The Canonical Formulae

Andrzej Trybulec University of Białystok

MML Identifier: HILBERT3.

WWW: http://mizar.org/JFM/Vol12/hilbert3.html

The articles [18], [9], [25], [23], [24], [26], [6], [4], [2], [17], [8], [7], [5], [19], [10], [1], [3], [14], [20], [21], [15], [12], [16], [11], and [22] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following three propositions:

- (1) For every integer i holds i is even iff i-1 is odd.
- (2) For every integer i holds i is odd iff i-1 is even.
- (3) Let X be a trivial set and x be a set. Suppose $x \in X$. Let f be a function from X into X. Then x is a fixpoint of f.

Let A, B, C be sets. Observe that every function from A into C^B is function yielding. The following three propositions are true:

- (4) For every function yielding function f holds $\operatorname{Sub}_f \operatorname{rng} f = \operatorname{rng} f$.
- (5) For all sets A, B, x and for every function f such that $x \in A$ and $f \in B^A$ holds $f(x) \in B$.
- (6) For all sets A, B, C such that if $C = \emptyset$, then $B = \emptyset$ or $A = \emptyset$ and for every function f from A into C^B holds $\operatorname{dom}_{\kappa} f(\kappa) = A \longmapsto B$.

Let us mention that 0 is function yielding.

In the sequel n denotes a natural number and p, q, r denote elements of HP-WFF.

The following proposition is true

(7) For every set *x* holds $\emptyset(x) = \emptyset$.

Let A be a set and let B be a functional set. One can verify that every function from A into B is function yielding.

One can prove the following propositions:

- (8) For every set *X* and for every subset *A* of *X* holds $[0 \longmapsto 1, 1 \longmapsto 0] \cdot \chi_{A,X} = \chi_{A^c,X}$.
- (9) For every set *X* and for every subset *A* of *X* holds $[0 \longmapsto 1, 1 \longmapsto 0] \cdot \chi_{A^c, X} = \chi_{A, X}$.
- (10) For all sets a, b, x, y, x', y' such that $a \neq b$ and $[a \longmapsto x, b \longmapsto y] = [a \longmapsto x', b \longmapsto y']$ holds x = x' and y = y'.

- (11) For all sets a, b, x, y, X, Y such that $a \neq b$ and $x \in X$ and $y \in Y$ holds $[a \longmapsto x, b \longmapsto y] \in \prod [a \longmapsto X, b \longmapsto Y]$.
- (12) For every non empty set D and for every function f from 2 into D there exist elements d_1 , d_2 of D such that $f = [0 \longmapsto d_1, 1 \longmapsto d_2]$.
- (13) For all sets a, b, c, d such that $a \neq b$ holds $[a \longmapsto c, b \longmapsto d] \cdot [a \longmapsto b, b \longmapsto a] = [a \longmapsto d, b \longmapsto c].$
- (14) For all sets a, b, c, d and for every function f such that $a \neq b$ and $c \in \text{dom } f$ and $d \in \text{dom } f$ holds $f \cdot [a \longmapsto c, b \longmapsto d] = [a \longmapsto f(c), b \longmapsto f(d)]$.
 - 2. THE CARTESIAN PRODUCT OF FUNCTIONS AND THE FREGE FUNCTION

Let f, g be one-to-one functions. Note that [:f,g:] is one-to-one.

We now state several propositions:

- (15) Let A, B be non empty sets, C, D be sets, f be a function from C into A, and g be a function from D into B. Then $\pi_1(A \times B) \cdot [:f,g:] = f \cdot \pi_1(C \times D)$.
- (16) Let A, B be non empty sets, C, D be sets, f be a function from C into A, and g be a function from D into B. Then $\pi_2(A \times B) \cdot [: f, g:] = g \cdot \pi_2(C \times D)$.
- (17) For every function g holds $\emptyset \leftrightarrow g = \emptyset$.
- (18) For every function yielding function f and for all functions g, h holds $f \leftrightarrow g \cdot h = (f \cdot h) \leftrightarrow (g \cdot h)$.
- (19) Let C be a set, A be a non empty set, f be a function from A into $C^{(\emptyset \text{ qua set})}$, and g be a function from A into \emptyset . Then $\text{rng}(f \leftrightarrow g) = \{\emptyset\}$.
- (20) Let A, B, C be sets such that if $B = \emptyset$, then $A = \emptyset$. Let f be a function from A into C^B and g be a function from A into B. Then $rrg(f \leftrightarrow g) \subseteq C$.
- (21) For all sets A, B, C such that if $C = \emptyset$, then $B = \emptyset$ or $A = \emptyset$ and for every function f from A into C^B holds dom Frege $(f) = B^A$.
- (23)¹ For all sets A, B, C such that if $C = \emptyset$, then $B = \emptyset$ or $A = \emptyset$ and for every function f from A into C^B holds rng Frege $(f) \subseteq C^A$.
- (24) Let A, B, C be sets such that if $C = \emptyset$, then $B = \emptyset$ or $A = \emptyset$. Let f be a function from A into C^B . Then Frege(f) is a function from B^A into C^A .

3. ABOUT PERMUTATIONS

The following proposition is true

- (25) For all sets A, B and for every permutation P of A and for every permutation Q of B holds [P, Q] is bijective.
- Let A, B be non empty sets, let P be a permutation of A, and let Q be a function from B into B. The functor $P \Rightarrow Q$ yields a function from B^A into B^A and is defined by:
- (Def. 1) For every function f from A into B holds $(P \Rightarrow Q)(f) = Q \cdot f \cdot P^{-1}$.
 - Let A, B be non empty sets, let P be a permutation of A, and let Q be a permutation of B. One can verify that $P \Rightarrow Q$ is bijective.

We now state three propositions:

¹ The proposition (22) has been removed.

- (26) Let A, B be non empty sets, P be a permutation of A, Q be a permutation of B, and f be a function from A into B. Then $(P \Rightarrow Q)^{-1}(f) = Q^{-1} \cdot f \cdot P$.
- (27) For all non empty sets A, B and for every permutation P of A and for every permutation Q of B holds $(P \Rightarrow Q)^{-1} = P^{-1} \Rightarrow Q^{-1}$.
- (28) Let A, B, C be non empty sets, f be a function from A into C^B, g be a function from A into B, P be a permutation of B, and Q be a permutation of C. Then $((P \Rightarrow Q) \cdot f) \leftrightarrow (P \cdot g) = Q \cdot f \leftrightarrow g$.

4. SET VALUATIONS

A SetValuation is a non-empty many sorted set indexed by \mathbb{N} .

In the sequel V is a SetValuation.

Let us consider V. The functor SetValV yields a many sorted set indexed by HP-WFF and is defined by the conditions (Def. 2).

- (Def. 2)(i) (SetVal V)(VERUM) = 1,
 - (ii) for every n holds (SetVal V)(prop n) = V(n), and
 - (iii) for all p, q holds $(\operatorname{SetVal} V)(p \wedge q) = [: (\operatorname{SetVal} V)(p), (\operatorname{SetVal} V)(q):]$ and $(\operatorname{SetVal} V)(p) \Rightarrow q) = (\operatorname{SetVal} V)(q)^{(\operatorname{SetVal} V)(p)}$.

Let us consider V, p. The functor SetVal(V, p) is defined by:

(Def. 3) $\operatorname{SetVal}(V, p) = (\operatorname{SetVal}V)(p)$.

Let us consider V, p. One can check that SetVal(V, p) is non empty. One can prove the following propositions:

- (29) SetVal(V, VERUM) = 1.
- (30) SetVal(V, prop n) = V(n).
- (31) SetVal $(V, p \land q) = [$:SetVal(V, p), SetVal(V, q):].
- (32) $\operatorname{SetVal}(V, p \Rightarrow q) = (\operatorname{SetVal}(V, q))^{\operatorname{SetVal}(V, p)}$.

Let us consider V, p, q. Observe that $SetVal(V, p \Rightarrow q)$ is functional.

Let us consider V, p, q, r. One can check that every element of $SetVal(V, p \Rightarrow (q \Rightarrow r))$ is function yielding.

Let us consider V, p, q, r. One can check that there exists a function from $\mathrm{SetVal}(V,p\Rightarrow q)$ into $\mathrm{SetVal}(V,p\Rightarrow r)$ which is function yielding and there exists an element of $\mathrm{SetVal}(V,p\Rightarrow (q\Rightarrow r))$ which is function yielding.

5. PERMUTING SET VALUATIONS

Let us consider V. A function is called a permutation of V if:

(Def. 4) domit = \mathbb{N} and for every n holds it(n) is a permutation of V(n).

In the sequel P is a permutation of V.

Let us consider V, P. The functor Perm P yields a many sorted function from SetVal V into SetVal V and is defined by the conditions (Def. 5).

- (Def. 5)(i) $(Perm P)(VERUM) = id_1$,
 - (ii) for every *n* holds $(\operatorname{Perm} P)(\operatorname{prop} n) = P(n)$, and
 - (iii) for all p, q there exists a permutation p' of SetVal(V, p) and there exists a permutation q' of SetVal(V, q) such that p' = (Perm P)(p) and q' = (Perm P)(q) and $(Perm P)(p \wedge q) = [: p', q':]$ and $(Perm P)(p \Rightarrow q) = p' \Rightarrow q'$.

Let us consider V, P, p. The functor Perm(P,p) yields a function from SetVal(V,p) into SetVal(V,p) and is defined as follows:

(Def. 6) $\operatorname{Perm}(P, p) = (\operatorname{Perm} P)(p)$.

Next we state four propositions:

- (33) $\operatorname{Perm}(P, \operatorname{VERUM}) = \operatorname{id}_{\operatorname{SetVal}(V, \operatorname{VERUM})}.$
- (34) $\operatorname{Perm}(P, \operatorname{prop} n) = P(n)$.
- (35) $\operatorname{Perm}(P, p \wedge q) = [\operatorname{Perm}(P, p), \operatorname{Perm}(P, q)].$
- (36) For every permutation p' of SetVal(V, p) and for every permutation q' of SetVal(V, q) such that p' = Perm(P, p) and q' = Perm(P, q) holds $Perm(P, p) \Rightarrow q' \Rightarrow q'$.

Let us consider V, P, p. Observe that Perm(P, p) is bijective. One can prove the following propositions:

- (37) For every function g from SetVal(V, p) into SetVal(V, q) holds $(Perm(P, p \Rightarrow q))(g) = Perm(P, q) \cdot g \cdot (Perm(P, p))^{-1}$.
- (38) For every function g from SetVal(V, p) into SetVal(V, q) holds $(\operatorname{Perm}(P, p \Rightarrow q))^{-1}(g) = (\operatorname{Perm}(P, q))^{-1} \cdot g \cdot \operatorname{Perm}(P, p)$.
- (39) For all functions f, g from SetVal(V, p) into SetVal(V, q) such that $f = (\text{Perm}(P, p \Rightarrow q))(g)$ holds $\text{Perm}(P, q) \cdot g = f \cdot \text{Perm}(P, p)$.
- (40) Let given V, P be a permutation of V, and x be a set. Suppose x is a fixpoint of Perm(P, p). Let f be a function. If f is a fixpoint of Perm $(P, p \Rightarrow q)$, then f(x) is a fixpoint of Perm(P, q).

6. CANONICAL FORMULAE

Let us consider p. We say that p is canonical if and only if:

(Def. 7) For every V there exists a set x such that for every permutation P of V holds x is a fixpoint of Perm(P,p).

Let us note that VERUM is canonical.

Next we state several propositions:

- (41) $p \Rightarrow (q \Rightarrow p)$ is canonical.
- $(42) \quad (p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r)) \text{ is canonical.}$
- (43) $p \land q \Rightarrow p$ is canonical.
- (44) $p \land q \Rightarrow q$ is canonical.
- (45) $p \Rightarrow (q \Rightarrow p \land q)$ is canonical.
- (46) If p is canonical and $p \Rightarrow q$ is canonical, then q is canonical.
- (47) If $p \in HP_TAUT$, then p is canonical.

Let us mention that there exists an element of HP-WFF which is canonical.

7. PSEUDO-CANONICAL FORMULAE

Let us consider p. We say that p is pseudo-canonical if and only if:

(Def. 8) For every V and for every permutation P of V holds there exists a set which is a fixpoint of Perm(P, p).

Let us observe that every element of HP-WFF which is canonical is also pseudo-canonical. One can prove the following propositions:

- (48) $p \Rightarrow (q \Rightarrow p)$ is pseudo-canonical.
- (49) $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ is pseudo-canonical.
- (50) $p \land q \Rightarrow p$ is pseudo-canonical.
- (51) $p \land q \Rightarrow q$ is pseudo-canonical.
- (52) $p \Rightarrow (q \Rightarrow p \land q)$ is pseudo-canonical.
- (53) If p is pseudo-canonical and $p \Rightarrow q$ is pseudo-canonical, then q is pseudo-canonical.
- (54) Let given p, q, given V, and P be a permutation of V. Suppose there exists a set which is a fixpoint of Perm(P,p) and there exists no set which is a fixpoint of Perm(P,q). Then $p \Rightarrow q$ is not pseudo-canonical.
- (55) $((prop 0 \Rightarrow prop 1) \Rightarrow prop 0) \Rightarrow prop 0$ is not pseudo-canonical.

REFERENCES

- Grzegorz Bancerek. Curried and uncurried functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_5.html.
- [2] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [3] Grzegorz Bancerek. Cartesian product of functions. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/funct_6.html.
- [4] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/realset1. html.
- [5] Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/funct_3.html.
- [6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [7] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [8] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [9] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [10] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [11] Adam Grabowski. Hilbert positive propositional calculus. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/hilbert1.html.
- [12] Małgorzata Korolkiewicz. Homomorphisms of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_3.html.
- [13] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pralg_1.html.
- [14] Beata Madras. Products of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pralg_ 2.html.
- [15] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pre_circ.html.

- [16] Piotr Rudnicki and Andrzej Trybulec. Fixpoints in complete lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/knaster.html.
- [17] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/ JFM/Vo19/abian.html.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [19] Andrzej Trybulec. Function domains and Frænkel operator. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel html
- [20] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [21] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1.
- [22] Andrzej Trybulec. Defining by structural induction in the positive propositional language. *Journal of Formalized Mathematics*, 11, 1999. http://mizar.org/JFM/Vol11/hilbert2.html.
- [23] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html
- [24] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [25] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [26] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received July 4, 2000

Published January 2, 2004