Algebra of Normal Forms Is a Heyting Algebra¹

Andrzej Trybulec Warsaw University Białystok

Summary. We prove that the lattice of normal forms over an arbitrary set, introduced in [12], is an implicative lattice. The relative pseudo-complement $\alpha \Rightarrow \beta$ is defined as $\bigsqcup_{\alpha_1 \cup \alpha_2 = \alpha} -\alpha_1 \sqcap \alpha_2 \mapsto \beta$, where $-\alpha$ is the pseudo-complement of α and $\alpha \mapsto \beta$ is a rather strong implication introduced in this paper.

MML Identifier: HEYTING1.

WWW: http://mizar.org/JFM/Vol3/heyting1.html

The articles [10], [6], [16], [17], [4], [5], [2], [11], [3], [7], [15], [8], [18], [13], [14], [9], [12], and [1] provide the notation and terminology for this paper.

The following proposition is true

(1) Let A, B, C be non empty sets and f be a function from A into B. Suppose that for every element x of A holds $f(x) \in C$. Then f is a function from A into C.

In the sequel *A* is a non empty set and *a* is an element of *A*.

Let us consider A and let B, C be elements of Fin A. Let us observe that $B \subseteq C$ if and only if:

(Def. 1) For every a such that $a \in B$ holds $a \in C$.

Let A be a non empty set and let B be a non empty subset of A. Then $\stackrel{B}{\hookrightarrow}$ is a function from B into A.

In the sequel A denotes a set.

Let us consider A. Let us assume that A is non empty. The functor [A] yields a non empty set and is defined as follows:

(Def. 2)
$$[A] = A$$
.

We adopt the following rules: B, C are elements of Fin DP(A), a, b, c, s, t_1 , t_2 are elements of DP(A), and u, v, w are elements of the lattice of normal forms over A.

Next we state the proposition

(3)¹ If
$$B = \emptyset$$
, then $\mu B = \emptyset$.

Let us consider A. Observe that there exists an element of the normal forms over A which is non empty.

Let us consider A, a. Then $\{a\}$ is an element of the normal forms over A.

Let us consider A and let u be an element of the lattice of normal forms over A. The functor ${}^{@}u$ yielding an element of the normal forms over A is defined by:

1

¹Partially supported by RPBP.III-24.B1.

¹ The proposition (2) has been removed.

(Def. 3) $^{@}u = u$.

In the sequel K, L denote elements of the normal forms over A.

The following propositions are true:

- $(7)^2 \quad \mu(K \cap K) = K.$
- (8) For every set *X* such that $X \subseteq K$ holds $X \in$ the normal forms over *A*.
- (10)³ For every set X such that $X \subseteq u$ holds X is an element of the lattice of normal forms over A.

Let us consider A. The functor $\{\Box\}_A$ yields a function from DP(A) into the carrier of the lattice of normal forms over A and is defined as follows:

(Def. 4)
$$\{\Box\}_A(a) = \{a\}.$$

One can prove the following propositions:

- (11) If $c \in \{\Box\}_A(a)$, then c = a.
- (12) $a \in \{\Box\}_A(a)$.
- (13) $\{\Box\}_A(a) = \operatorname{singleton}_{\operatorname{DP}(A)}(a).$
- (14) $\bigsqcup_{K}^{f}(\{\Box\}_{A}) = \text{FinUnion}(K, \text{singleton}_{DP(A)}).$
- $(15) \quad u = \bigsqcup_{@_{u}}^{f} (\{\Box\}_{A}).$

In the sequel f is an element of $[:FinA, FinA:]^{DP(A)}$ and g is an element of $[A]^{DP(A)}$. Let A be a set. The functor $\Box \setminus_A \Box$ yielding a binary operation on [:FinA, FinA:] is defined by:

(Def. 5) For all elements a, b of [:FinA, FinA:] holds $\Box \setminus_A \Box(a,b) = a \setminus b$.

Let us consider A, B. The functor -B yields an element of Fin DP(A) and is defined as follows:

(Def. 6)
$$-B = DP(A) \cap \{ \langle \{g(t_1) : g(t_1) \in (t_1)_2 \land t_1 \in B\}, \{g(t_2) : g(t_2) \in (t_2)_1 \land t_2 \in B\} \} : s \in B \Rightarrow g(s) \in s_1 \cup s_2 \}.$$

Let us consider C. The functor $B \rightarrow C$ yielding an element of Fin DP(A) is defined as follows:

(Def. 7)
$$B \rightarrow C = DP(A) \cap \{FinUnion(B, \Box \setminus_A \Box^{\circ}(f, \Box^{DP(A)})) : f^{\circ}B \subseteq C\}.$$

Next we state a number of propositions:

- (16) Suppose $c \in -B$. Then there exists g such that for every s such that $s \in B$ holds $g(s) \in s_1 \cup s_2$ and $c = \langle \{g(t_1) : g(t_1) \in (t_1)_2 \land t_1 \in B\}, \{g(t_2) : g(t_2) \in (t_2)_1 \land t_2 \in B\} \rangle$.
- (17) $\langle \emptyset, \emptyset \rangle$ is an element of DP(A).
- (18) For every *K* such that $K = \emptyset$ holds $-K = \{\langle \emptyset, \emptyset \rangle\}$.
- (19) For all K, L such that $K = \emptyset$ and $L = \emptyset$ holds $K \rightarrow L = \{\langle \emptyset, \emptyset \rangle\}$.
- (20) For every element a of $DP(\emptyset)$ holds $a = \langle \emptyset, \emptyset \rangle$.
- (21) $DP(\emptyset) = \{\langle \emptyset, \emptyset \rangle\}.$
- (22) $\{\langle 0, 0 \rangle\}$ is an element of the normal forms over *A*.
- (23) If $c \in B \rightarrow C$, then there exists f such that $f^{\circ}B \subseteq C$ and $c = \text{FinUnion}(B, \Box \setminus_A \Box^{\circ}(f, \Box^{\text{DP}(A)}))$.

² The propositions (4)–(6) have been removed.

³ The proposition (9) has been removed.

- (24) If $K \cap \{a\} = \emptyset$, then there exists b such that $b \in -K$ and $b \subseteq a$.
- (25) Suppose for every b such that $b \in u$ holds $b \cup a \in DP(A)$ and for every c such that $c \in u$ there exists b such that $b \in v$ and $b \subseteq c \cup a$. Then there exists b such that $b \in ({}^{@}u) \rightarrowtail {}^{@}v$ and $b \subseteq a$.
- (26) $K^{-}K K = \emptyset$.

Let us consider A. The functor \Box^{c}_{A} yields a unary operation on the carrier of the lattice of normal forms over A and is defined as follows:

(Def. 8)
$$\Box^{c}_{A}(u) = \mu(-^{@}u).$$

The functor $\square \rightarrowtail_A \square$ yielding a binary operation on the carrier of the lattice of normal forms over *A* is defined by:

(Def. 9)
$$(\square \rightarrowtail_A \square)(u, v) = \mu(({}^{@}u) \rightarrowtail {}^{@}v).$$

Let us consider u. The functor 2^u yielding an element of Fin(the carrier of the lattice of normal forms over A) is defined by:

(Def. 10)
$$2^u = 2^u$$
.

The functor $\Box \setminus_u \Box$ yields a unary operation on the carrier of the lattice of normal forms over *A* and is defined as follows:

(Def. 11)
$$(\Box \setminus_u \Box)(v) = u \setminus v$$
.

One can prove the following propositions:

- (27) $(\Box \setminus_{u} \Box)(v) \sqsubseteq u$.
- (28) $u \sqcap \square^{c}_{A}(u) = \bot_{\text{the lattice of normal forms over } A}$.
- (29) $u \sqcap (\square \rightarrowtail_A \square)(u, v) \sqsubseteq v$.
- (30) If $({}^{@}u) \cap \{a\} = \emptyset$, then $\{\Box\}_A(a) \sqsubseteq \Box^{c}_A(u)$.
- (31) If for every b such that $b \in u$ holds $b \cup a \in DP(A)$ and $u \cap \{\Box\}_A(a) \subseteq w$, then $\{\Box\}_A(a) \subseteq (\Box \rightarrowtail_A \Box)(u, w)$.

Let us consider *A*. Observe that the lattice of normal forms over *A* is implicative. Next we state two propositions:

- (33)⁴ $u \Rightarrow v = \bigsqcup_{2^u}^f (\text{the meet operation of the lattice of normal forms over } A)^{\circ}(\square^c_A, (\square \rightarrowtail_A \square)^{\circ}(\square \setminus_u \square, v))).$
- (34) $\top_{\text{the lattice of normal forms over } A} = \{\langle 0, 0 \rangle\}.$

REFERENCES

- $[1] \begin{tabular}{ll} Grzegorz Bancerek. Filters part I. {\it Journal of Formalized Mathematics}, 2, 1990. http://mizar.org/JFM/Vol2/filter_0.html.} \end{tabular}$
- [2] Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/funct_3.html.
- [3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_2.html.
- [6] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_l.html.

⁴ The proposition (32) has been removed.

- [7] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funcop_1.html.
- [8] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain_1.html.
- [9] Andrzej Trybulec. Semilattice operations on finite subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setwiseo.html.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [11] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/moart_1.html.
- [12] Andrzej Trybulec. Algebra of normal forms. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/normform.html.
- [13] Andrzej Trybulec. Finite join and finite meet, and dual lattices. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/lattice2.html.
- [14] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel.html.
- [15] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finsub_1.html.
- [16] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [17] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.
- [18] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/lattices.html.

Received January 3, 1991

Published January 2, 2004