence and is defined by:

(Def. 17) len IDEA_P_F(K_1, n, r) = r and for every i such that $i \in \text{dom IDEA_P}_F(K_1, n, r)$ holds (IDEA_P_F(K_1, n, r)) $(i) = \text{IDEA}_P(\text{Line}(K_1, i), n)$.

Let *r*, l_1 be natural numbers, let *n* be a non empty natural number, and let K_1 be a matrix over \mathbb{N} of dimension $l_1 \times 6$. Observe that IDEA_P_F(K_1, n, r) is function yielding.

Let r, l_1 be natural numbers, let n be a non empty natural number, and let K_1 be a matrix over \mathbb{N} of dimension $l_1 \times 6$. The functor IDEA_Q_F(K_1, n, r) yields a finite sequence and is defined by:

(Def. 18) len IDEA_Q_F(K_1, n, r) = r and for every i such that $i \in \text{dom IDEA}_Q_F(K_1, n, r)$ holds (IDEA_Q_F(K_1, n, r)) $(i) = \text{IDEA}_Q(\text{Line}(K_1, (r - i) + 1), n).$

Let *r*, l_1 be natural numbers, let *n* be a non empty natural number, and let K_1 be a matrix over \mathbb{N} of dimension $l_1 \times 6$. One can check that IDEA_Q_F(K_1, n, r) is function yielding.

Let us consider k, n. The functor IDEA_PS(k,n) yields a function from MESSAGES into MESSAGES and is defined as follows:

(Def. 19) For every *m* holds (IDEA_PS(k,n))(m) = IDEAoperationA(m,k,n).

Let us consider k, n. The functor IDEA_QS(k,n) yields a function from MESSAGES into MESSAGES and is defined by:

(Def. 20) For every *m* holds (IDEA₋QS(k, n))(m) = IDEAoperationA(m, k, n).

Let *n* be a non empty natural number and let us consider *k*. The functor IDEA_PE(k, n) yields a function from MESSAGES into MESSAGES and is defined by:

(Def. 21) For every *m* holds (IDEA_PE(k, n))(*m*) = IDEAoperationA(IDEAoperationB(m, k, n), k, n).

Let *n* be a non empty natural number and let us consider *k*. The functor $IDEA_QE(k,n)$ yields a function from MESSAGES into MESSAGES and is defined by:

(Def. 22) For every *m* holds (IDEA_QE(k, n))(m) = IDEAoperationB(IDEAoperationA(m, k, n), k, n).

One can prove the following propositions:

- (34) Let *n* be a non empty natural number and given *m*, k_1 , k_2 . Suppose that $2^n + 1$ is prime and len $m \ge 4$ and m(1) is expressible by *n* and m(2) is expressible by *n* and m(3) is expressible by *n* and m(4) is expressible by *n* and $k_1(1)$ is expressible by *n* and $k_1(2)$ is expressible by *n* and $k_1(3)$ is expressible by *n* and $k_1(4)$ is expressible by *n* and $k_1(5)$ is expressible by *n* and $k_1(6)$ is expressible by *n* and $k_2(1) = INV_MOD(k_1(1), n)$ and $k_2(2) = NEG_MOD(k_1(3), n)$ and $k_2(3) = NEG_MOD(k_1(2), n)$ and $k_2(4) = INV_MOD(k_1(4), n)$ and $k_2(5) = k_1(5)$ and $k_2(6) = k_1(6)$. Then (IDEA_Q(k_2, n) \cdot IDEA_P(k_1, n))(m) = m.
- (35) Let *n* be a non empty natural number and given *m*, k_1 , k_2 . Suppose that $2^n + 1$ is prime and len $m \ge 4$ and m(1) is expressible by *n* and m(2) is expressible by *n* and m(3) is expressible by *n* and m(4) is expressible by *n* and $k_1(1)$ is expressible by *n* and $k_1(2)$ is expressible by *n* and $k_1(3)$ is expressible by *n* and $k_1(4)$ is expressible by *n* and $k_2(1) =$ INV_MOD($k_1(1), n$) and $k_2(2) =$ NEG_MOD($k_1(2), n$) and $k_2(3) =$ NEG_MOD($k_1(3), n$) and $k_2(4) =$ INV_MOD($k_1(4), n$). Then (IDEA_QS(k_2, n) · IDEA_PS(k_1, n))(m) = m.
- (36) Let *n* be a non empty natural number and given *m*, k_1 , k_2 . Suppose that $2^n + 1$ is prime and len $m \ge 4$ and m(1) is expressible by *n* and m(2) is expressible by *n* and m(3) is expressible by *n* and m(4) is expressible by *n* and $k_1(1)$ is expressible by *n* and $k_1(2)$ is expressible by *n* and $k_1(3)$ is expressible by *n* and $k_1(4)$ is expressible by *n* and $k_1(5)$ is expressible by *n* and $k_1(6)$ is expressible by *n* and $k_2(1) = INV_MOD(k_1(1), n)$ and $k_2(2) = NEG_MOD(k_1(2), n)$ and $k_2(3) = NEG_MOD(k_1(3), n)$ and $k_2(4) = INV_MOD(k_1(4), n)$ and $k_2(5) = k_1(5)$ and $k_2(6) = k_1(6)$. Then (IDEA_QE(k_2, n) \cdot IDEA_PE(k_1, n))(m) = m.
- (37) Let *n* be a non empty natural number, l_1 be a natural number, K_1 be a matrix over \mathbb{N} of dimension $l_1 \times 6$, and *k* be a natural number. Then IDEA_P_F($K_1, n, k+1$) = (IDEA_P_F(K_1, n, k)) \cap (IDEA_P(Line($K_1, k+1$), *n*)).
- (38) Let *n* be a non empty natural number, l_1 be a natural number, K_1 be a matrix over \mathbb{N} of dimension $l_1 \times 6$, and *k* be a natural number. Then IDEA_Q_F($K_1, n, k+1$) = $\langle \text{IDEA}_Q(\text{Line}(K_1, k+1), n) \rangle \cap \text{IDEA}_Q F(K_1, n, k)$.
- (39) Let *n* be a non empty natural number, l_1 be a natural number, K_1 be a matrix over \mathbb{N} of dimension $l_1 \times 6$, and *k* be a natural number. Then IDEA_P_F(K_1, n, k) is a composable finite sequence.
- (40) Let *n* be a non empty natural number, l_1 be a natural number, K_1 be a matrix over \mathbb{N} of dimension $l_1 \times 6$, and *k* be a natural number. Then IDEA_Q_F(K_1, n, k) is a composable finite sequence.
- (41) Let *n* be a non empty natural number, l_1 be a natural number, K_1 be a matrix over \mathbb{N} of dimension $l_1 \times 6$, and *k* be a natural number. If $k \neq 0$, then IDEA_P_F(K_1, n, k) is a composable sequence from MESSAGES into MESSAGES.
- (42) Let *n* be a non empty natural number, l_1 be a natural number, K_1 be a matrix over \mathbb{N} of dimension $l_1 \times 6$, and *k* be a natural number. If $k \neq 0$, then IDEA_Q_F(K_1, n, k) is a composable sequence from MESSAGES into MESSAGES.

- (43) Let *n* be a non empty natural number, *M* be a finite sequence of elements of \mathbb{N} , and given *m*, *k*. Suppose $M = (\text{IDEA}_P(k, n))(m)$ and $\text{len} m \ge 4$. Then
- (i) $\operatorname{len} M \ge 4$,
- (ii) M(1) is expressible by n,
- (iii) M(2) is expressible by n,
- (iv) M(3) is expressible by *n*, and
- (v) M(4) is expressible by n.
- (44) Let *n* be a non empty natural number, l_1 be a natural number, K_1 be a matrix over \mathbb{N} of dimension $l_1 \times 6$, and *r* be a natural number. Then rng compose_{MESSAGES} IDEA_P_F(K_1, n, r) \subseteq MESSAGES and dom compose_{MESSAGES} IDEA_P_F(K_1, n, r) = MESSAGES.
- (45) Let *n* be a non empty natural number, l_1 be a natural number, K_1 be a matrix over \mathbb{N} of dimension $l_1 \times 6$, and *r* be a natural number. Then rng compose_{MESSAGES} IDEA_Q_F(K_1, n, r) \subseteq MESSAGES and dom compose_{MESSAGES} IDEA_Q_F(K_1, n, r) = MESSAGES.
- (46) Let *n* be a non empty natural number, *m* be a finite sequence of elements of \mathbb{N} , l_1 be a natural number, K_1 be a matrix over \mathbb{N} of dimension $l_1 \times 6$, *r* be a natural number, and *M* be a finite sequence of elements of \mathbb{N} . If $M = (\text{compose}_{\text{MESSAGES}} \text{IDEA_P}(K_1, n, r))(m)$ and len $m \ge 4$, then len $M \ge 4$.
- (47) Let *n* be a non empty natural number, l_1 be a natural number, K_1 be a matrix over \mathbb{N} of dimension $l_1 \times 6$, *r* be a natural number, *M* be a finite sequence of elements of \mathbb{N} , and given *m*. Suppose that
- (i) $M = (\text{compose}_{\text{MESSAGES}} \text{IDEA_P}_F(K_1, n, r))(m),$
- (ii) $\operatorname{len} m \ge 4$,
- (iii) m(1) is expressible by n,
- (iv) m(2) is expressible by n,
- (v) m(3) is expressible by *n*, and
- (vi) m(4) is expressible by n.

Then

- (vii) $\operatorname{len} M \ge 4$,
- (viii) M(1) is expressible by n,
- (ix) M(2) is expressible by n,
- (x) M(3) is expressible by *n*, and
- (xi) M(4) is expressible by n.

5. MODELING OF IDEA CRYPTOGRAM

We now state two propositions:

(48) Let *n* be a non empty natural number, l_1 be a natural number, K_2 , K_3 be matrices over \mathbb{N} of dimension $l_1 \times 6$, *r* be a natural number, and given *m*. Suppose that $l_1 \ge r$ and $2^n + 1$ is prime and len $m \ge 4$ and m(1) is expressible by *n* and m(2) is expressible by *n* and m(3) is expressible by *n* and m(4) is expressible by *n* and for every natural number *i* such that $i \le r$ holds $K_2 \circ (i, 1)$ is expressible by *n* and $K_2 \circ (i, 2)$ is expressible by *n* and $K_2 \circ (i, 3)$ is expressible by *n* and $K_2 \circ (i, 4)$ is expressible by *n* and $K_2 \circ (i, 5)$ is expressible by *n* and $K_3 \circ (i, 3)$ is expressible by *n* and $K_3 \circ (i, 4)$ is expressible by *n* and $K_3 \circ (i, 2)$ is expressible by *n* and $K_3 \circ (i, 5)$ is expressible by *n* and $K_3 \circ (i, 6)$ is expressible by *n* and $K_3 \circ (i, 1)$ is expressible by *n* and $K_3 \circ (i, 2)$ is expressible by *n* and $K_3 \circ (i, 5)$ is expressible by *n* and $K_3 \circ (i, 6)$ is expressible by *n* and $K_3 \circ (i, 3)$ and $K_3 \circ (i, 2) = \text{NEG}_{\text{MOD}}(K_2 \circ (i, 3), n)$ and $K_3 \circ (i, 3) = \text{NEG}_{\text{MOD}}(K_2 \circ (i, 2), n)$ and $K_3 \circ (i, 5) = K_3 \circ (i, 5)$ and $K_2 \circ (i, 6) = K_3 \circ (i, 6)$. Then $(\text{compose}_{\text{MESSAGES}}((\text{IDEA}_{\text{P}}_{\text{F}}(K_2, n, r)) \cap \text{IDEA}_{\text{Q}}_{\text{F}}(K_3, n, r)))(m) = m$.

(49) Let *n* be a non empty natural number, l_1 be a natural number, K_2 , K_3 be matrices over \mathbb{N} of dimension $l_1 \times 6$, r be a natural number, k_3 , k_4 , k_5 , k_6 be finite sequences of elements of \mathbb{N} , and given m. Suppose that $l_1 \ge r$ and $2^n + 1$ is prime and len $m \ge 4$ and m(1) is expressible by n and m(2) is expressible by n and m(3) is expressible by n and m(4) is expressible by n and for every natural number i such that $i \le r$ holds $K_2 \circ (i, 1)$ is expressible by n and $K_2 \circ (i, 2)$ is expressible by n and $K_2 \circ (i,3)$ is expressible by n and $K_2 \circ (i,4)$ is expressible by n and $K_2 \circ (i,5)$ is expressible by *n* and $K_2 \circ (i,6)$ is expressible by *n* and $K_3 \circ (i,1)$ is expressible by *n* and $K_3 \circ (i,2)$ is expressible by *n* and $K_3 \circ (i,3)$ is expressible by *n* and $K_3 \circ (i,4)$ is expressible by *n* and $K_3 \circ (i, 5)$ is expressible by *n* and $K_3 \circ (i, 6)$ is expressible by *n* and $K_3 \circ$ $(i,1) = INV_MOD(K_2 \circ (i,1), n)$ and $K_3 \circ (i,2) = NEG_MOD(K_2 \circ (i,3), n)$ and $K_3 \circ (i,3) =$ NEG_MOD $(K_2 \circ (i, 2), n)$ and $K_3 \circ (i, 4) = INV_MOD(K_2 \circ (i, 4), n)$ and $K_2 \circ (i, 5) = K_3 \circ (i, 5)$ and $K_2 \circ (i, 6) = K_3 \circ (i, 6)$ and $k_3(1)$ is expressible by n and $k_3(2)$ is expressible by n and $k_3(3)$ is expressible by *n* and $k_3(4)$ is expressible by *n* and $k_4(1) = INV_MOD(k_3(1), n)$ and $k_4(2) =$ NEG_MOD $(k_3(2), n)$ and $k_4(3) =$ NEG_MOD $(k_3(3), n)$ and $k_4(4) =$ INV_MOD $(k_3(4), n)$ and $k_5(1)$ is expressible by n and $k_5(2)$ is expressible by n and $k_5(3)$ is expressible by n and $k_5(4)$ is expressible by n and $k_5(5)$ is expressible by n and $k_5(6)$ is expressible by *n* and $k_6(1) = INV_MOD(k_5(1), n)$ and $k_6(2) = NEG_MOD(k_5(2), n)$ and $k_6(3) = NEG_MOD(k_5(2), n)$ NEG_MOD $(k_5(3), n)$ and $k_6(4) = INV_MOD(k_5(4), n)$ and $k_6(5) = k_5(5)$ and $k_6(6) = k_6(6) = k$ $k_5(6)$. Then (IDEA_QS(k_4, n) · (compose_{MESSAGES} IDEA_QF(K_3, n, r) · (IDEA_QE(k_6, n) · $(IDEA_PE(k_5, n) \cdot (compose_{MESSAGES} IDEA_P_F(K_2, n, r) \cdot IDEA_PS(k_3, n))))))(m) = m.$

REFERENCES

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek. Curried and uncurried functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/ funct_5.html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Journal of Formalized Mathematics, 8, 1996. http: //mizar.org/JFM/Vol8/funct_7.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [7] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [8] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [9] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- Katarzyna Jankowska. Matrices. Abelian group of matrices. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/ Vol3/matrix_1.html.
- [11] Andrzej Kondracki. The Chinese Remainder Theorem. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/ wsierp_1.html.
- [12] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_2.html.
- [13] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/ pralg_1.html.
- [14] Robert Milewski. Binary arithmetics. Binary sequences. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/ Vol10/binari_3.html.
- [15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/ Vol5/binarith.html.
- [16] Konrad Raczkowski and Andrzej Nędzusiak. Series. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/ series_1.html.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.

- [18] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [19] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [20] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_ 4.html.
- [21] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [22] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.
- [23] Edmund Woronowicz. Many-argument relations. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/ margrell.html.

Received September 7, 1998

Published January 2, 2004