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The articles [18], [5], [23], [1], [19], [7], [8], [17], [3], [2], [21], [12], [24], [4], [20], [6], [9], [22],
[14], [15], [11], and [10] provide the notation and terminology for this paper.

1. AUXILIARY FACTS ABOUT COMPLEX NUMBERS

One can prove the following propositions:

(1) For every elementa of C such thata = a holdsℑ(a) = 0.

(2) For every elementa of C such thata 6= 0C holds|ℜ(a)
|a| + −ℑ(a)

|a| i|= 1 andℜ((ℜ(a)
|a| + −ℑ(a)

|a| i) ·
a) = |a| andℑ((ℜ(a)

|a| + −ℑ(a)
|a| i) ·a) = 0.

(3) For every elementa of C there exists an elementb of C such that|b|= 1 andℜ(b·a) = |a|
andℑ(b·a) = 0.

(4) For every elementa of C holdsa· a = |a|2 +0i.

(5) For every elementa of CF such thata = a holdsℑ(a) = 0.

(6) iCF = (i)−1.

(7) iCF · iCF = 1CF.

(8) For every elementa of CF such thata 6= 0CF holds |ℜ(a)
|a| + −ℑ(a)

|a| iCF| = 1 andℜ((ℜ(a)
|a| +

−ℑ(a)
|a| iCF) ·a) = |a| andℑ((ℜ(a)

|a| + −ℑ(a)
|a| iCF) ·a) = 0.

1This work has been partially supported by TRIAL-SOLUTION grant IST-2001-35447 and SPUB-M
grant of KBN.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol14/hermitan.html


HERMITAN FUNCTIONALS. . . . 2

(9) For every elementa of CF there exists an elementb of CF such that|b|= 1 andℜ(b·a) = |a|
andℑ(b·a) = 0.

(10) For all elementsa, b of CF holdsℜ(a−b) = ℜ(a)−ℜ(b) andℑ(a−b) = ℑ(a)−ℑ(b).

(11) For all elementsa, b of CF such thatℑ(a) = 0 holdsℜ(a·b) = ℜ(a) ·ℜ(b) andℑ(a·b) =
ℜ(a) ·ℑ(b).

(12) For all elementsa, b of CF such thatℑ(a) = 0 andℑ(b) = 0 holdsℑ(a·b) = 0.

(13) For every elementa of CF holdsℜ(a) = ℜ(a).

(14) For every elementa of CF such thatℑ(a) = 0 holdsa = a.

(15) For all real numbersr, s holds(r +0iCF) · (s+0iCF) = r ·s+0iCF.

(16) For every elementa of CF holdsa· a = |a|2 +0iCF.

(17) For every elementa of CF such that 0≤ ℜ(a) andℑ(a) = 0 holds|a|= ℜ(a).

(18) For every elementa of CF holdsℜ(a)+ℜ(a) = 2·ℜ(a).

2. ANTILINEAR FUNCTIONALS IN COMPLEX VECTORSPACES

Let V be a non empty vector space structure overCF and let f be a functional inV. We say thatf
is complex-homogeneous if and only if:

(Def. 1) For every vectorv of V and for every scalara of V holds f (a·v) = a · f (v).

Let V be a non empty vector space structure overCF. Note that 0FunctionalV is complex-
homogeneous.

Let V be an add-associative right zeroed right complementable vector space-like non empty
vector space structure overCF. Observe that every functional inV which is complex-homogeneous
is also 0-preserving.

Let V be a non empty vector space structure overCF. Observe that there exists a functional in
V which is additive, complex-homogeneous, and 0-preserving.

LetV be a non empty vector space structure overCF. An antilinear functional ofV is an additive
complex-homogeneous functional inV.

Let V be a non empty vector space structure overCF and let f , g be complex-homogeneous
functionals inV. Note thatf +g is complex-homogeneous.

Let V be a non empty vector space structure overCF and let f be a complex-homogeneous
functional inV. Observe that− f is complex-homogeneous.

Let V be a non empty vector space structure overCF, let a be a scalar ofV, and let f be a
complex-homogeneous functional inV. Note thata· f is complex-homogeneous.

Let V be a non empty vector space structure overCF and let f , g be complex-homogeneous
functionals inV. Observe thatf −g is complex-homogeneous.

LetV be a non empty vector space structure overCF and let f be a functional inV. The functor
f yielding a functional inV is defined as follows:

(Def. 2) For every vectorv of V holds f (v) = f (v) .

Let V be a non empty vector space structure overCF and let f be an additive functional inV.
One can check thatf is additive.

Let V be a non empty vector space structure overCF and let f be a homogeneous functional in
V. Observe thatf is complex-homogeneous.

Let V be a non empty vector space structure overCF and let f be a complex-homogeneous
functional inV. One can verify thatf is homogeneous.

Let V be a non trivial vector space overCF and let f be a non constant functional inV. Note
that f is non constant.

Let V be a non trivial vector space overCF. Note that there exists a functional inV which is
additive, complex-homogeneous, non constant, and non trivial.

Next we state a number of propositions:
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(19) For every non empty vector space structureV overCF and for every functionalf in V holds
f = f .

(20) For every non empty vector space structureV over CF holds 0FunctionalV =
0FunctionalV.

(21) For every non empty vector space structureV over CF and for all functionalsf , g in V
holds f +g = f + g.

(22) For every non empty vector space structureV overCF and for every functionalf in V holds
− f =− f .

(23) LetV be a non empty vector space structure overCF, f be a functional inV, anda be a
scalar ofV. Thena· f = a · f .

(24) For every non empty vector space structureV over CF and for all functionalsf , g in V
holds f −g = f − g.

(25) LetV be a non empty vector space structure overCF, f be a functional inV, andv be a
vector ofV. Then f (v) = 0CF if and only if f (v) = 0CF.

(26) For every non empty vector space structureV overCF and for every functionalf in V holds
ker f = ker f .

(27) LetV be an add-associative right zeroed right complementable vector space-like non empty
vector space structure overCF and f be an antilinear functional ofV. Then kerf is linearly
closed.

(28) LetV be a vector space overCF, W be a subspace ofV, and f be an antilinear functional
of V. If the carrier ofW ⊆ ker f , then f /W is complex-homogeneous.

Let V be a vector space overCF and let f be an antilinear functional ofV. The functor
QcFunctionalf yielding an antilinear functional ofV/Ker f is defined as follows:

(Def. 3) QcFunctionalf = f /Ker f .

One can prove the following proposition

(29) LetV be a vector space overCF, f be an antilinear functional ofV, A be a vector ofV/Ker f ,

andv be a vector ofV. If A = v+Ker f , then(QcFunctionalf )(A) = f (v).

Let V be a non trivial vector space overCF and let f be a non constant antilinear functional of
V. Note that QcFunctionalf is non constant.

Let V be a vector space overCF and let f be an antilinear functional ofV. Observe that
QcFunctionalf is non degenerated.

3. SESQUILINEAR FORMS IN COMPLEX VECTORSPACES

Let V, W be non empty vector space structures overCF and let f be a form ofV, W. We say thatf
is complex-homogeneous wrt. second argument if and only if:

(Def. 4) For every vectorv of V holds f (v, ·) is complex-homogeneous.

Next we state the proposition

(30) LetV, W be non empty vector space structures overCF, v be a vector ofV, w be a vector
of W, a be an element ofCF, and f be a form ofV, W. Supposef is complex-homogeneous
wrt. second argument. Thenf (〈〈v, a·w〉〉) = a · f (〈〈v, w〉〉).

Let V be a non empty vector space structure overCF and let f be a form ofV, V. We say thatf
is hermitan if and only if:
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(Def. 5) For all vectorsv, u of V holds f (〈〈v, u〉〉) = f (〈〈u, v〉〉) .

We say thatf is diagonal real valued if and only if:

(Def. 6) For every vectorv of V holdsℑ( f (〈〈v, v〉〉)) = 0.

We say thatf is diagonal plus-real valued if and only if:

(Def. 7) For every vectorv of V holds 0≤ ℜ( f (〈〈v, v〉〉)).

Let V, W be non empty vector space structures overCF. Observe that NulForm(V,W) is
complex-homogeneous wrt. second argument.

Let V be a non empty vector space structure overCF. Note that NulForm(V,V) is hermitan and
NulForm(V,V) is diagonal plus-real valued.

Let V be a non empty vector space structure overCF. Note that every form ofV, V which is
hermitan is also diagonal real valued.

Let V be a non empty vector space structure overCF. Observe that there exists a form ofV,
V which is diagonal plus-real valued, hermitan, diagonal real valued, additive wrt. first argument,
homogeneous wrt. first argument, additive wrt. second argument, and complex-homogeneous wrt.
second argument.

Let V, W be non empty vector space structures overCF. Observe that there exists a form ofV,
W which is additive wrt. first argument, homogeneous wrt. first argument, additive wrt. second
argument, and complex-homogeneous wrt. second argument.

LetV, W be non empty vector space structures overCF. A sesquilinear form ofV, W is an addi-
tive wrt. first argument homogeneous wrt. first argument additive wrt. second argument complex-
homogeneous wrt. second argument form ofV, W.

Let V be a non empty vector space structure overCF. One can verify that every form ofV, V
which is hermitan and additive wrt. second argument is also additive wrt. first argument.

Let V be a non empty vector space structure overCF. Note that every form ofV, V which is
hermitan and additive wrt. first argument is also additive wrt. second argument.

Let V be a non empty vector space structure overCF. Observe that every form ofV, V which
is hermitan and homogeneous wrt. first argument is also complex-homogeneous wrt. second argu-
ment.

LetV be a non empty vector space structure overCF. Note that every form ofV, V which is her-
mitan and complex-homogeneous wrt. second argument is also homogeneous wrt. first argument.

Let V be a non empty vector space structure overCF. A hermitan form ofV is a hermitan
additive wrt. first argument homogeneous wrt. first argument form ofV, V.

LetV, W be non empty vector space structures overCF, let f be a functional inV, and letg be a
complex-homogeneous functional inW. Observe thatf ⊗g is complex-homogeneous wrt. second
argument.

Let V, W be non empty vector space structures overCF, let f be a complex-homogeneous
wrt. second argument form ofV, W, and letv be a vector ofV. Observe thatf (v, ·) is complex-
homogeneous.

Let V, W be non empty vector space structures overCF and let f , g be complex-homogeneous
wrt. second argument forms ofV, W. One can check thatf + g is complex-homogeneous wrt.
second argument.

Let V, W be non empty vector space structures overCF, let f be a complex-homogeneous wrt.
second argument form ofV, W, and leta be a scalar ofV. One can verify thata · f is complex-
homogeneous wrt. second argument.

Let V, W be non empty vector space structures overCF and let f be a complex-homogeneous
wrt. second argument form ofV, W. Observe that− f is complex-homogeneous wrt. second
argument.

Let V, W be non empty vector space structures overCF and let f , g be complex-homogeneous
wrt. second argument forms ofV, W. Observe thatf −g is complex-homogeneous wrt. second
argument.

Let V, W be non trivial vector spaces overCF. One can check that there exists a form ofV,
W which is additive wrt. first argument, homogeneous wrt. first argument, additive wrt. second
argument, complex-homogeneous wrt. second argument, non constant, and non trivial.
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LetV, W be non empty vector space structures overCF and let f be a form ofV, W. The functor
f yields a form ofV, W and is defined as follows:

(Def. 8) For every vectorv of V and for every vectorw of W holds f (〈〈v, w〉〉) = f (〈〈v, w〉〉) .

Let V, W be non empty vector space structures overCF and let f be an additive wrt. second
argument form ofV, W. Observe thatf is additive wrt. second argument.

Let V, W be non empty vector space structures overCF and let f be an additive wrt. first
argument form ofV, W. Observe thatf is additive wrt. first argument.

LetV, W be non empty vector space structures overCF and let f be a homogeneous wrt. second
argument form ofV, W. Note that f is complex-homogeneous wrt. second argument.

Let V, W be non empty vector space structures overCF and let f be a complex-homogeneous
wrt. second argument form ofV, W. One can verify thatf is homogeneous wrt. second argument.

LetV, W be non trivial vector spaces overCF and let f be a non constant form ofV, W. Observe
that f is non constant.

One can prove the following proposition

(31) LetV be a non empty vector space structure overCF, f be a functional inV, andv be a
vector ofV. Then f ⊗ f (〈〈v, v〉〉) = | f (v)|2 +0iCF.

Let V be a non empty vector space structure overCF and let f be a functional inV. Observe
that f ⊗ f is diagonal plus-real valued, hermitan, and diagonal real valued.

Let V be a non trivial vector space overCF. One can check that there exists a form ofV, V
which is diagonal plus-real valued, hermitan, diagonal real valued, additive wrt. first argument, ho-
mogeneous wrt. first argument, additive wrt. second argument, complex-homogeneous wrt. second
argument, non constant, and non trivial.

One can prove the following propositions:

(32) For all non empty vector space structuresV, W overCF and for every formf of V, W holds
f = f .

(33) For all non empty vector space structuresV, W over CF holds NulForm(V,W) =
NulForm(V,W).

(34) For all non empty vector space structuresV, W over CF and for all forms f , g of V, W
holds f +g = f + g.

(35) For all non empty vector space structuresV, W overCF and for every formf of V, W holds
− f =− f .

(36) LetV, W be non empty vector space structures overCF, f be a form ofV, W, anda be an
element ofCF. Thena· f = a · f .

(37) For all non empty vector space structuresV, W over CF and for all forms f , g of V, W
holds f −g = f − g.

(38) LetV, W be vector spaces overCF, v be a vector ofV, w, t be vectors ofW, and f be an
additive wrt. second argument complex-homogeneous wrt. second argument form ofV, W.
Then f (〈〈v, w− t〉〉) = f (〈〈v, w〉〉)− f (〈〈v, t〉〉).

(39) LetV, W be vector spaces overCF, v, u be vectors ofV, w, t be vectors ofW, and f be a
sesquilinear form ofV,W. Then f (〈〈v−u, w−t〉〉) = f (〈〈v, w〉〉)− f (〈〈v, t〉〉)−( f (〈〈u, w〉〉)− f (〈〈u,
t〉〉)).

(40) Let V, W be add-associative right zeroed right complementable vector space-like non
empty vector space structures overCF, v, u be vectors ofV, w, t be vectors ofW, a, b be
elements ofCF, and f be a sesquilinear form ofV, W. Then f (〈〈v+a ·u, w+b · t〉〉) = f (〈〈v,
w〉〉)+ b · f (〈〈v, t〉〉)+(a· f (〈〈u, w〉〉)+a· (b · f (〈〈u, t〉〉))).
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(41) LetV, W be vector spaces overCF, v, u be vectors ofV, w, t be vectors ofW, a, b be
elements ofCF, and f be a sesquilinear form ofV, W. Then f (〈〈v−a ·u, w−b · t〉〉) = f (〈〈v,
w〉〉)− b · f (〈〈v, t〉〉)− (a· f (〈〈u, w〉〉)−a· (b · f (〈〈u, t〉〉))).

(42) LetV be an add-associative right zeroed right complementable vector space-like non empty
vector space structure overCF, f be a complex-homogeneous wrt. second argument form of
V, V, andv be a vector ofV. Then f (〈〈v, 0V〉〉) = 0CF.

(43) Let V be a vector space overCF, v, w be vectors ofV, and f be a hermitan form of
V. Then f (〈〈v, w〉〉) + f (〈〈v, w〉〉) + f (〈〈v, w〉〉) + f (〈〈v, w〉〉) = (( f (〈〈v+ w, v+ w〉〉)− f (〈〈v−w,
v−w〉〉))+ iCF · f (〈〈v+ iCF ·w, v+ iCF ·w〉〉))− iCF · f (〈〈v− iCF ·w, v− iCF ·w〉〉).

Let V be a non empty vector space structure overCF, let f be a form ofV, V, and letv be a
vector ofV. The functor||v||2f yields a real number and is defined by:

(Def. 9) ||v||2f = ℜ( f (〈〈v, v〉〉)).

We now state a number of propositions:

(44) LetV be an add-associative right zeroed right complementable vector space-like non empty
vector space structure overCF, f be a diagonal plus-real valued diagonal real valued form of
V, V, andv be a vector ofV. Then| f (〈〈v, v〉〉)|= ℜ( f (〈〈v, v〉〉)) and||v||2f = | f (〈〈v, v〉〉)|.

(45) LetV be a vector space overCF, v, w be vectors ofV, f be a sesquilinear form ofV, V, r
be a real number, anda be an element ofCF. Suppose|a|= 1 andℜ(a · f (〈〈w, v〉〉)) = | f (〈〈w,
v〉〉)| andℑ(a · f (〈〈w, v〉〉)) = 0. Then f (〈〈v− (r + 0iCF) ·a ·w, v− (r + 0iCF) ·a ·w〉〉) = ( f (〈〈v,
v〉〉)− (r +0iCF) · (a· f (〈〈w, v〉〉))− (r +0iCF) · (a · f (〈〈v, w〉〉)))+(r2 +0iCF) · f (〈〈w, w〉〉).

(46) LetV be a vector space overCF, v, w be vectors ofV, f be a diagonal plus-real valued
hermitan form ofV, r be a real number, anda be an element ofCF. Suppose|a| = 1 and
ℜ(a · f (〈〈w, v〉〉)) = | f (〈〈w, v〉〉)| andℑ(a · f (〈〈w, v〉〉)) = 0. Thenℜ( f (〈〈v− (r +0iCF) ·a ·w, v−
(r + 0iCF) ·a ·w〉〉)) = (||v||2f −2 · | f (〈〈w, v〉〉)| · r)+ ||w||2f · r2 and 0≤ (||v||2f −2 · | f (〈〈w, v〉〉)| ·
r)+ ||w||2f · r2.

(47) LetV be a vector space overCF, v, w be vectors ofV, and f be a diagonal plus-real valued
hermitan form ofV. If ||w||2f = 0, then| f (〈〈w, v〉〉)|= 0.

(48) LetV be a vector space overCF, v, w be vectors ofV, and f be a diagonal plus-real valued
hermitan form ofV. Then| f (〈〈v, w〉〉)|2 ≤ ||v||2f · ||w||2f .

(49) LetV be a vector space overCF, f be a diagonal plus-real valued hermitan form ofV, and
v, w be vectors ofV. Then| f (〈〈v, w〉〉)|2 ≤ | f (〈〈v, v〉〉)| · | f (〈〈w, w〉〉)|.

(50) LetV be a vector space overCF, f be a diagonal plus-real valued hermitan form ofV, and

v, w be vectors ofV. Then||v+w||2f ≤ (
√
||v||2f +

√
||w||2f )2.

(51) LetV be a vector space overCF, f be a diagonal plus-real valued hermitan form ofV, and
v, w be vectors ofV. Then| f (〈〈v+w, v+w〉〉)| ≤ (

√
| f (〈〈v, v〉〉)|+

√
| f (〈〈w, w〉〉)|)2.

(52) LetV be a vector space overCF, f be a hermitan form ofV, andv, w be elements ofV.
Then||v+w||2f + ||v−w||2f = 2· ||v||2f +2· ||w||2f .

(53) LetV be a vector space overCF, f be a diagonal plus-real valued hermitan form ofV, andv,
w be elements ofV. Then| f (〈〈v+w, v+w〉〉)|+ | f (〈〈v−w, v−w〉〉)|= 2· | f (〈〈v, v〉〉)|+2· | f (〈〈w,
w〉〉)|.

Let V be a non empty vector space structure overCF and let f be a form ofV, V. The functor
|| · || f yields a RFunctional ofV and is defined as follows:

(Def. 10) For every elementv of V holds(|| · || f )(v) =
√
||v||2f .

Let V be a vector space overCF and let f be a diagonal plus-real valued hermitan form ofV.
Then|| · || f is a Semi-Norm ofV.
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4. KERNEL OFHERMITAN FORMS AND HERMITAN FORMS IN QUOTIENT VECTORSPACES

Let V be an add-associative right zeroed right complementable vector space-like non empty vector
space structure overCF and let f be a complex-homogeneous wrt. second argument form ofV, V.
Observe that diagkerf is non empty.

Next we state several propositions:

(54) LetV be a vector space overCF and f be a diagonal plus-real valued hermitan form ofV.
Then diagkerf is linearly closed.

(55) For every vector spaceV overCF and for every diagonal plus-real valued hermitan formf
of V holds diagkerf = leftker f .

(56) For every vector spaceV overCF and for every diagonal plus-real valued hermitan formf
of V holds diagkerf = rightker f .

(57) For every non empty vector space structureV overCF and for every formf of V, V holds
diagkerf = diagkerf .

(58) For all non empty vector space structuresV, W overCF and for every formf of V, W holds
leftker f = leftker f and rightkerf = rightker f .

(59) For every vector spaceV overCF and for every diagonal plus-real valued hermitan formf
of V holds LKerf = RKer f .

(60) LetV be a vector space overCF, f be a diagonal plus-real valued diagonal real valued form
of V, V, andv be a vector ofV. If ℜ( f (〈〈v, v〉〉)) = 0, then f (〈〈v, v〉〉) = 0CF.

(61) LetV be a vector space overCF, f be a diagonal plus-real valued hermitan form ofV,
andv be a vector ofV. Supposeℜ( f (〈〈v, v〉〉)) = 0 and f is non degenerated on left and non
degenerated on right. Thenv = 0V .

Let V be a non empty vector space structure overCF, let W be a vector space overCF, and let
f be an additive wrt. second argument complex-homogeneous wrt. second argument form ofV,
W. The functor RQForm∗( f ) yields an additive wrt. second argument complex-homogeneous wrt.
second argument form ofV, W/RKer f and is defined as follows:

(Def. 11) RQForm∗( f ) = RQForm( f ) .

Next we state the proposition

(62) LetV be a non empty vector space structure overCF, W be a vector space overCF, f be an
additive wrt. second argument complex-homogeneous wrt. second argument form ofV, W,
v be a vector ofV, andw be a vector ofW. Then(RQForm∗( f ))(〈〈v, w+ RKer f 〉〉) = f (〈〈v,
w〉〉).

Let V, W be vector spaces overCF and let f be a sesquilinear form ofV, W. Observe that
LQForm( f ) is additive wrt. second argument and complex-homogeneous wrt. second argument
and RQForm∗( f ) is additive wrt. first argument and homogeneous wrt. first argument.

Let V, W be vector spaces overCF and let f be a sesquilinear form ofV, W. The functor
QForm∗ f yielding a sesquilinear form ofV/LKer f , W/RKer f is defined by the condition (Def. 12).

(Def. 12) LetA be a vector ofV/LKer f , B be a vector ofW/RKer f , v be a vector ofV, andw be a

vector ofW. If A = v+LKer f andB = w+RKer f , then(QForm∗ f )(〈〈A, B〉〉) = f (〈〈v, w〉〉).

Let V, W be non trivial vector spaces overCF and let f be a non constant sesquilinear form of
V, W. One can verify that QForm∗ f is non constant.

Let V be a right zeroed non empty vector space structure overCF, letW be a vector space over
CF, and let f be an additive wrt. second argument complex-homogeneous wrt. second argument
form of V, W. Note that RQForm∗( f ) is non degenerated on right.

One can prove the following propositions:
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(63) LetV be a non empty vector space structure overCF, W be a vector space overCF, and f
be an additive wrt. second argument complex-homogeneous wrt. second argument form of
V, W. Then leftkerf = leftker(RQForm∗( f )).

(64) For all vector spacesV, W over CF and for every sesquilinear formf of V, W holds
RKer f = RKerLQForm( f ) .

(65) For all vector spacesV, W over CF and for every sesquilinear formf of V, W holds
LKer f = LKer(RQForm∗( f )).

(66) For all vector spacesV, W over CF and for every sesquilinear formf of V, W holds
QForm∗ f = RQForm∗(LQForm( f )) and QForm∗ f = LQForm(RQForm∗( f )).

(67) Let V, W be vector spaces overCF and f be a sesquilinear form ofV, W.
Then leftker(QForm∗ f ) = leftker(RQForm∗(LQForm( f ))) and rightker(QForm∗ f ) =
rightker(RQForm∗(LQForm( f ))) and leftker(QForm∗ f ) = leftker(LQForm(RQForm∗( f )))
and rightker(QForm∗ f ) = rightker(LQForm(RQForm∗( f ))).

Let V, W be vector spaces overCF and let f be a sesquilinear form ofV, W. One can
check that RQForm∗(LQForm( f )) is non degenerated on left and non degenerated on right and
LQForm(RQForm∗( f )) is non degenerated on left and non degenerated on right.

LetV, W be vector spaces overCF and let f be a sesquilinear form ofV, W. Note that QForm∗ f
is non degenerated on left and non degenerated on right.

5. SCALAR PRODUCT IN QUOTIENT VECTORSPACE GENERATED BY NONNEGATIVE

HERMITAN FORM

Let V be a non empty vector space structure overCF and let f be a form ofV, V. We say thatf is
positive diagonal valued if and only if:

(Def. 13) For every vectorv of V such thatv 6= 0V holds 0< ℜ( f (〈〈v, v〉〉)).

Let V be a right zeroed non empty vector space structure overCF. Observe that every form of
V, V which is positive diagonal valued and additive wrt. first argument is also diagonal plus-real
valued.

Let V be a right zeroed non empty vector space structure overCF. One can verify that every
form of V, V which is positive diagonal valued and additive wrt. second argument is also diagonal
plus-real valued.

LetV be a vector space overCF and letf be a diagonal plus-real valued hermitan form ofV. The
functor〈·|·〉 f yielding a diagonal plus-real valued hermitan form ofV/LKer f is defined as follows:

(Def. 14) 〈·|·〉 f = QForm∗ f .

We now state three propositions:

(68) LetV be a vector space overCF, f be a diagonal plus-real valued hermitan form ofV, A, B
be vectors ofV/LKer f , andv, w be vectors ofV. If A = v+LKer f andB = w+LKer f , then
(〈·|·〉 f )(〈〈A, B〉〉) = f (〈〈v, w〉〉).

(69) For every vector spaceV overCF and for every diagonal plus-real valued hermitan formf
of V holds leftker(〈·|·〉 f ) = leftker(QForm∗ f ).

(70) For every vector spaceV overCF and for every diagonal plus-real valued hermitan formf
of V holds rightker(〈·|·〉 f ) = rightker(QForm∗ f ).

Let V be a vector space overCF and let f be a diagonal plus-real valued hermitan form of
V. Observe that〈·|·〉 f is non degenerated on left, non degenerated on right, and positive diagonal
valued.

LetV be a non trivial vector space overCF and let f be a diagonal plus-real valued non constant
hermitan form ofV. Note that〈·|·〉 f is non constant.
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