Hessenberg Theorem¹

Eugeniusz Kusak Warsaw University Białystok Wojciech Leończuk Warsaw University Białystok

Summary. We prove the Hessenberg theorem which states that every Pappian projective space is Desarguesian.

MML Identifier: HESSENBE.

WWW: http://mizar.org/JFM/Vol2/hessenbe.html

The articles [2] and [1] provide the notation and terminology for this paper.

We adopt the following convention: P_1 denotes a projective space defined in terms of collinearity and a, a', a_1 , a_2 , a_3 , b, b', b_1 , b_2 , c, c_1 , c_3 , d, d', e, o, p, p_1 , p_2 , p_3 , r, q, q_1 , q_2 , q_3 , x, y denote elements of P_1 .

One can prove the following propositions:

- $(3)^1$ Suppose *a*, *b* and *c* are collinear. Then
- (i) b, c and a are collinear,
- (ii) c, a and b are collinear,
- (iii) b, a and c are collinear,
- (iv) a, c and b are collinear, and
- (v) c, b and a are collinear.
- (4) If $a \neq b$ and a, b and c are collinear and a, b and d are collinear, then a, c and d are collinear.
- (5) Suppose $p \neq q$ and a, b and p are collinear and a, b and q are collinear and p, q and r are collinear. Then a, b and r are collinear.
- (6) If $p \neq q$, then there exists *r* such that *p*, *q* and *r* are not collinear.
- (7) There exist q, r such that p, q and r are not collinear.
- (8) If *a*, *b* and *c* are not collinear and *a*, *b* and *b'* are collinear and $a \neq b'$, then *a*, *b'* and *c* are not collinear.
- (9) If *a*, *b* and *c* are not collinear and *a*, *b* and *d* are collinear and *a*, *c* and *d* are collinear, then *a* = *d*.
- (10) Suppose that *o*, *a* and *d* are not collinear and *o*, *d* and *d'* are collinear and *a*, *d* and *x* are collinear and $d \neq d'$ and *a'*, *d'* and *x* are collinear and *o*, *a* and *a'* are collinear and $o \neq d'$. Then $x \neq d$.

¹Supported by RPBP.III-24.C6.

¹ The propositions (1) and (2) have been removed.

- (12)² Suppose that a_1 , a_2 and a_3 are not collinear and a_1 , a_2 and c_3 are collinear and a_2 , a_3 and c_1 are collinear and a_1 , a_3 and x are collinear and c_1 , c_3 and x are collinear and $c_3 \neq a_1$ and $c_3 \neq a_2$ and $c_1 \neq a_2$ and $c_1 \neq a_3$. Then $a_1 \neq x$ and $a_3 \neq x$.
- (13) Suppose *a*, *b* and *c* are not collinear and *a*, *b* and *d* are collinear and *c*, *e* and *d* are collinear and $e \neq c$ and $d \neq a$. Then *e*, *a* and *c* are not collinear.
- (14) Suppose p_1 , p_2 and q_1 are not collinear and p_1 , p_2 and q_2 are collinear and q_1 , q_2 and q_3 are collinear and $p_1 \neq q_2$ and $q_2 \neq q_3$. Then p_2 , p_1 and q_3 are not collinear.
- (15) Suppose p_1 , p_2 and q_1 are not collinear and p_1 , p_2 and p_3 are collinear and q_1 , q_2 and p_3 are collinear and $p_3 \neq q_2$ and $p_2 \neq p_3$. Then p_3 , p_2 and q_2 are not collinear.
- (16) Suppose p_1 , p_2 and q_1 are not collinear and p_1 , p_2 and p_3 are collinear and q_1 , q_2 and p_1 are collinear and $p_1 \neq p_3$ and $p_1 \neq q_2$. Then p_3 , p_1 and q_2 are not collinear.
- (17) Suppose that $a_1 \neq a_2$ and $b_1 \neq b_2$ and b_1 , b_2 and x are collinear and b_1 , b_2 and y are collinear and a_1 , a_2 and x are collinear and a_1 , a_2 and y are collinear and a_1 , a_2 and b_1 are not collinear. Then x = y.
- (19)³ Suppose o, a_1 and a_2 are not collinear and o, a_1 and b_1 are collinear and o, a_2 and b_2 are collinear and $o \neq b_1$ and $o \neq b_2$. Then o, b_1 and b_2 are not collinear.

We adopt the following convention: *P*₁ is a Pappian projective plane defined in terms of collinearity and *a*₁, *a*₂, *a*₃, *b*₁, *b*₂, *b*₃, *c*₁, *c*₂, *c*₃, *o*, *p*₁, *p*₂, *p*₃, *q*₁, *q*₂, *q*₃, *r*₁, *r*₂, *r*₃ are elements of *P*₁. One can prove the following propositions:

- (20) Suppose that $p_2 \neq p_3$ and $p_1 \neq p_3$ and $q_2 \neq q_3$ and $q_1 \neq q_2$ and $q_1 \neq q_3$ and p_1 , p_2 and q_1 are not collinear and p_1 , p_2 and p_3 are collinear and q_1 , q_2 and q_3 are collinear and p_1 , q_2 and r_3 are collinear and p_2 , q_3 and r_1 are collinear and p_3 , q_2 and r_1 are collinear. Then r_1 , r_2 and r_3 are collinear.
- (21) Suppose that $o \neq b_1$ and $a_1 \neq b_1$ and $o \neq b_2$ and $a_2 \neq b_2$ and $o \neq b_3$ and $a_3 \neq b_3$ and o, a_1 and a_2 are not collinear and o, a_1 and a_3 are not collinear and o, a_2 and a_3 are not collinear and a_1, a_2 and c_3 are collinear and b_1, b_2 and c_3 are collinear and a_2, a_3 and c_1 are collinear and b_2, b_3 and c_1 are collinear and a_1, a_3 and c_2 are collinear and b_1, b_3 and c_2 are collinear and a_2, a_3 and c_3 are collinear and a_2, a_3 and c_1 are collinear and a_2, a_3 and c_1 are collinear and a_2, a_3 and c_2 are collinear and a_2, a_3 and c_3 are collinear and a_2, a_3 and c_3 are collinear and a_2, a_3 and c_3 are collinear and a_3, a_2 and b_2 are collinear and a_3, a_3 and a_3 are collinear. Then c_1, c_2 and c_3 are collinear.

One can check that every projective space defined in terms of collinearity which is Pappian is also Desarguesian.

REFERENCES

- Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/anproj_2.html.
- [2] Wojciech Skaba. The collinearity structure. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/collsp.html.

Received October 2, 1990

Published January 2, 2004

² The proposition (11) has been removed.

³ The proposition (18) has been removed.