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Summary. The main goal of the paper consists in proving schemes for defining by
structural induction in the language defined by Adam Grabowski [11]. The article consists of
four parts. Besides the preliminaries where we prove some simple facts still missing in the
library, they are:

- “About the language” in which the consequences of the fact that the algebra of formulae
is free are formulated,

- “Defining by structural induction” in which two schemes are proved,

- “The tree of the subformulae” in which a scheme proved in the previous section is used
to define the tree of subformulae; also some simple facts about the tree are proved.

MML Identifier: HILBERT2.

WWW: http://mizar.org/JFM/Vol11/hilbert2.html

The articles [14], [10], [17], [16], [1], [12], [18], [3], [9], [13], [8], [4], [15], [2], [5], [6], [7], and
[11] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paperX, x are sets.
We now state four propositions:

(1) Let Z be a set andM be a many sorted set indexed byZ. Suppose that for every setx such
thatx∈ Z holdsM(x) is a many sorted set indexed byx. Let f be a function. Iff =

⋃
M, then

dom f =
⋃

Z.

(2) For all setsx, y and for all finite sequencesf , g such that〈x〉a f = 〈y〉a g holds f = g.

(3) If 〈x〉 is a finite sequence of elements ofX, thenx∈ X.

(4) Let givenX and f be a finite sequence of elements ofX. Supposef 6= /0. Then there exists
a finite sequenceg of elements ofX and there exists an elementd of X such thatf = ga 〈d〉.

We follow the rules:m, n are natural numbers,p, q, r, sare elements of HP-WFF, andT1, T2 are
trees.

The following proposition is true

(5) 〈x〉 ∈
︷ ︸︸ ︷
T1,T2 iff x = 0 orx = 1.
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Let us observe that/0 is tree yielding.
The schemeInTreeInddeals with a treeA and a unary predicateP , and states that:

For every elementf of A holdsP [ f ]
provided the following conditions are met:

• P [εN], and
• For every elementf of A such thatP [ f ] and for everyn such thatf a 〈n〉 ∈ A holds

P [ f a 〈n〉].
In the sequelT1, T2 are decorated trees.
Next we state three propositions:

(6) For every setx and for allT1, T2 holds(x-tree(T1,T2))( /0) = x.

(7) (x-tree(T1,T2))(〈0〉) = T1( /0) and(x-tree(T1,T2))(〈1〉) = T2( /0).

(8) (x-tree(T1,T2))�〈0〉= T1 and(x-tree(T1,T2))�〈1〉= T2.

Let us considerx and letp be a decorated tree yielding non empty finite sequence. Observe that
x-tree(p) is non root.

Let us considerx and letT1 be a decorated tree. Note thatx-tree(T1) is non root. LetT2 be a
decorated tree. Observe thatx-tree(T1,T2) is non root.

2. ABOUT THE LANGUAGE

Let us considern. The functor propn yields an element of HP-WFF and is defined by:

(Def. 1) propn = 〈3+n〉.

Let D be a set. Let us observe thatD has VERUM if and only if:

(Def. 2) VERUM∈ D.

Let us observe thatD has propositional variables if and only if:

(Def. 3) For everyn holds propn∈ D.

Let D be a subset of HP-WFF. Let us observe thatD has implication if and only if:

(Def. 4) For allp, q such thatp∈ D andq∈ D holdsp⇒ q∈ D.

Let us observe thatD has conjunction if and only if:

(Def. 5) For allp, q such thatp∈ D andq∈ D holdsp∧q∈ D.

In the sequelt denotes a finite sequence.
Let us considerp. We say thatp is conjunctive if and only if:

(Def. 6) There existr, s such thatp = r ∧s.

We say thatp is conditional if and only if:

(Def. 7) There existr, s such thatp = r ⇒ s.

We say thatp is simple if and only if:

(Def. 8) There existsn such thatp = propn.

The schemeHP Indconcerns a unary predicateP , and states that:
For everyr holdsP [r]

provided the following requirements are met:
• P [VERUM],
• For everyn holdsP [propn], and
• For all r, s such thatP [r] andP [s] holdsP [r ∧s] andP [r ⇒ s].

Next we state a number of propositions:
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(9) p is conjunctive, conditional, and simple orp = VERUM .

(10) lenp≥ 1.

(11) If p(1) = 1, thenp is conditional.

(12) If p(1) = 2, thenp is conjunctive.

(13) If p(1) = 3+n, thenp is simple.

(14) If p(1) = 0, thenp = VERUM .

(15) lenp < len(p∧q) and lenq < len(p∧q).

(16) lenp < len(p⇒ q) and lenq < len(p⇒ q).

(17) If p = qa t, thenp = q.

(18) If pa q = r a s, thenp = r andq = s.

(19) If p∧q = r ∧s, thenp = r ands= q.

(20) If p⇒ q = r ⇒ s, thenp = r ands= q.

(21) If propn = propm, thenn = m.

(22) p∧q 6= r ⇒ s.

(23) p∧q 6= VERUM .

(24) p∧q 6= propn.

(25) p⇒ q 6= VERUM .

(26) p⇒ q 6= propn.

(27) p∧q 6= p andp∧q 6= q.

(28) p⇒ q 6= p andp⇒ q 6= q.

(29) VERUM 6= propn.

3. DEFINING BY STRUCTURAL INDUCTION

Now we present two schemes. The schemeHP MSSExLdeals with a setA , a unary functorF
yielding a set, and two 5-ary predicatesP , Q , and states that:

There exists a many sorted setM indexed by HP-WFF such thatM(VERUM) = A
and for everynholdsM(propn)= F (n) and for allp, qholdsP [p,q,M(p),M(q),M(p∧
q)] andQ [p,q,M(p),M(q),M(p⇒ q)]

provided the following requirements are met:
• For all p, q and for all setsa, b there exists a setc such thatP [p,q,a,b,c],
• For all p, q and for all setsa, b there exists a setd such thatQ [p,q,a,b,d],
• For all p, q and for all setsa, b, c, d such thatP [p,q,a,b,c] andP [p,q,a,b,d] holds

c = d, and
• For all p, q and for all setsa, b, c, d such thatQ [p,q,a,b,c] andQ [p,q,a,b,d] holds

c = d.
The schemeHP MSSLambdadeals with a setA , a unary functorF yielding a set, and two

binary functorsG andH yielding sets, and states that:
There exists a many sorted setM indexed by HP-WFF such thatM(VERUM) =
A and for everyn holds M(propn) = F (n) and for all p, q holds M(p∧ q) =
G(M(p),M(q)) andM(p⇒ q) = H (M(p),M(q))

for all values of the parameters.
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4. THE TREE OF THESUBFORMULAE

The many sorted set HP-Subformulae indexed by HP-WFF is defined by the conditions (Def. 9).

(Def. 9)(i) (HP-Subformulae)(VERUM) = the root tree of VERUM,

(ii) for everyn holds(HP-Subformulae)(propn) = the root tree of propn, and

(iii) for all p, q there exist treesp′, q′ decorated with elements of HP-WFF such thatp′ =
(HP-Subformulae)(p) andq′ = (HP-Subformulae)(q) and(HP-Subformulae)(p∧q) = p∧
q-tree(p′,q′) and(HP-Subformulae)(p⇒ q) = (p⇒ q)-tree(p′,q′).

Let us considerp. The functor Subformulaep yielding a tree decorated with elements of
HP-WFF is defined by:

(Def. 10) Subformulaep = (HP-Subformulae)(p).

The following propositions are true:

(30) SubformulaeVERUM= the root tree of VERUM.

(31) Subformulaepropn = the root tree of propn.

(32) Subformulae(p∧q) = p∧q-tree(Subformulaep,Subformulaeq).

(33) Subformulae(p⇒ q) = (p⇒ q)-tree(Subformulaep,Subformulaeq).

(34) (Subformulaep)( /0) = p.

(35) For every elementf of domSubformulaepholds Subformulaep� f = Subformulae(Subformulaep)( f ).

(36) If p∈ Leaves(Subformulaeq), thenp = VERUM or p is simple.
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