Hessenberg Theorem ${ }^{1}$

Eugeniusz Kusak
Warsaw University
Białystok

Wojciech Leończuk
Warsaw University
Białystok

Abstract

Summary. We prove the Hessenberg theorem which states that every Pappian projective space is Desarguesian.

MML Identifier: HESSENBE.
WWW: http://mizar.org/JFM/Vol2/hessenbe.html

The articles [2] and [1] provide the notation and terminology for this paper.
We adopt the following convention: P_{1} denotes a projective space defined in terms of collinearity and $a, a^{\prime}, a_{1}, a_{2}, a_{3}, b, b^{\prime}, b_{1}, b_{2}, c, c_{1}, c_{3}, d, d^{\prime}, e, o, p, p_{1}, p_{2}, p_{3}, r, q, q_{1}, q_{2}, q_{3}, x, y$ denote elements of P_{1}.

One can prove the following propositions:
(3) Suppose a, b and c are collinear. Then
(i) $\quad b, c$ and a are collinear,
(ii) $\quad c, a$ and b are collinear,
(iii) b, a and c are collinear,
(iv) $\quad a, c$ and b are collinear, and
(v) $\quad c, b$ and a are collinear.
(4) If $a \neq b$ and a, b and c are collinear and a, b and d are collinear, then a, c and d are collinear.
(5) Suppose $p \neq q$ and a, b and p are collinear and a, b and q are collinear and p, q and r are collinear. Then a, b and r are collinear.
(6) If $p \neq q$, then there exists r such that p, q and r are not collinear.
(7) There exist q, r such that p, q and r are not collinear.
(8) If a, b and c are not collinear and a, b and b^{\prime} are collinear and $a \neq b^{\prime}$, then a, b^{\prime} and c are not collinear.
(9) If a, b and c are not collinear and a, b and d are collinear and a, c and d are collinear, then $a=d$.
(10) Suppose that o, a and d are not collinear and o, d and d^{\prime} are collinear and a, d and x are collinear and $d \neq d^{\prime}$ and a^{\prime}, d^{\prime} and x are collinear and o, a and a^{\prime} are collinear and $o \neq a^{\prime}$. Then $x \neq d$.

[^0](12) Suppose that a_{1}, a_{2} and a_{3} are not collinear and a_{1}, a_{2} and c_{3} are collinear and a_{2}, a_{3} and c_{1} are collinear and a_{1}, a_{3} and x are collinear and c_{1}, c_{3} and x are collinear and $c_{3} \neq a_{1}$ and $c_{3} \neq a_{2}$ and $c_{1} \neq a_{2}$ and $c_{1} \neq a_{3}$. Then $a_{1} \neq x$ and $a_{3} \neq x$.
(13) Suppose a, b and c are not collinear and a, b and d are collinear and c, e and d are collinear and $e \neq c$ and $d \neq a$. Then e, a and c are not collinear.
(14) Suppose p_{1}, p_{2} and q_{1} are not collinear and p_{1}, p_{2} and q_{2} are collinear and q_{1}, q_{2} and q_{3} are collinear and $p_{1} \neq q_{2}$ and $q_{2} \neq q_{3}$. Then p_{2}, p_{1} and q_{3} are not collinear.
(15) Suppose p_{1}, p_{2} and q_{1} are not collinear and p_{1}, p_{2} and p_{3} are collinear and q_{1}, q_{2} and p_{3} are collinear and $p_{3} \neq q_{2}$ and $p_{2} \neq p_{3}$. Then p_{3}, p_{2} and q_{2} are not collinear.
(16) Suppose p_{1}, p_{2} and q_{1} are not collinear and p_{1}, p_{2} and p_{3} are collinear and q_{1}, q_{2} and p_{1} are collinear and $p_{1} \neq p_{3}$ and $p_{1} \neq q_{2}$. Then p_{3}, p_{1} and q_{2} are not collinear.
(17) Suppose that $a_{1} \neq a_{2}$ and $b_{1} \neq b_{2}$ and b_{1}, b_{2} and x are collinear and b_{1}, b_{2} and y are collinear and a_{1}, a_{2} and x are collinear and a_{1}, a_{2} and y are collinear and a_{1}, a_{2} and b_{1} are not collinear. Then $x=y$.
(19) Suppose o, a_{1} and a_{2} are not collinear and o, a_{1} and b_{1} are collinear and o, a_{2} and b_{2} are collinear and $o \neq b_{1}$ and $o \neq b_{2}$. Then o, b_{1} and b_{2} are not collinear.

We adopt the following convention: P_{1} is a Pappian projective plane defined in terms of collinearity and $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}, o, p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3}, r_{1}, r_{2}, r_{3}$ are elements of P_{1}.

One can prove the following propositions:
(20) Suppose that $p_{2} \neq p_{3}$ and $p_{1} \neq p_{3}$ and $q_{2} \neq q_{3}$ and $q_{1} \neq q_{2}$ and $q_{1} \neq q_{3}$ and p_{1}, p_{2} and q_{1} are not collinear and p_{1}, p_{2} and p_{3} are collinear and q_{1}, q_{2} and q_{3} are collinear and p_{1}, q_{2} and r_{3} are collinear and q_{1}, p_{2} and r_{3} are collinear and p_{1}, q_{3} and r_{2} are collinear and p_{3}, q_{1} and r_{2} are collinear and p_{2}, q_{3} and r_{1} are collinear and p_{3}, q_{2} and r_{1} are collinear. Then r_{1}, r_{2} and r_{3} are collinear.
(21) Suppose that $o \neq b_{1}$ and $a_{1} \neq b_{1}$ and $o \neq b_{2}$ and $a_{2} \neq b_{2}$ and $o \neq b_{3}$ and $a_{3} \neq b_{3}$ and o, a_{1} and a_{2} are not collinear and o, a_{1} and a_{3} are not collinear and o, a_{2} and a_{3} are not collinear and a_{1}, a_{2} and c_{3} are collinear and b_{1}, b_{2} and c_{3} are collinear and a_{2}, a_{3} and c_{1} are collinear and b_{2}, b_{3} and c_{1} are collinear and a_{1}, a_{3} and c_{2} are collinear and b_{1}, b_{3} and c_{2} are collinear and o, a_{1} and b_{1} are collinear and o, a_{2} and b_{2} are collinear and o, a_{3} and b_{3} are collinear. Then c_{1}, c_{2} and c_{3} are collinear.

One can check that every projective space defined in terms of collinearity which is Pappian is also Desarguesian.

References

[1] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/anproj_2.html
[2] Wojciech Skaba. The collinearity structure. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/collsp.html

Received October 2, 1990
Published January 2, 2004

[^1]
[^0]: ${ }^{1}$ Supported by RPBP.III-24.C6.
 ${ }^{1}$ The propositions (1) and (2) have been removed.

[^1]: ${ }^{2}$ The proposition (11) has been removed
 ${ }^{3}$ The proposition (18) has been removed.

