Homotheties and Shears in Affine Planes¹

Henryk Oryszczyszyn Warsaw University Białystok Krzysztof Prażmowski Warsaw University Białystok

Summary. We study connections between Major Desargues Axiom and the transitivity of group of homotheties. A formal proof of the theorem which establishes an equivalence of these two properties of affine planes is given. We also study connections between trapezium version of Major Desargues Axiom and the existence of the shears in affine planes. The article contains investigations on "Scherungssatz".

MML Identifier: HOMOTHET.

WWW: http://mizar.org/JFM/Vol2/homothet.html

The articles [8], [2], [1], [3], [5], [6], [4], and [7] provide the notation and terminology for this paper.

For simplicity, we use the following convention: A_1 is an affine plane, a, b, o, p, p', q, q', x, y are elements of A_1 , M, K are subsets of A_1 , and f is a permutation of the carrier of A_1 .

One can prove the following four propositions:

- (1) Suppose that not L(o, a, p) and L(o, a, b) and L(o, a, x) and L(o, a, y) and L(o, p, p') and L(o, p, q') and L(o, p, q')
- (2) Suppose that for all o, a, b such that $o \neq a$ and $o \neq b$ and $\mathbf{L}(o, a, b)$ there exists f such that f is a dilatation and f(o) = o and f(a) = b. Then A_1 satisfies **DES**.
- (3) Suppose A_1 satisfies **DES**. Let given o, a, b. Suppose $o \neq a$ and $o \neq b$ and L(o, a, b). Then there exists f such that f is a dilatation and f(o) = o and f(a) = b.
- (4) A_1 satisfies **DES** if and only if for all o, a, b such that $o \ne a$ and $o \ne b$ and $\mathbf{L}(o, a, b)$ there exists f such that f is a dilatation and f(o) = o and f(a) = b.

Let us consider A_1 , f, K. We say that f is Sc K if and only if:

(Def. 1) f is a collineation and K is a line and for every x such that $x \in K$ holds f(x) = x and for every x holds x, f(x) // K.

One can prove the following propositions:

- (5) If f is Sc K and f(p) = p and $p \notin K$, then $f = id_{the \ carrier \ of \ A_1}$.
- (6) If for all a, b, K such that $a, b /\!/ K$ and $a \notin K$ there exists f such that f is Sc K and f(a) = b, then A_1 satisfies **TDES**.

1

¹Supported by RPBP.III-24.C2.

- (7) Suppose that $K /\!\!/ M$ and $p \in K$ and $q \in K$ and $p' \in K$ and $q' \in K$ and A_1 satisfies **TDES** and $a \in M$ and $b \in M$ and $x \in M$ and $y \in M$ and $a \neq b$ and $q \neq b$ and $p, a \parallel p', x$ and $p, b \parallel p', y$ and $q, a \parallel q', x$. Then $q, b \parallel q', y$.
- (8) If $a, b /\!/ K$ and $a \notin K$ and A_1 satisfies **TDES**, then there exists f such that f is Sc K and f(a) = b.
- (9) A_1 satisfies **TDES** if and only if for all a, b, K such that a, b // K and $a \notin K$ there exists f such that f is Sc K and f(a) = b.

REFERENCES

- [1] Czesław Byliński. Functions from a set to a set. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [2] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/partfunl.html.
- [3] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/analoaf.html.
- [4] Henryk Oryszczyszyn and Krzysztof Prażmowski. Classical configurations in affine planes. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/aff_2.html.
- [5] Henryk Oryszczyszyn and Krzysztof Prażmowski. Ordered affine spaces defined in terms of directed parallelity part I. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/diraf.html.
- [6] Henryk Oryszczyszyn and Krzysztof Prażmowski. Parallelity and lines in affine spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/aff_1.html.
- [7] Henryk Oryszczyszyn and Krzysztof Prażmowski. Transformations in affine spaces. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/transgeo.html.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.

Received September 21, 1990

Published January 2, 2004