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1. PRELIMINARIES
The following propositions are true:
(1) For every elemertof C holds||Z|| = |Z.

(2) For all real numbersy, y1, X2, Y2 holds(x1 + y1i) - (X2 +Yoi) = (X1 - X2 —Y1-Y2) + (X1 - Y2+
X2 yl)l

(3) For every real numberholds(r +0i)-i = 0+ri.
(4) For every real numberholds|r +0i| = |r|.

(5) For every elemertof C such thatz| # 0 holds|z| 4 0i = Mﬁ -Z

2. SOME FACTS ON THEFIELD OF COMPLEX NUMBERS
Letx, y be real numbers. The functer-yic, yielding an element ofr is defined as follows:
(Def. 1) x+yic, = X+Yi.
The elemenic, of Cr is defined as follows:
(Def. 2) ige =i.
We now state several propositions:
(6) ice =0+1i andic, = 0+ lig,.
(7) el =1
(8) iceice = —1cg.

1 © Association of Mizar Users


http://mizar.org/JFM/Vol12/hahnban1.html

THE HAHN BANACH THEOREM IN THE VECTOR. .. 2

9 (—lep) —lop = Lg.

(10) For all real numbersy, y1, X2, Y2 holds (X1 + yaicg) + (X2 + Yoice) = (X1 +X2) + (Y1 +
y2)i(C|:-

(11) For all real numbersy, y1, X2, y2 holds (X1 + Yiicg) - (X2 + Yaice) = (X1 - X2 — Y1+ Y2) + (X1 -
Y2+X2-Y1)ice-

(12) For every elemerztof Cr holds||z|| = |2
(13) For every real numberholds|r + Oice| = |r|.

(14) For every real numberholds(r + Oic;) -icy = O+ ric.

Let zbe an element of . The functor](z) yields a real number and is defined by:
(Def. 3) There exists an elemexitof C such thaz = Z andO(z) = O(Z).
Let zbe an element of . The functor](z) yields a real number and is defined by:
(Def. 4) There exists an elemezitof C such thaz = Z and0(z) = 0(Z).
Next we state several propositions:
(15) For all real numbers, y holds (x+ yic) = x andO(X+ Yicg) =Y.
(16) For all elements, y of Cr holdsO(x+y) = O(x) + O(y) andO(x+y) = O(x) + O(y).

(17) For all elementg, y of Ce holdsO(x-y) = O(x) - O(y) — O(x) - O(y) andO(x-y) = O(x) -
O(y) +0(y) - O(x).

(18) For every elemertof Cg holds(z) < |Z.

(19) For every elemerztof Cg holdsO(z) < |Z.

3. FUNCTIONALS OFVECTORSPACE

Let K be a 1-sorted structure and Wtbe a vector space structure over A functional inV is a
function from the carrier o¥ into the carrier oK.

LetK be a non empty loop structure, ¥the a non empty vector space structure d¢eand let
f, g be functionals iV. The functorf + g yielding a functional irV is defined as follows:

(Def. GE] For every element of V holds(f + g)(x) = f(x) +9(X).

LetK be a non empty loop structure, léthe a non empty vector space structure d<eand let
f be a functional in/. The functor—f yields a functional iV and is defined by:

(Def. 7) For every elementofV holds(—f)(x) = — f(x).

LetK be a non empty loop structure, ¥étbhe a non empty vector space structure d<eand let
f, g be functionals iV. The functorf — g yields a functional iV and is defined as follows:

(Def.8) f—g=1f+—g.

Let K be a non empty groupoid, &t be a non empty vector space structure d¢gletv be an
element oK, and letf be a functional in/. The functowv- f yields a functional iV and is defined
as follows:

(Def. 9) For every elementofV holds(v- f)(x) =v- f(X).

Let K be a non empty zero structure and\ebe a vector space structure over The functor
OFunctionaV yields a functional in/ and is defined by:

1 The definition (Def. 5) has been removed.



THE HAHN BANACH THEOREM IN THE VECTOR. .. 3

(Def. 10) OFunctional = Qy — 0Ok .

LetK be a non empty loop structure, ¥éthe a non empty vector space structure d<eand let
F be a functional in/. We say thaF is additive if and only if:

(Def. 11) For all vectorg, y of V holdsF (x+y) = F(x) + F(y).

Let K be a non empty groupoid, Igt be a non empty vector space structure d¢eand letF
be a functional in/. We say thaF is homogeneous if and only if:

(Def. 12) For every vectax of V and for every scalar of V holdsF (r - x) =r - F(x).

LetK be a non empty zero structure, \ébe a non empty vector space structure d¢gand let
F be a functional inV. We say thafF is 0-preserving if and only if:

(Def. 13) F(0y) = Ok.

Let K be an add-associative right zeroed right complementable Abelian associative left unital
distributive non empty double loop structure andMdie a vector space ovir. One can check that
every functional iV which is homogeneous is also 0-preserving.

LetK be aright zeroed non empty loop structure an¥lee a non empty vector space structure
overK. One can verify that OFunctiondlis additive.

Let K be an add-associative right zeroed right complementable right distributive non empty
double loop structure and gt be a non empty vector space structure d¢eiOne can check that
OFunctionay/ is homogeneous.

Let K be a non empty zero structure andVebe a non empty vector space structure d<er
Note that OFunctiond is O-preserving.

Let K be an add-associative right zeroed right complementable right distributive non empty
double loop structure and Igtbe a non empty vector space structure d¢eNote that there exists
a functional inv which is additive, homogeneous, and O-preserving.

The following propositions are true:

(20) LetK be an Abelian non empty loop structuké,be a non empty vector space structure
overK, andf, g be functionals iv. Thenf +g=g-+ f.

(21) LetK be an add-associative non empty loop structitdge a non empty vector space
structure oveK, andf, g, h be functionals iV. Then(f +g9)+h=f+(g+h).

(22) LetK be a non empty zero structuié be a non empty vector space structure d¢eand
x be an element df . Then(OFunctional/)(x) = Ok .

(23) LetK be aright zeroed non empty loop structivehe a non empty vector space structure
overK, andf be a functional in/. Thenf + OFunctionaV/ = f.

(24) LetK be an add-associative right zeroed right complementable non empty loop structure,
V be a non empty vector space structure d&teand f be a functional irV. Thenf — f =
OFunctionaV/.

(25) LetK be a right distributive non empty double loop structwebe a non empty vector
space structure ovégt, r be an element df, andf, g be functionals inV. Thenr - (f +g) =
r-f+r-g.

(26) LetK be a left distributive non empty double loop structifdge a non empty vector space
structure oveK, r, sbe elements df, andf be a functional itv. Then(r+s)-f =r-f+s-f.

(27) LetK be an associative non empty groupdidhe a non empty vector space structure over
K, r, sbe elements oK, andf be a functional iV. Then(r-s)-f =r-(s- f).

(28) LetK be a left unital non empty double loop structutebe a non empty vector space
structure oveK, andf be a functional iV. Thenlk - f = f.
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Let K be an Abelian add-associative right zeroed right complementable right distributive non
empty double loop structure, I8t be a non empty vector space structure d¢eand letf, g be
additive functionals irV. Observe thaf + g is additive.

Let K be an Abelian add-associative right zeroed right complementable right distributive non
empty double loop structure, I8t be a non empty vector space structure d¢eand letf be an
additive functional in/. One can check that f is additive.

Let K be an add-associative right zeroed right complementable right distributive non empty
double loop structure, &t be a non empty vector space structure d¢gletv be an element df,
and letf be an additive functional i¥. One can verify that- f is additive.

LetK be an add-associative right zeroed right complementable right distributive non empty dou-
ble loop structure, Ie¥ be a non empty vector space structure d¢gand letf, g be homogeneous
functionals inV. Observe thaf 4 gis homogeneous.

Let K be an Abelian add-associative right zeroed right complementable right distributive non
empty double loop structure, I8t be a non empty vector space structure d¢emnd letf be a
homogeneous functional Wi. Observe that-f is homogeneous.

Let K be an add-associative right zeroed right complementable right distributive associative
commutative non empty double loop structure,Mebe a non empty vector space structure over
K, let v be an element oK, and letf be a homogeneous functionalV¥h Observe that- f is
homogeneous.

Let K be an add-associative right zeroed right complementable right distributive non empty
double loop structure and Igtbe a non empty vector space structure d<eA linear functional in
V is an additive homogeneous functionaMn

4. THE VECTORSPACE OFLINEAR FUNCTIONALS

LetK be an Abelian add-associative right zeroed right complementable right distributive associative
commutative non empty double loop structure and/I&e a non empty vector space structure over

K. The functorV vyields a non empty strict vector space structure d¢eand is defined by the
conditions (Def. 14).

(Def. 14)(i) For every set holdsx € the carrier ofV iff xis a linear functional itv,
(i) forall linear functionalsf, gin V holds (the addition o¥/)(f,g) = f +g,
(i) the zero ofV = OFunctionaV/, and
(iv)  forevery linear functionaf inV and for every elementof K holds (the left multiplication
of V)(x, f) =x-f.

Let K be an Abelian add-associative right zeroed right complementable right distributive as-
sociative commutative non empty double loop structure an/ lbe a non empty vector space
structure oveK. Note thatV is Abelian.

Let K be an Abelian add-associative right zeroed right complementable right distributive as-
sociative commutative non empty double loop structure an®/ Ibe a non empty vector space
structure oveK. One can check the following observations:

* V is add-associative,
* V isright zeroed, and
* V isright complementable.

Let K be an Abelian add-associative right zeroed right complementable left unital distributive
associative commutative non empty double loop structure arM k&t a non empty vector space
structure oveK. Note thatV is vector space-like.
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5. SEMI NORM OFVECTORSPACE

LetK be a 1-sorted structure and Yétbe a vector space structure oker A RFunctional ofV is a
function from the carrier o¥ into R.

LetK be a 1-sorted structure, Mtbe a non empty vector space structure d¢egand letF be a
RFunctional oV. We say thaF is subadditive if and only if:

(Def. lGﬂ For all vectorsk, y of V holdsF (x+y) < F(x) +F(y).

LetK be a 1-sorted structure, Mtbe a non empty vector space structure d¢eand letF be a
RFunctional oV . We say thaF is additive if and only if:

(Def. 17) For all vectors, y of V holdsF (x+y) = F(X) + F(y).

LetV be a non empty vector space structure déerand letF be a RFunctional of. We say
thatF is Real-homogeneous if and only if:

(Def. 18) For every vector of V and for every real numberholdsF ((r 4 Oic.) -v) =r - F(v).

We now state the proposition

(29) LetV be a vector space-like non empty vector space structure@vandF be a RFunc-
tional of V. Supposé- is Real-homogeneous. Lebe a vector o¥/ andr be a real number.
ThenF ((0+ricg) V) =r-F(ic V).

LetV be a non empty vector space structure derand letF be a RFunctional of. We say
thatF is homogeneous if and only if:

(Def. 19) For every vector of V and for every scalarof V holdsF (r -v) = |r| - F (v).

LetK be a 1-sorted structure, Mtbe a vector space structure o¥erand let- be a RFunctional
of V. We say thaF is 0-preserving if and only if:

(Def. 20) F(0y) =0.

LetK be a 1-sorted structure and étbe a non empty vector space structure dvelObserve
that every RFunctional of which is additive is also subadditive.

LetV be a vector space ov€}. Observe that every RFunctionaMfvhich is Real-homogeneous
is also O-preserving.

LetK be a 1-sorted structure and\ébe a vector space structure o¥erThe functor ORFunction&l
yields a RFunctional of and is defined as follows:

(Def. 21) ORFunctiondf = Qy — 0.

LetK be a 1-sorted structure and \éthe a non empty vector space structure d¢elObserve
that ORFunctiond! is additive and ORFunctionlis O-preserving.

Let V be a non empty vector space structure olgr Note that ORFunction®l is Real-
homogeneous and ORFunctiodak homogeneous.

LetK be a 1-sorted structure and ¥tbe a non empty vector space structure d¢eOne can
check that there exists a RFunctionaMoivhich is additive and O-preserving.

LetV be a non empty vector space structure dier Observe that there exists a RFunctional
of V which is additive, Real-homogeneous, and homogeneous.

Let V be a non empty vector space structure diZer A Semi-Norm ofV is a subadditive
homogeneous RFunctional \¢f

2 The definition (Def. 15) has been removed.
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6. THE HAHN BANACH THEOREM

LetV be a non empty vector space structure der The functor RealV§ yielding a strict RLS
structure is defined by the conditions (Def. 22).

(Def. 22)() The loop structure of Real\XS= the loop structure o, and

(i)  for every real number and for every vectov of V holds (the external multiplication of
RealVSV)(r, v) = (r +Oicg) - V.

Let V be a non empty vector space structure oler One can check that Real¥Sis non
empty.

Let V be an Abelian non empty vector space structure @er Observe that Real\\s is
Abelian.

LetV be an add-associative non empty vector space structuredpvelote that RealVs' is
add-associative.

LetV be aright zeroed non empty vector space structure@veOne can check that RealWs
is right zeroed.

Let V be a right complementable non empty vector space structure(@uerObserve that
RealVSV is right complementable.

Let V be a vector space-like non empty vector space structure@verOne can verify that
RealVSV is real linear space-like.

One can prove the following propositions:

(30) For every non empty vector spaveover Cr and for every subspackl of V holds
RealVM is a subspace of RealW%s

(31) For every non empty vector space struchirever Cg holds every RFunctional df is a
functional in RealV¥.

(32) For every non empty vector spageover Cg holds every Semi-Norm of is a Banach
functional in RealV¥.

LetV be a non empty vector space structure déeland letl be a functional inV. The functor
projRel yields a functional in RealV$® and is defined by:

(Def. 23) For every elemembof V holds(projRel ) (i) = O(1(i)).

LetV be a non empty vector space structure dverand letl be a functional irV. The functor
projiml yielding a functional in RealV is defined by:

(Def. 24) For every elemembf V holds(projiml)(i) = O(I(i)).

LetV be a non empty vector space structure déeiand letl be a functional in RealV8. The
functorlg_.c yields a RFunctional of and is defined by:

(DEf 25) IRH(C =1.

LetV be a non empty vector space structure @eand letl be a RFunctional df . The functor
lc—r Yielding a functional in RealV$ is defined by:

(Def. 26) I(CH]R =1.

LetV be a non empty vector space ot and letl be an additive functional in Real\XS Note
thatlr_ ¢ is additive.

LetV be a non empty vector space o¥&f and letl be an additive RFunctional &f. One can
check thatc_ is additive.

LetV be a non empty vector space o¥&r and letl be a homogeneous functional in ReaW.S
One can check that_.c is Real-homogeneous.

LetV be a non empty vector space o¥&r and letl be a Real-homogeneous RFunctionaVof
Note thatlc_.g is homogeneous.

LetV be a non empty vector space structure deand letl be a RFunctional df. The functor
i-shift] yields a RFunctional of and is defined by:
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(Def. 27) For every elementof V holds(i-shiftl)(v) = I (ic - v).

LetV be a non empty vector space structure déerand letl be a functional in RealV8. The

functor prodRelnh yielding a functional iV is defined as follows:

(Def. 28) For every elementof V holds(prodRelm ) (v) = (Ir—c) (V) + (—(i-shiftlz_.c)(V))ice.

One can prove the following propositions:

(33) LetV be a non empty vector space o¥&r andl be a linear functional itv. Then projRé

is a linear functional in RealV&

(34) LetV be a non empty vector space o¥&r andl be a linear functional iV. Then projln

is a linear functional in RealV&

(35) LetV be a non empty vector space o&t andl be a linear functional in Real\A5 Then

prodRelm is a linear functional irv.

(36) LetV be a non empty vector space ov&f, p be a Semi-Norm o¥/, M be a subspace of

(1]
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V, andl be a linear functional iM. Suppose that for every vecteof M and for every vector
v of V such thatv = e holds|l(e)| < p(v). Then there exists a linear functiorlain V such
thatL [the carrier oM = | and for every vectoe of V holds|L(e)| < p(e).
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