Defining by Structural Induction in the Positive Propositional Language

Andrzej Trybulec University of Białystok

Summary. The main goal of the paper consists in proving schemes for defining by structural induction in the language defined by Adam Grabowski [11]. The article consists of four parts. Besides the preliminaries where we prove some simple facts still missing in the library, they are:

- "About the language" in which the consequences of the fact that the algebra of formulae is free are formulated,
 - "Defining by structural induction" in which two schemes are proved,
- "The tree of the subformulae" in which a scheme proved in the previous section is used to define the tree of subformulae; also some simple facts about the tree are proved.

MML Identifier: HILBERT2.

WWW: http://mizar.org/JFM/Vol11/hilbert2.html

The articles [14], [10], [17], [16], [1], [12], [18], [3], [9], [13], [8], [4], [15], [2], [5], [6], [7], and [11] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paper X, x are sets.

We now state four propositions:

- (1) Let Z be a set and M be a many sorted set indexed by Z. Suppose that for every set x such that $x \in Z$ holds M(x) is a many sorted set indexed by x. Let f be a function. If $f = \bigcup M$, then dom $f = \bigcup Z$.
- (2) For all sets x, y and for all finite sequences f, g such that $\langle x \rangle \cap f = \langle y \rangle \cap g$ holds f = g.
- (3) If $\langle x \rangle$ is a finite sequence of elements of X, then $x \in X$.
- (4) Let given X and f be a finite sequence of elements of X. Suppose $f \neq \emptyset$. Then there exists a finite sequence g of elements of X and there exists an element d of X such that $f = g \cap \langle d \rangle$.

We follow the rules: m, n are natural numbers, p, q, r, s are elements of HP-WFF, and T_1 , T_2 are trees.

The following proposition is true

(5)
$$\langle x \rangle \in \widehat{T_1, T_2} \text{ iff } x = 0 \text{ or } x = 1.$$

Let us observe that \emptyset is tree yielding.

The scheme InTreeInd deals with a tree \mathcal{A} and a unary predicate \mathcal{P} , and states that:

For every element f of \mathcal{A} holds $\mathcal{P}[f]$

provided the following conditions are met:

- $\mathcal{P}[\varepsilon_{\mathbb{N}}]$, and
- For every element f of \mathcal{A} such that $\mathcal{P}[f]$ and for every n such that $f \cap \langle n \rangle \in \mathcal{A}$ holds $\mathcal{P}[f \cap \langle n \rangle]$.

In the sequel T_1 , T_2 are decorated trees.

Next we state three propositions:

- (6) For every set x and for all T_1 , T_2 holds $(x\text{-tree}(T_1, T_2))(\emptyset) = x$.
- (7) $(x\text{-tree}(T_1, T_2))(\langle 0 \rangle) = T_1(\emptyset)$ and $(x\text{-tree}(T_1, T_2))(\langle 1 \rangle) = T_2(\emptyset)$.
- (8) $(x\text{-tree}(T_1, T_2)) \upharpoonright \langle 0 \rangle = T_1 \text{ and } (x\text{-tree}(T_1, T_2)) \upharpoonright \langle 1 \rangle = T_2.$

Let us consider x and let p be a decorated tree yielding non empty finite sequence. Observe that x-tree(p) is non root.

Let us consider x and let T_1 be a decorated tree. Note that x-tree (T_1) is non root. Let T_2 be a decorated tree. Observe that x-tree (T_1, T_2) is non root.

2. ABOUT THE LANGUAGE

Let us consider n. The functor prop n yields an element of HP-WFF and is defined by:

(Def. 1) $\operatorname{prop} n = \langle 3 + n \rangle$.

Let *D* be a set. Let us observe that *D* has VERUM if and only if:

(Def. 2) $VERUM \in D$.

Let us observe that *D* has propositional variables if and only if:

(Def. 3) For every n holds prop $n \in D$.

Let D be a subset of HP-WFF. Let us observe that D has implication if and only if:

(Def. 4) For all p, q such that $p \in D$ and $q \in D$ holds $p \Rightarrow q \in D$.

Let us observe that *D* has conjunction if and only if:

(Def. 5) For all p, q such that $p \in D$ and $q \in D$ holds $p \land q \in D$.

In the sequel t denotes a finite sequence.

Let us consider p. We say that p is conjunctive if and only if:

(Def. 6) There exist r, s such that $p = r \wedge s$.

We say that *p* is conditional if and only if:

(Def. 7) There exist r, s such that $p = r \Rightarrow s$.

We say that p is simple if and only if:

(Def. 8) There exists n such that p = prop n.

The scheme HP Ind concerns a unary predicate \mathcal{P} , and states that:

For every r holds $\mathcal{P}[r]$

provided the following requirements are met:

- $\mathcal{P}[VERUM]$,
- For every n holds $\mathcal{P}[\text{prop } n]$, and
- For all r, s such that $\mathcal{P}[r]$ and $\mathcal{P}[s]$ holds $\mathcal{P}[r \wedge s]$ and $\mathcal{P}[r \Rightarrow s]$.

Next we state a number of propositions:

- (9) p is conjunctive, conditional, and simple or p = VERUM.
- (10) $len p \ge 1$.
- (11) If p(1) = 1, then p is conditional.
- (12) If p(1) = 2, then p is conjunctive.
- (13) If p(1) = 3 + n, then *p* is simple.
- (14) If p(1) = 0, then p = VERUM.
- (15) $\operatorname{len} p < \operatorname{len}(p \wedge q)$ and $\operatorname{len} q < \operatorname{len}(p \wedge q)$.
- (16) $\operatorname{len} p < \operatorname{len}(p \Rightarrow q)$ and $\operatorname{len} q < \operatorname{len}(p \Rightarrow q)$.
- (17) If $p = q \cap t$, then p = q.
- (18) If $p \cap q = r \cap s$, then p = r and q = s.
- (19) If $p \wedge q = r \wedge s$, then p = r and s = q.
- (20) If $p \Rightarrow q = r \Rightarrow s$, then p = r and s = q.
- (21) If prop n = prop m, then n = m.
- (22) $p \land q \neq r \Rightarrow s$.
- (23) $p \land q \neq VERUM$.
- (24) $p \land q \neq \text{prop } n$.
- (25) $p \Rightarrow q \neq VERUM$.
- (26) $p \Rightarrow q \neq \text{prop } n$.
- (27) $p \land q \neq p$ and $p \land q \neq q$.
- (28) $p \Rightarrow q \neq p \text{ and } p \Rightarrow q \neq q.$
- (29) VERUM \neq prop n.

3. Defining by Structural Induction

Now we present two schemes. The scheme *HP MSSExL* deals with a set \mathcal{A} , a unary functor \mathcal{F} yielding a set, and two 5-ary predicates \mathcal{P} , \mathcal{Q} , and states that:

There exists a many sorted set M indexed by HP-WFF such that $M(\text{VERUM}) = \mathcal{A}$ and for every n holds $M(\text{prop }n) = \mathcal{F}(n)$ and for all p,q holds $\mathcal{P}[p,q,M(p),M(q),M(p \land q)]$ and $\mathcal{Q}[p,q,M(p),M(q),M(p \Rightarrow q)]$

provided the following requirements are met:

- For all p, q and for all sets a, b there exists a set c such that $\mathcal{P}[p, q, a, b, c]$,
- For all p, q and for all sets a, b there exists a set d such that Q[p,q,a,b,d],
- For all p, q and for all sets a, b, c, d such that $\mathcal{P}[p,q,a,b,c]$ and $\mathcal{P}[p,q,a,b,d]$ holds c=d, and
- For all p, q and for all sets a, b, c, d such that Q[p, q, a, b, c] and Q[p, q, a, b, d] holds c = d

The scheme HP MSSLambda deals with a set \mathcal{A} , a unary functor \mathcal{F} yielding a set, and two binary functors \mathcal{G} and \mathcal{H} yielding sets, and states that:

There exists a many sorted set M indexed by HP-WFF such that $M(\text{VERUM}) = \mathcal{A}$ and for every n holds $M(\text{prop}\,n) = \mathcal{F}(n)$ and for all p, q holds $M(p \wedge q) = \mathcal{G}(M(p), M(q))$ and $M(p \Rightarrow q) = \mathcal{H}(M(p), M(q))$

for all values of the parameters.

4. THE TREE OF THE SUBFORMULAE

The many sorted set HP-Subformulae indexed by HP-WFF is defined by the conditions (Def. 9).

- (Def. 9)(i) (HP-Subformulae)(VERUM) = the root tree of VERUM,
 - (ii) for every n holds (HP-Subformulae)(prop n) = the root tree of prop n, and
 - (iii) for all p, q there exist trees p', q' decorated with elements of HP-WFF such that p' = (HP-Subformulae)(p) and q' = (HP-Subformulae)(q) and $(\text{HP-Subformulae})(p \land q) = p \land q$ -tree(p',q') and $(\text{HP-Subformulae})(p \Rightarrow q) = (p \Rightarrow q)$ -tree(p',q').

Let us consider p. The functor Subformulae p yielding a tree decorated with elements of HP-WFF is defined by:

(Def. 10) Subformulae p = (HP-Subformulae)(p).

The following propositions are true:

- (30) Subformulae VERUM = the root tree of VERUM.
- (31) Subformulae prop n =the root tree of prop n.
- (32) Subformulae $(p \land q) = p \land q$ -tree (Subformulae p, Subformulae q).
- (33) Subformulae $(p \Rightarrow q) = (p \Rightarrow q)$ -tree (Subformulae p, Subformulae q).
- (34) (Subformulae p)(\emptyset) = p.
- (35) For every element f of dom Subformulae p holds Subformulae $p \upharpoonright f = \text{Subformulae}(\text{Subformulae} p)(f)$.
- (36) If $p \in \text{Leaves}(\text{Subformulae } q)$, then p = VERUM or p is simple.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Grzegorz Bancerek. Introduction to trees. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/trees_1. html.
- [3] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [4] Grzegorz Bancerek. Cartesian product of functions. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/funct_6.html.
- $\textbf{[5] Grzegorz Bancerek. K\"{o}nig's Lemma. } \textit{Journal of Formalized Mathematics}, \textbf{3}, \textbf{1991}. \ \texttt{http://mizar.org/JFM/Vol3/trees_2.html}.$
- [6] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/trees_3.html.
- [7] Grzegorz Bancerek. Joining of decorated trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/trees_4 html
- [8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [9] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [10] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [11] Adam Grabowski. Hilbert positive propositional calculus. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/hilbert1.html.
- [12] Andrzej Nędzusiak. σ-fields and probability. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/prob_1. html.
- [13] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [14] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.

- [15] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [16] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- $\textbf{[17]} \quad \textbf{Zinaida Trybulec. Properties of subsets.} \ \textit{Journal of Formalized Mathematics}, \textbf{1, 1989}. \ \texttt{http://mizar.org/JFM/Vol1/subset_1.html}.$
- [18] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.

Received April 23, 1999

Published January 2, 2004