
JOURNAL OF FORMALIZED MATHEMATICS

Volume12, Released 2000, Published 2003

Inst. of Computer Science, Univ. of Białystok

The Hahn Banach Theorem in the Vector Space over
the Field of Complex Numbers

Anna Justyna Milewska
University of Białystok

Summary. This article contains the Hahn Banach theorem in the vector space over
the field of complex numbers.

MML Identifier: HAHNBAN1.

WWW: http://mizar.org/JFM/Vol12/hahnban1.html

The articles [13], [4], [20], [16], [6], [7], [12], [11], [18], [8], [17], [19], [2], [3], [1], [21], [15],
[14], [5], [10], and [9] provide the notation and terminology for this paper.

1. PRELIMINARIES

The following propositions are true:

(1) For every elementz of C holds||z||= |z|.

(2) For all real numbersx1, y1, x2, y2 holds(x1 +y1i) · (x2 +y2i) = (x1 ·x2−y1 ·y2)+(x1 ·y2 +
x2 ·y1)i.

(3) For every real numberr holds(r +0i) · i = 0+ ri .

(4) For every real numberr holds|r +0i|= |r|.

(5) For every elementz of C such that|z| 6= 0 holds|z|+0i = z
|z|+0i ·z.

2. SOME FACTS ON THEFIELD OF COMPLEX NUMBERS

Let x, y be real numbers. The functorx+yiCF yielding an element ofCF is defined as follows:

(Def. 1) x+yiCF = x+yi.

The elementiCF of CF is defined as follows:

(Def. 2) iCF = i.

We now state several propositions:

(6) iCF = 0+1i andiCF = 0+1iCF.

(7) |iCF|= 1.

(8) iCF · iCF =−1CF.
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(9) (−1CF) ·−1CF = 1CF.

(10) For all real numbersx1, y1, x2, y2 holds (x1 + y1iCF) + (x2 + y2iCF) = (x1 + x2) + (y1 +
y2)iCF.

(11) For all real numbersx1, y1, x2, y2 holds(x1 +y1iCF) · (x2 +y2iCF) = (x1 ·x2−y1 ·y2)+(x1 ·
y2 +x2 ·y1)iCF.

(12) For every elementz of CF holds||z||= |z|.

(13) For every real numberr holds|r +0iCF|= |r|.

(14) For every real numberr holds(r +0iCF) · iCF = 0+ riCF.

Let z be an element ofCF. The functorℜ(z) yields a real number and is defined by:

(Def. 3) There exists an elementz′ of C such thatz= z′ andℜ(z) = ℜ(z′).

Let z be an element ofCF. The functorℑ(z) yields a real number and is defined by:

(Def. 4) There exists an elementz′ of C such thatz= z′ andℑ(z) = ℑ(z′).

Next we state several propositions:

(15) For all real numbersx, y holdsℜ(x+yiCF) = x andℑ(x+yiCF) = y.

(16) For all elementsx, y of CF holdsℜ(x+y) = ℜ(x)+ℜ(y) andℑ(x+y) = ℑ(x)+ℑ(y).

(17) For all elementsx, y of CF holdsℜ(x ·y) = ℜ(x) ·ℜ(y)−ℑ(x) ·ℑ(y) andℑ(x ·y) = ℜ(x) ·
ℑ(y)+ℜ(y) ·ℑ(x).

(18) For every elementz of CF holdsℜ(z)≤ |z|.

(19) For every elementz of CF holdsℑ(z)≤ |z|.

3. FUNCTIONALS OF VECTORSPACE

Let K be a 1-sorted structure and letV be a vector space structure overK. A functional inV is a
function from the carrier ofV into the carrier ofK.

Let K be a non empty loop structure, letV be a non empty vector space structure overK, and let
f , g be functionals inV. The functorf +g yielding a functional inV is defined as follows:

(Def. 6)1 For every elementx of V holds( f +g)(x) = f (x)+g(x).

Let K be a non empty loop structure, letV be a non empty vector space structure overK, and let
f be a functional inV. The functor− f yields a functional inV and is defined by:

(Def. 7) For every elementx of V holds(− f )(x) =− f (x).

Let K be a non empty loop structure, letV be a non empty vector space structure overK, and let
f , g be functionals inV. The functorf −g yields a functional inV and is defined as follows:

(Def. 8) f −g = f +−g.

Let K be a non empty groupoid, letV be a non empty vector space structure overK, let v be an
element ofK, and letf be a functional inV. The functorv· f yields a functional inV and is defined
as follows:

(Def. 9) For every elementx of V holds(v· f )(x) = v· f (x).

Let K be a non empty zero structure and letV be a vector space structure overK. The functor
0FunctionalV yields a functional inV and is defined by:

1 The definition (Def. 5) has been removed.
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(Def. 10) 0FunctionalV = ΩV 7−→ 0K .

Let K be a non empty loop structure, letV be a non empty vector space structure overK, and let
F be a functional inV. We say thatF is additive if and only if:

(Def. 11) For all vectorsx, y of V holdsF(x+y) = F(x)+F(y).

Let K be a non empty groupoid, letV be a non empty vector space structure overK, and letF
be a functional inV. We say thatF is homogeneous if and only if:

(Def. 12) For every vectorx of V and for every scalarr of V holdsF(r ·x) = r ·F(x).

Let K be a non empty zero structure, letV be a non empty vector space structure overK, and let
F be a functional inV. We say thatF is 0-preserving if and only if:

(Def. 13) F(0V) = 0K .

Let K be an add-associative right zeroed right complementable Abelian associative left unital
distributive non empty double loop structure and letV be a vector space overK. One can check that
every functional inV which is homogeneous is also 0-preserving.

Let K be a right zeroed non empty loop structure and letV be a non empty vector space structure
overK. One can verify that 0FunctionalV is additive.

Let K be an add-associative right zeroed right complementable right distributive non empty
double loop structure and letV be a non empty vector space structure overK. One can check that
0FunctionalV is homogeneous.

Let K be a non empty zero structure and letV be a non empty vector space structure overK.
Note that 0FunctionalV is 0-preserving.

Let K be an add-associative right zeroed right complementable right distributive non empty
double loop structure and letV be a non empty vector space structure overK. Note that there exists
a functional inV which is additive, homogeneous, and 0-preserving.

The following propositions are true:

(20) Let K be an Abelian non empty loop structure,V be a non empty vector space structure
overK, and f , g be functionals inV. Then f +g = g+ f .

(21) Let K be an add-associative non empty loop structure,V be a non empty vector space
structure overK, and f , g, h be functionals inV. Then( f +g)+h = f +(g+h).

(22) LetK be a non empty zero structure,V be a non empty vector space structure overK, and
x be an element ofV. Then(0FunctionalV)(x) = 0K .

(23) LetK be a right zeroed non empty loop structure,V be a non empty vector space structure
overK, and f be a functional inV. Then f +0FunctionalV = f .

(24) LetK be an add-associative right zeroed right complementable non empty loop structure,
V be a non empty vector space structure overK, and f be a functional inV. Then f − f =
0FunctionalV.

(25) Let K be a right distributive non empty double loop structure,V be a non empty vector
space structure overK, r be an element ofK, and f , g be functionals inV. Thenr · ( f +g) =
r · f + r ·g.

(26) LetK be a left distributive non empty double loop structure,V be a non empty vector space
structure overK, r, sbe elements ofK, and f be a functional inV. Then(r +s) · f = r · f +s· f .

(27) LetK be an associative non empty groupoid,V be a non empty vector space structure over
K, r, s be elements ofK, and f be a functional inV. Then(r ·s) · f = r · (s· f ).

(28) Let K be a left unital non empty double loop structure,V be a non empty vector space
structure overK, and f be a functional inV. Then1K · f = f .
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Let K be an Abelian add-associative right zeroed right complementable right distributive non
empty double loop structure, letV be a non empty vector space structure overK, and let f , g be
additive functionals inV. Observe thatf +g is additive.

Let K be an Abelian add-associative right zeroed right complementable right distributive non
empty double loop structure, letV be a non empty vector space structure overK, and let f be an
additive functional inV. One can check that− f is additive.

Let K be an add-associative right zeroed right complementable right distributive non empty
double loop structure, letV be a non empty vector space structure overK, let v be an element ofK,
and let f be an additive functional inV. One can verify thatv· f is additive.

Let K be an add-associative right zeroed right complementable right distributive non empty dou-
ble loop structure, letV be a non empty vector space structure overK, and letf , g be homogeneous
functionals inV. Observe thatf +g is homogeneous.

Let K be an Abelian add-associative right zeroed right complementable right distributive non
empty double loop structure, letV be a non empty vector space structure overK, and let f be a
homogeneous functional inV. Observe that− f is homogeneous.

Let K be an add-associative right zeroed right complementable right distributive associative
commutative non empty double loop structure, letV be a non empty vector space structure over
K, let v be an element ofK, and let f be a homogeneous functional inV. Observe thatv · f is
homogeneous.

Let K be an add-associative right zeroed right complementable right distributive non empty
double loop structure and letV be a non empty vector space structure overK. A linear functional in
V is an additive homogeneous functional inV.

4. THE VECTORSPACE OFL INEAR FUNCTIONALS

Let K be an Abelian add-associative right zeroed right complementable right distributive associative
commutative non empty double loop structure and letV be a non empty vector space structure over
K. The functorV yields a non empty strict vector space structure overK and is defined by the
conditions (Def. 14).

(Def. 14)(i) For every setx holdsx∈ the carrier ofV iff x is a linear functional inV,

(ii) for all linear functionalsf , g in V holds (the addition ofV )( f , g) = f +g,

(iii) the zero ofV = 0FunctionalV, and

(iv) for every linear functionalf in V and for every elementx of K holds (the left multiplication
of V )(x, f ) = x · f .

Let K be an Abelian add-associative right zeroed right complementable right distributive as-
sociative commutative non empty double loop structure and letV be a non empty vector space
structure overK. Note thatV is Abelian.

Let K be an Abelian add-associative right zeroed right complementable right distributive as-
sociative commutative non empty double loop structure and letV be a non empty vector space
structure overK. One can check the following observations:

∗ V is add-associative,

∗ V is right zeroed, and

∗ V is right complementable.

Let K be an Abelian add-associative right zeroed right complementable left unital distributive
associative commutative non empty double loop structure and letV be a non empty vector space
structure overK. Note thatV is vector space-like.
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5. SEMI NORM OF VECTORSPACE

Let K be a 1-sorted structure and letV be a vector space structure overK. A RFunctional ofV is a
function from the carrier ofV into R.

Let K be a 1-sorted structure, letV be a non empty vector space structure overK, and letF be a
RFunctional ofV. We say thatF is subadditive if and only if:

(Def. 16)2 For all vectorsx, y of V holdsF(x+y)≤ F(x)+F(y).

Let K be a 1-sorted structure, letV be a non empty vector space structure overK, and letF be a
RFunctional ofV. We say thatF is additive if and only if:

(Def. 17) For all vectorsx, y of V holdsF(x+y) = F(x)+F(y).

Let V be a non empty vector space structure overCF and letF be a RFunctional ofV. We say
thatF is Real-homogeneous if and only if:

(Def. 18) For every vectorv of V and for every real numberr holdsF((r +0iCF) ·v) = r ·F(v).

We now state the proposition

(29) LetV be a vector space-like non empty vector space structure overCF andF be a RFunc-
tional ofV. SupposeF is Real-homogeneous. Letv be a vector ofV andr be a real number.
ThenF((0+ riCF) ·v) = r ·F(iCF ·v).

Let V be a non empty vector space structure overCF and letF be a RFunctional ofV. We say
thatF is homogeneous if and only if:

(Def. 19) For every vectorv of V and for every scalarr of V holdsF(r ·v) = |r| ·F(v).

Let K be a 1-sorted structure, letV be a vector space structure overK, and letF be a RFunctional
of V. We say thatF is 0-preserving if and only if:

(Def. 20) F(0V) = 0.

Let K be a 1-sorted structure and letV be a non empty vector space structure overK. Observe
that every RFunctional ofV which is additive is also subadditive.

LetV be a vector space overCF. Observe that every RFunctional ofV which is Real-homogeneous
is also 0-preserving.

LetK be a 1-sorted structure and letV be a vector space structure overK. The functor 0RFunctionalV
yields a RFunctional ofV and is defined as follows:

(Def. 21) 0RFunctionalV = ΩV 7−→ 0.

Let K be a 1-sorted structure and letV be a non empty vector space structure overK. Observe
that 0RFunctionalV is additive and 0RFunctionalV is 0-preserving.

Let V be a non empty vector space structure overCF. Note that 0RFunctionalV is Real-
homogeneous and 0RFunctionalV is homogeneous.

Let K be a 1-sorted structure and letV be a non empty vector space structure overK. One can
check that there exists a RFunctional ofV which is additive and 0-preserving.

Let V be a non empty vector space structure overCF. Observe that there exists a RFunctional
of V which is additive, Real-homogeneous, and homogeneous.

Let V be a non empty vector space structure overCF. A Semi-Norm ofV is a subadditive
homogeneous RFunctional ofV.

2 The definition (Def. 15) has been removed.
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6. THE HAHN BANACH THEOREM

Let V be a non empty vector space structure overCF. The functor RealVSV yielding a strict RLS
structure is defined by the conditions (Def. 22).

(Def. 22)(i) The loop structure of RealVSV = the loop structure ofV, and

(ii) for every real numberr and for every vectorv of V holds (the external multiplication of
RealVSV)(r, v) = (r +0iCF) ·v.

Let V be a non empty vector space structure overCF. One can check that RealVSV is non
empty.

Let V be an Abelian non empty vector space structure overCF. Observe that RealVSV is
Abelian.

Let V be an add-associative non empty vector space structure overCF. Note that RealVSV is
add-associative.

LetV be a right zeroed non empty vector space structure overCF. One can check that RealVSV
is right zeroed.

Let V be a right complementable non empty vector space structure overCF. Observe that
RealVSV is right complementable.

Let V be a vector space-like non empty vector space structure overCF. One can verify that
RealVSV is real linear space-like.

One can prove the following propositions:

(30) For every non empty vector spaceV over CF and for every subspaceM of V holds
RealVSM is a subspace of RealVSV.

(31) For every non empty vector space structureV overCF holds every RFunctional ofV is a
functional in RealVSV.

(32) For every non empty vector spaceV over CF holds every Semi-Norm ofV is a Banach
functional in RealVSV.

Let V be a non empty vector space structure overCF and letl be a functional inV. The functor
projRel yields a functional in RealVSV and is defined by:

(Def. 23) For every elementi of V holds(projRel)(i) = ℜ(l(i)).

Let V be a non empty vector space structure overCF and letl be a functional inV. The functor
projIml yielding a functional in RealVSV is defined by:

(Def. 24) For every elementi of V holds(projIml)(i) = ℑ(l(i)).

Let V be a non empty vector space structure overCF and letl be a functional in RealVSV. The
functor lR→C yields a RFunctional ofV and is defined by:

(Def. 25) lR→C = l .

LetV be a non empty vector space structure overCF and letl be a RFunctional ofV. The functor
lC→R yielding a functional in RealVSV is defined by:

(Def. 26) lC→R = l .

LetV be a non empty vector space overCF and letl be an additive functional in RealVSV. Note
that lR→C is additive.

Let V be a non empty vector space overCF and letl be an additive RFunctional ofV. One can
check thatlC→R is additive.

Let V be a non empty vector space overCF and letl be a homogeneous functional in RealVSV.
One can check thatlR→C is Real-homogeneous.

Let V be a non empty vector space overCF and letl be a Real-homogeneous RFunctional ofV.
Note thatlC→R is homogeneous.

LetV be a non empty vector space structure overCF and letl be a RFunctional ofV. The functor
i-shift l yields a RFunctional ofV and is defined by:
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(Def. 27) For every elementv of V holds(i-shift l)(v) = l(iCF ·v).

Let V be a non empty vector space structure overCF and letl be a functional in RealVSV. The
functor prodReIml yielding a functional inV is defined as follows:

(Def. 28) For every elementv of V holds(prodReIml)(v) = (lR→C)(v)+(−(i-shift lR→C)(v))iCF.

One can prove the following propositions:

(33) LetV be a non empty vector space overCF andl be a linear functional inV. Then projRel
is a linear functional in RealVSV.

(34) LetV be a non empty vector space overCF andl be a linear functional inV. Then projIml
is a linear functional in RealVSV.

(35) LetV be a non empty vector space overCF andl be a linear functional in RealVSV. Then
prodReIml is a linear functional inV.

(36) LetV be a non empty vector space overCF, p be a Semi-Norm ofV, M be a subspace of
V, andl be a linear functional inM. Suppose that for every vectoreof M and for every vector
v of V such thatv = e holds|l(e)| ≤ p(v). Then there exists a linear functionalL in V such
thatL�the carrier ofM = l and for every vectoreof V holds|L(e)| ≤ p(e).
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