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Summary. We prove the Hessenberg theorem which states that every Pappian projec-
tive space is Desarguesian.

MML Identifier: HESSENBE.

WWW: http://mizar.org/JFM/Vol2/hessenbe.html

The articlesl[2] and ]1] provide the notation and terminology for this paper.
We adopt the following conventio?; denotes a projective space defined in terms of collinearity

anda, @, a1, ap, a3, b, b/, by, by, ¢, ¢y, 3, d, d', € 0, p, p1, P2, P3, I, G, A1, G, O3, X, Yy denote
elements of;.

One can prove the following propositions:

(3H Suppose, b andc are collinear. Then
(i) b,candaare collinear,

(i) c,aandbare collinear,

(i) b, aandc are collinear,

(iv) a candb are collinear, and

(v) c,bandaare collinear.

(4) Ifa#banda, bandcare collinear and, b andd are collinear, thea, c andd are collinear.

(5) Suppose # ganda, b andp are collinear an@, b andq are collinear ang, g andr are
collinear. Therg, b andr are collinear.

(6) If p#q, then there exists such thatp, g andr are not collinear.
(7) There exisy, r such thatp, g andr are not collinear.

(8) If a, bandc are not collinear and, b andb’ are collinear ané +# b/, thena, b’ andc are
not collinear.

(9) If a, bandc are not collinear and, b andd are collinear and, c andd are collinear, then
a=d.

(10) Suppose that, a andd are not collinear and, d andd’ are collinear and, d andx are
collinear andd # d’ anda’, d’ andx are collinear ana, a anda’ are collinear ana # a'.
Thenx # d.

1Supported by RPBP.1I1-24.C6.
1 The propositions (1) and (2) have been removed.
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(12E] Suppose that;, ap andas are not collinear andy, a, andcs are collinear andy, az and
c; are collinear an@y, az andx are collinear and;, c3 andx are collinear ands # a; and
C3 # & andcy # ap andc; # ag. Thenap # x andag # X.

(13) Suppose, b andc are not collinear and, b andd are collinear and, e andd are collinear
ande # c andd # a. Thene, aandc are not collinear.

(14) Supposes, p2 andg; are not collinear angh;, p2 andgy are collinear andj;, g2 andgs
are collinear angh; # g andq, # gs. Thenpy, p1 andgs are not collinear.

(15) Supposes, p2 andq; are not collinear ang, p; and ps are collinear andj;, gz and ps
are collinear angbs # g andp, # pz. Thenps, p2 andg are not collinear.

(16) Supposes, p2 andg; are not collinear ang, p2 and ps are collinear andj;, gz and p;
are collinear angh; # p3 andp; # gz. Thenps, p1 andgy are not collinear.

(17) Suppose tha; # ap andb; # by, andb;, b, andx are collinear andy, by, andy are
collinear anday, a; andx are collinear and;, a; andy are collinear and;, a, andb; are not
collinear. Therx=y.

(19 Suppose, a; anday are not collinear and, a; andb; are collinear ana@, a; andb, are
collinear and # by ando # by. Theno, by andb, are not collinear.

We adopt the following conventioi?; is a Pappian projective plane defined in terms of collinear-
ity anday, ag, ag, b1, bz, b, ¢1, €2, C3, 0, P1, P2, P3, G1, G2, U3, I'1, 2, I3 are elements dP;.
One can prove the following propositions:

(20) Suppose that, # p3 andpy # p3 anddp # gz anday # g2 andqy # gz andpy, pz andq;
are not collinear angy, p> andps are collinear andj;, g, andgs are collinear angby, g, and
r3 are collinear andj;, p2 andrs are collinear ang;, gz andr; are collinear angbs, g1 and

r, are collinear angb,, gz andr; are collinear angbz, gz andr; are collinear. Theny, r, and
r3 are collinear.

(21) Suppose that # b; anda; # by ando # by anday # by ando # bz andag # bs ando, &g
anday are not collinear and, a; andag are not collinear and, a, andagz are not collinear
anday, ap andcs are collinear andb, b, andcs are collinear an@y, ag andc; are collinear
andby, bs andc; are collinear andy, az andc, are collinear andb;, bs andc, are collinear
ando, a; andb; are collinear ana, a, andhb, are collinear and, az andbs are collinear.
Thency, ¢, andcs are collinear.

One can check that every projective space defined in terms of collinearity which is Pappian is
also Desarguesian.
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2 The proposition (11) has been removed.
3 The proposition (18) has been removed.
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