The Hahn Banach Theorem in the Vector Space over the Field of Complex Numbers

Anna Justyna Milewska University of Białystok

Summary. This article contains the Hahn Banach theorem in the vector space over the field of complex numbers.

MML Identifier: HAHNBAN1.
WWW: http://mizar.org/JFM/Vol12/hahnban1.html

The articles [13], [4], [20], [16], [6], [7], [12], [11], [18], [8], [17], [19], [2], [3], [1], [21], [15], [14], [5], [10], and [9] provide the notation and terminology for this paper.

1. PRELIMINARIES

The following propositions are true:

- (1) For every element z of \mathbb{C} holds ||z|| = |z|.
- (2) For all real numbers x_1, y_1, x_2, y_2 holds $(x_1 + y_1i) \cdot (x_2 + y_2i) = (x_1 \cdot x_2 y_1 \cdot y_2) + (x_1 \cdot y_2 + x_2 \cdot y_1)i$.
- (3) For every real number *r* holds $(r+0i) \cdot i = 0 + ri$.
- (4) For every real number *r* holds |r+0i| = |r|.
- (5) For every element z of \mathbb{C} such that $|z| \neq 0$ holds $|z| + 0i = \frac{\overline{z}}{|z|+0i} \cdot z$.

2. Some Facts on the Field of Complex Numbers

Let *x*, *y* be real numbers. The functor $x + yi_{\mathbb{C}_{F}}$ yielding an element of \mathbb{C}_{F} is defined as follows:

(Def. 1) $x + yi_{\mathbb{C}_F} = x + yi.$

The element $i_{\mathbb{C}_{F}}$ of \mathbb{C}_{F} is defined as follows:

(Def. 2) $i_{\mathbb{C}_{\mathrm{F}}} = i$.

We now state several propositions:

- (6) $i_{\mathbb{C}_{\mathrm{F}}} = 0 + 1i$ and $i_{\mathbb{C}_{\mathrm{F}}} = 0 + 1i_{\mathbb{C}_{\mathrm{F}}}$.
- (7) $|i_{\mathbb{C}_{\mathrm{F}}}| = 1.$
- (8) $i_{\mathbb{C}_{\mathrm{F}}} \cdot i_{\mathbb{C}_{\mathrm{F}}} = -\mathbf{1}_{\mathbb{C}_{\mathrm{F}}}.$

- (9) $(-\mathbf{1}_{\mathbb{C}_{F}}) \cdot -\mathbf{1}_{\mathbb{C}_{F}} = \mathbf{1}_{\mathbb{C}_{F}}.$
- (10) For all real numbers x_1 , y_1 , x_2 , y_2 holds $(x_1 + y_1 i_{\mathbb{C}_F}) + (x_2 + y_2 i_{\mathbb{C}_F}) = (x_1 + x_2) + (y_1 + y_2)i_{\mathbb{C}_F}$.
- (11) For all real numbers x_1, y_1, x_2, y_2 holds $(x_1 + y_1 i_{\mathbb{C}_F}) \cdot (x_2 + y_2 i_{\mathbb{C}_F}) = (x_1 \cdot x_2 y_1 \cdot y_2) + (x_1 \cdot y_2 + x_2 \cdot y_1) i_{\mathbb{C}_F}$.
- (12) For every element z of \mathbb{C}_F holds ||z|| = |z|.
- (13) For every real number *r* holds $|r+0i_{\mathbb{C}_{F}}| = |r|$.
- (14) For every real number *r* holds $(r+0i_{\mathbb{C}_{F}}) \cdot i_{\mathbb{C}_{F}} = 0 + ri_{\mathbb{C}_{F}}$.

Let z be an element of $\mathbb{C}_{\mathbf{F}}$. The functor $\Re(z)$ yields a real number and is defined by:

(Def. 3) There exists an element z' of \mathbb{C} such that z = z' and $\Re(z) = \Re(z')$.

Let *z* be an element of $\mathbb{C}_{\mathbf{F}}$. The functor $\mathfrak{I}(z)$ yields a real number and is defined by:

(Def. 4) There exists an element z' of \mathbb{C} such that z = z' and $\mathfrak{Z}(z) = \mathfrak{Z}(z')$.

Next we state several propositions:

- (15) For all real numbers x, y holds $\Re(x + yi_{\mathbb{C}_F}) = x$ and $\Im(x + yi_{\mathbb{C}_F}) = y$.
- (16) For all elements x, y of \mathbb{C}_F holds $\Re(x+y) = \Re(x) + \Re(y)$ and $\Im(x+y) = \Im(x) + \Im(y)$.
- (17) For all elements x, y of \mathbb{C}_{F} holds $\Re(x \cdot y) = \Re(x) \cdot \Re(y) \Im(x) \cdot \Im(y)$ and $\Im(x \cdot y) = \Re(x) \cdot \Im(y) + \Re(y) \cdot \Im(x)$.
- (18) For every element *z* of \mathbb{C}_F holds $\Re(z) \le |z|$.
- (19) For every element *z* of \mathbb{C}_F holds $\mathfrak{I}(z) \leq |z|$.

3. FUNCTIONALS OF VECTOR SPACE

Let K be a 1-sorted structure and let V be a vector space structure over K. A functional in V is a function from the carrier of V into the carrier of K.

Let *K* be a non empty loop structure, let *V* be a non empty vector space structure over *K*, and let *f*, *g* be functionals in *V*. The functor f + g yielding a functional in *V* is defined as follows:

(Def. 6)¹ For every element x of V holds (f+g)(x) = f(x) + g(x).

Let *K* be a non empty loop structure, let *V* be a non empty vector space structure over *K*, and let *f* be a functional in *V*. The functor -f yields a functional in *V* and is defined by:

(Def. 7) For every element x of V holds (-f)(x) = -f(x).

Let *K* be a non empty loop structure, let *V* be a non empty vector space structure over *K*, and let *f*, *g* be functionals in *V*. The functor f - g yields a functional in *V* and is defined as follows:

(Def. 8) f - g = f + -g.

Let *K* be a non empty groupoid, let *V* be a non empty vector space structure over *K*, let *v* be an element of *K*, and let *f* be a functional in *V*. The functor $v \cdot f$ yields a functional in *V* and is defined as follows:

(Def. 9) For every element x of V holds $(v \cdot f)(x) = v \cdot f(x)$.

Let K be a non empty zero structure and let V be a vector space structure over K. The functor OFunctional V yields a functional in V and is defined by:

¹ The definition (Def. 5) has been removed.

(Def. 10) 0Functional $V = \Omega_V \longmapsto 0_K$.

Let K be a non empty loop structure, let V be a non empty vector space structure over K, and let F be a functional in V. We say that F is additive if and only if:

(Def. 11) For all vectors x, y of V holds F(x+y) = F(x) + F(y).

Let K be a non empty groupoid, let V be a non empty vector space structure over K, and let F be a functional in V. We say that F is homogeneous if and only if:

(Def. 12) For every vector x of V and for every scalar r of V holds $F(r \cdot x) = r \cdot F(x)$.

Let K be a non empty zero structure, let V be a non empty vector space structure over K, and let F be a functional in V. We say that F is 0-preserving if and only if:

(Def. 13) $F(0_V) = 0_K$.

Let K be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure and let V be a vector space over K. One can check that every functional in V which is homogeneous is also 0-preserving.

Let K be a right zeroed non empty loop structure and let V be a non empty vector space structure over K. One can verify that 0Functional V is additive.

Let K be an add-associative right zeroed right complementable right distributive non empty double loop structure and let V be a non empty vector space structure over K. One can check that 0Functional V is homogeneous.

Let K be a non empty zero structure and let V be a non empty vector space structure over K. Note that 0Functional V is 0-preserving.

Let K be an add-associative right zeroed right complementable right distributive non empty double loop structure and let V be a non empty vector space structure over K. Note that there exists a functional in V which is additive, homogeneous, and 0-preserving.

The following propositions are true:

- (20) Let *K* be an Abelian non empty loop structure, *V* be a non empty vector space structure over *K*, and *f*, *g* be functionals in *V*. Then f + g = g + f.
- (21) Let K be an add-associative non empty loop structure, V be a non empty vector space structure over K, and f, g, h be functionals in V. Then (f+g)+h=f+(g+h).
- (22) Let *K* be a non empty zero structure, *V* be a non empty vector space structure over *K*, and *x* be an element of *V*. Then (0Functional $V)(x) = 0_K$.
- (23) Let K be a right zeroed non empty loop structure, V be a non empty vector space structure over K, and f be a functional in V. Then f + 0Functional V = f.
- (24) Let *K* be an add-associative right zeroed right complementable non empty loop structure, *V* be a non empty vector space structure over *K*, and *f* be a functional in *V*. Then f f = 0Functional *V*.
- (25) Let *K* be a right distributive non empty double loop structure, *V* be a non empty vector space structure over *K*, *r* be an element of *K*, and *f*, *g* be functionals in *V*. Then $r \cdot (f+g) = r \cdot f + r \cdot g$.
- (26) Let *K* be a left distributive non empty double loop structure, *V* be a non empty vector space structure over *K*, *r*, *s* be elements of *K*, and *f* be a functional in *V*. Then $(r+s) \cdot f = r \cdot f + s \cdot f$.
- (27) Let *K* be an associative non empty groupoid, *V* be a non empty vector space structure over *K*, *r*, *s* be elements of *K*, and *f* be a functional in *V*. Then $(r \cdot s) \cdot f = r \cdot (s \cdot f)$.
- (28) Let *K* be a left unital non empty double loop structure, *V* be a non empty vector space structure over *K*, and *f* be a functional in *V*. Then $\mathbf{1}_K \cdot f = f$.

Let *K* be an Abelian add-associative right zeroed right complementable right distributive non empty double loop structure, let *V* be a non empty vector space structure over *K*, and let *f*, *g* be additive functionals in *V*. Observe that f + g is additive.

Let *K* be an Abelian add-associative right zeroed right complementable right distributive non empty double loop structure, let *V* be a non empty vector space structure over *K*, and let *f* be an additive functional in *V*. One can check that -f is additive.

Let *K* be an add-associative right zeroed right complementable right distributive non empty double loop structure, let *V* be a non empty vector space structure over *K*, let *v* be an element of *K*, and let *f* be an additive functional in *V*. One can verify that $v \cdot f$ is additive.

Let *K* be an add-associative right zeroed right complementable right distributive non empty double loop structure, let *V* be a non empty vector space structure over *K*, and let *f*, *g* be homogeneous functionals in *V*. Observe that f + g is homogeneous.

Let *K* be an Abelian add-associative right zeroed right complementable right distributive non empty double loop structure, let *V* be a non empty vector space structure over *K*, and let *f* be a homogeneous functional in *V*. Observe that -f is homogeneous.

Let K be an add-associative right zeroed right complementable right distributive associative commutative non empty double loop structure, let V be a non empty vector space structure over K, let v be an element of K, and let f be a homogeneous functional in V. Observe that $v \cdot f$ is homogeneous.

Let K be an add-associative right zeroed right complementable right distributive non empty double loop structure and let V be a non empty vector space structure over K. A linear functional in V is an additive homogeneous functional in V.

4. THE VECTOR SPACE OF LINEAR FUNCTIONALS

Let *K* be an Abelian add-associative right zeroed right complementable right distributive associative commutative non empty double loop structure and let *V* be a non empty vector space structure over *K*. The functor \overline{V} yields a non empty strict vector space structure over *K* and is defined by the conditions (Def. 14).

(Def. 14)(i) For every set x holds $x \in$ the carrier of \overline{V} iff x is a linear functional in V,

- (ii) for all linear functionals f, g in V holds (the addition of \overline{V})(f, g) = f + g,
- (iii) the zero of $\overline{V} = 0$ Functional V, and
- (iv) for every linear functional *f* in *V* and for every element *x* of *K* holds (the left multiplication of \overline{V})(*x*, *f*) = *x* · *f*.

Let *K* be an Abelian add-associative right zeroed right complementable right distributive associative commutative non empty double loop structure and let *V* be a non empty vector space structure over *K*. Note that \overline{V} is Abelian.

Let K be an Abelian add-associative right zeroed right complementable right distributive associative commutative non empty double loop structure and let V be a non empty vector space structure over K. One can check the following observations:

- * \overline{V} is add-associative,
- * \overline{V} is right zeroed, and
- * \overline{V} is right complementable.

Let *K* be an Abelian add-associative right zeroed right complementable left unital distributive associative commutative non empty double loop structure and let *V* be a non empty vector space structure over *K*. Note that \overline{V} is vector space-like.

5. SEMI NORM OF VECTOR SPACE

Let *K* be a 1-sorted structure and let *V* be a vector space structure over *K*. A RFunctional of *V* is a function from the carrier of *V* into \mathbb{R} .

Let K be a 1-sorted structure, let V be a non empty vector space structure over K, and let F be a RFunctional of V. We say that F is subadditive if and only if:

(Def. 16)² For all vectors x, y of V holds $F(x+y) \le F(x) + F(y)$.

Let K be a 1-sorted structure, let V be a non empty vector space structure over K, and let F be a RFunctional of V. We say that F is additive if and only if:

(Def. 17) For all vectors x, y of V holds F(x+y) = F(x) + F(y).

Let *V* be a non empty vector space structure over \mathbb{C}_F and let *F* be a RFunctional of *V*. We say that *F* is Real-homogeneous if and only if:

(Def. 18) For every vector v of V and for every real number r holds $F((r+0i_{\mathbb{C}_{F}})\cdot v) = r \cdot F(v)$.

We now state the proposition

(29) Let *V* be a vector space-like non empty vector space structure over \mathbb{C}_F and *F* be a RFunctional of *V*. Suppose *F* is Real-homogeneous. Let *v* be a vector of *V* and *r* be a real number. Then $F((0 + ri_{\mathbb{C}_F}) \cdot v) = r \cdot F(i_{\mathbb{C}_F} \cdot v)$.

Let V be a non empty vector space structure over \mathbb{C}_F and let F be a RFunctional of V. We say that F is homogeneous if and only if:

(Def. 19) For every vector v of V and for every scalar r of V holds $F(r \cdot v) = |r| \cdot F(v)$.

Let K be a 1-sorted structure, let V be a vector space structure over K, and let F be a RFunctional of V. We say that F is 0-preserving if and only if:

(Def. 20) $F(0_V) = 0.$

Let K be a 1-sorted structure and let V be a non empty vector space structure over K. Observe that every RFunctional of V which is additive is also subadditive.

Let *V* be a vector space over \mathbb{C}_{F} . Observe that every RFunctional of *V* which is Real-homogeneous is also 0-preserving.

Let *K* be a 1-sorted structure and let *V* be a vector space structure over *K*. The functor 0RFunctional *V* yields a RFunctional of *V* and is defined as follows:

(Def. 21) 0RFunctional $V = \Omega_V \longmapsto 0$.

Let K be a 1-sorted structure and let V be a non empty vector space structure over K. Observe that ORFunctional V is additive and ORFunctional V is 0-preserving.

Let V be a non empty vector space structure over \mathbb{C}_{F} . Note that ORFunctional V is Real-homogeneous and ORFunctional V is homogeneous.

Let K be a 1-sorted structure and let V be a non empty vector space structure over K. One can check that there exists a RFunctional of V which is additive and 0-preserving.

Let V be a non empty vector space structure over \mathbb{C}_{F} . Observe that there exists a RFunctional of V which is additive, Real-homogeneous, and homogeneous.

Let V be a non empty vector space structure over \mathbb{C}_{F} . A Semi-Norm of V is a subadditive homogeneous RFunctional of V.

² The definition (Def. 15) has been removed.

6. THE HAHN BANACH THEOREM

Let *V* be a non empty vector space structure over \mathbb{C}_{F} . The functor RealVS*V* yielding a strict RLS structure is defined by the conditions (Def. 22).

- (Def. 22)(i) The loop structure of RealVSV = the loop structure of V, and
 - (ii) for every real number *r* and for every vector *v* of *V* holds (the external multiplication of RealVS*V*)(*r*, *v*) = $(r + 0i_{\mathbb{C}_{F}}) \cdot v$.

Let V be a non empty vector space structure over \mathbb{C}_{F} . One can check that RealVSV is non empty.

Let V be an Abelian non empty vector space structure over \mathbb{C}_{F} . Observe that RealVSV is Abelian.

Let V be an add-associative non empty vector space structure over \mathbb{C}_{F} . Note that RealVSV is add-associative.

Let *V* be a right zeroed non empty vector space structure over \mathbb{C}_{F} . One can check that RealVS*V* is right zeroed.

Let V be a right complementable non empty vector space structure over \mathbb{C}_{F} . Observe that RealVSV is right complementable.

Let *V* be a vector space-like non empty vector space structure over \mathbb{C}_{F} . One can verify that RealVS*V* is real linear space-like.

One can prove the following propositions:

- (30) For every non empty vector space V over \mathbb{C}_F and for every subspace M of V holds RealVSM is a subspace of RealVSV.
- (31) For every non empty vector space structure V over \mathbb{C}_{F} holds every RFunctional of V is a functional in RealVSV.
- (32) For every non empty vector space V over \mathbb{C}_F holds every Semi-Norm of V is a Banach functional in RealVSV.

Let V be a non empty vector space structure over \mathbb{C}_F and let l be a functional in V. The functor projRe l yields a functional in RealVSV and is defined by:

(Def. 23) For every element *i* of *V* holds $(\text{projRe } l)(i) = \Re(l(i))$.

Let *V* be a non empty vector space structure over \mathbb{C}_F and let *l* be a functional in *V*. The functor projIm *l* yielding a functional in RealVS*V* is defined by:

(Def. 24) For every element *i* of *V* holds $(\text{projIm } l)(i) = \Im(l(i))$.

Let *V* be a non empty vector space structure over \mathbb{C}_F and let *l* be a functional in RealVS*V*. The functor $l_{\mathbb{R}\to\mathbb{C}}$ yields a RFunctional of *V* and is defined by:

(Def. 25) $l_{\mathbb{R}\to\mathbb{C}} = l$.

Let *V* be a non empty vector space structure over \mathbb{C}_F and let *l* be a RFunctional of *V*. The functor $l_{\mathbb{C}\to\mathbb{R}}$ yielding a functional in RealVS*V* is defined by:

(Def. 26) $l_{\mathbb{C}\to\mathbb{R}} = l$.

Let *V* be a non empty vector space over \mathbb{C}_F and let *l* be an additive functional in RealVS*V*. Note that $l_{\mathbb{R}\to\mathbb{C}}$ is additive.

Let *V* be a non empty vector space over \mathbb{C}_F and let *l* be an additive RFunctional of *V*. One can check that $l_{\mathbb{C}\to\mathbb{R}}$ is additive.

Let *V* be a non empty vector space over \mathbb{C}_F and let *l* be a homogeneous functional in RealVS*V*. One can check that $l_{\mathbb{R}\to\mathbb{C}}$ is Real-homogeneous.

Let *V* be a non empty vector space over \mathbb{C}_F and let *l* be a Real-homogeneous RFunctional of *V*. Note that $l_{\mathbb{C}\to\mathbb{R}}$ is homogeneous.

Let *V* be a non empty vector space structure over \mathbb{C}_F and let *l* be a RFunctional of *V*. The functor i-shift *l* yields a RFunctional of *V* and is defined by:

(Def. 27) For every element v of V holds $(i-\text{shift } l)(v) = l(i_{\mathbb{C}_{\mathrm{F}}} \cdot v)$.

Let *V* be a non empty vector space structure over \mathbb{C}_F and let *l* be a functional in RealVS*V*. The functor prodReIm *l* yielding a functional in *V* is defined as follows:

(Def. 28) For every element v of V holds $(\operatorname{prodReIm} l)(v) = (l_{\mathbb{R}\to\mathbb{C}})(v) + (-(\operatorname{i-shift} l_{\mathbb{R}\to\mathbb{C}})(v))i_{\mathbb{C}_{\mathrm{F}}}$.

One can prove the following propositions:

- (33) Let *V* be a non empty vector space over \mathbb{C}_F and *l* be a linear functional in *V*. Then projRe *l* is a linear functional in RealVS*V*.
- (34) Let V be a non empty vector space over \mathbb{C}_{F} and l be a linear functional in V. Then projIm l is a linear functional in RealVSV.
- (35) Let *V* be a non empty vector space over \mathbb{C}_F and *l* be a linear functional in RealVS*V*. Then prodReIm*l* is a linear functional in *V*.
- (36) Let V be a non empty vector space over C_F, p be a Semi-Norm of V, M be a subspace of V, and l be a linear functional in M. Suppose that for every vector e of M and for every vector v of V such that v = e holds |l(e)| ≤ p(v). Then there exists a linear functional L in V such that L the carrier of M = l and for every vector e of V holds |L(e)| ≤ p(e).

REFERENCES

- [1] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [4] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [5] Czesław Byliński. The complex numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/complex1. html.
- [6] Library Committee. Introduction to arithmetic. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/ Addenda/arytm_0.html.
- [7] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html.
- [8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/vectsp_1.html.
- [9] Anna Justyna Milewska. The field of complex numbers. Journal of Formalized Mathematics, 12, 2000. http://mizar.org/JFM/ Vol12/complfld.html.
- [10] Bogdan Nowak and Andrzej Trybulec. Hahn-Banach theorem. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/ Vol5/hahnban.html.
- [11] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/pre_topc.html.
- [12] Jan Popiolek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [14] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/ Vol3/borsuk_1.html.
- [15] Andrzej Trybulec. Natural transformations. Discrete categories. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/nattra_1.html.
- [16] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.
- [17] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Journal of Formalized Mathematics, 1, 1989. http: //mizar.org/JFM/Voll/rlsub_1.html.

- [18] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/ rlvect_l.html.
- [19] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_4.html.
- [20] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [21] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ relset_1.html.

Received May 23, 2000

Published January 2, 2004