Hahn-Banach Theorem

Bogdan Nowak Łódź University Andrzej Trybulec Warsaw University Białystok

Summary. We prove a version of Hahn-Banach Theorem.

MML Identifier: HAHNBAN.

WWW: http://mizar.org/JFM/Vol5/hahnban.html

The articles [13], [6], [19], [1], [7], [9], [20], [3], [4], [17], [16], [15], [10], [5], [11], [8], [18], [14], [12], and [2] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following propositions:

- (2)¹ For every set *X* and for all functions *f*, *g* such that $X \subseteq \text{dom } f$ and $f \subseteq g$ holds $f \upharpoonright X = g \upharpoonright X$.
- (3) For every non empty set A and for every set b such that $A \neq \{b\}$ there exists an element a of A such that $a \neq b$.
- (4) For all sets X, Y holds every non empty subset of $X \rightarrow Y$ is a non empty functional set.
- (5) Let *B* be a non empty functional set and *f* be a function. Suppose $f = \bigcup B$. Then dom $f = \bigcup \{\text{dom } g : g \text{ ranges over elements of } B\}$ and rng $f = \bigcup \{\text{rng } g : g \text{ ranges over elements of } B\}$.
- (6) For every non empty subset A of $\overline{\mathbb{R}}$ such that for every extended real number r such that $r \in A$ holds $r < -\infty$ holds $A = \{-\infty\}$.
- (7) For every non empty subset A of $\overline{\mathbb{R}}$ such that for every extended real number r such that $r \in A$ holds $+\infty \le r$ holds $A = \{+\infty\}$.
- (8) Let *A* be a non empty subset of $\overline{\mathbb{R}}$ and *r* be an extended real number. If $r < \sup A$, then there exists an extended real number *s* such that $s \in A$ and r < s.
- (9) Let *A* be a non empty subset of $\overline{\mathbb{R}}$ and *r* be an extended real number. If $\inf A < r$, then there exists an extended real number *s* such that $s \in A$ and s < r.
- (10) Let A, B be non empty subsets of $\overline{\mathbb{R}}$. Suppose that for all extended real numbers r, s such that $r \in A$ and $s \in B$ holds $r \leq s$. Then $\sup A \leq \inf B$.
- $(12)^2$ Let x, y be extended real numbers and p, q be real numbers. If x = p and y = q, then $p \le q$ iff $x \le y$.

¹ The proposition (1) has been removed.

² The proposition (11) has been removed.

2. Sets Linearly Ordered by the Inclusion

Let A be a non empty set. Note that there exists a subset of A which is \subseteq -linear and non empty. One can prove the following proposition

(13) For all sets X, Y and for every \subseteq -linear subset B of $X \rightarrow Y$ holds $\bigcup B \in X \rightarrow Y$.

3. Subspaces of a Real Linear Space

In the sequel V denotes a real linear space.

Next we state a number of propositions:

- (14) For all subspaces W_1 , W_2 of V holds the carrier of $W_1 \subseteq$ the carrier of $W_1 + W_2$.
- (15) Let W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v, v_1 , v_2 be vectors of V. If $v_1 \in W_1$ and $v_2 \in W_2$ and $v = v_1 + v_2$, then $v_{\langle W_1, W_2 \rangle} = \langle v_1, v_2 \rangle$.
- (16) Let W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v, v_1 , v_2 be vectors of V. If $v_{\langle W_1, W_2 \rangle} = \langle v_1, v_2 \rangle$, then $v = v_1 + v_2$.
- (17) Let W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v, v_1 , v_2 be vectors of V. If $v_{\langle W_1, W_2 \rangle} = \langle v_1, v_2 \rangle$, then $v_1 \in W_1$ and $v_2 \in W_2$.
- (18) Let W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v, v_1 , v_2 be vectors of V. If $v_{\langle W_1, W_2 \rangle} = \langle v_1, v_2 \rangle$, then $v_{\langle W_2, W_1 \rangle} = \langle v_2, v_1 \rangle$.
- (19) Let W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v be a vector of V. If $v \in W_1$, then $v_{\langle W_1, W_2 \rangle} = \langle v, 0_V \rangle$.
- (20) Let W_1 , W_2 be subspaces of V. Suppose V is the direct sum of W_1 and W_2 . Let v be a vector of V. If $v \in W_2$, then $v_{\langle W_1, W_2 \rangle} = \langle 0_V, v \rangle$.
- (21) Let V_1 be a subspace of V, W_1 be a subspace of V_1 , and v be a vector of V. If $v \in W_1$, then v is a vector of V_1 .
- (22) For all subspaces V_1 , V_2 , W of V and for all subspaces W_1 , W_2 of W such that $W_1 = V_1$ and $W_2 = V_2$ holds $W_1 + W_2 = V_1 + V_2$.
- (23) For every subspace W of V and for every vector v of V and for every vector w of W such that v = w holds $Lin(\{w\}) = Lin(\{v\})$.
- (24) Let v be a vector of V and X be a subspace of V. Suppose $v \notin X$. Let y be a vector of $X + \text{Lin}(\{v\})$ and W be a subspace of $X + \text{Lin}(\{v\})$. If v = y and W = X, then $X + \text{Lin}(\{v\})$ is the direct sum of W and $\text{Lin}(\{y\})$.
- (25) Let v be a vector of V, X be a subspace of V, y be a vector of $X + \text{Lin}(\{v\})$, and W be a subspace of $X + \text{Lin}(\{v\})$. If v = y and X = W and $v \notin X$, then $y_{\{W, \text{Lin}(\{v\})\}} = \langle 0_W, y \rangle$.
- (26) Let v be a vector of V, X be a subspace of V, y be a vector of $X + \text{Lin}(\{v\})$, and W be a subspace of $X + \text{Lin}(\{v\})$. Suppose v = y and X = W and $v \notin X$. Let w be a vector of $X + \text{Lin}(\{v\})$. If $w \in X$, then $w_{\{W, \text{Lin}(\{v\})\}} = \langle w, 0_V \rangle$.
- (27) For every vector v of V and for all subspaces W_1 , W_2 of V there exist vectors v_1 , v_2 of V such that $v_{(W_1,W_2)} = \langle v_1, v_2 \rangle$.
- (28) Let v be a vector of V, X be a subspace of V, y be a vector of $X + \text{Lin}(\{v\})$, and W be a subspace of $X + \text{Lin}(\{v\})$. Suppose v = y and X = W and $v \notin X$. Let w be a vector of $X + \text{Lin}(\{v\})$. Then there exists a vector x of X and there exists a real number r such that $w_{\{W,\text{Lin}(\{y\})\}} = \langle x, r \cdot v \rangle$.

- (29) Let v be a vector of V, X be a subspace of V, y be a vector of $X + \text{Lin}(\{v\})$, and W be a subspace of $X + \text{Lin}(\{v\})$. Suppose v = y and X = W and $v \notin X$. Let w_1, w_2 be vectors of $X + \text{Lin}(\{v\}), x_1, x_2$ be vectors of X, and x_1, x_2 be real numbers. If $(w_1)_{\langle W, \text{Lin}(\{y\}) \rangle} = \langle x_1, x_2, x_2, x_3, x_4 \rangle$, then $(w_1 + w_2)_{\langle W, \text{Lin}(\{v\}) \rangle} = \langle x_1, x_2, x_2, x_3, x_4 \rangle$.
- (30) Let v be a vector of V, X be a subspace of V, y be a vector of $X + \text{Lin}(\{v\})$, and W be a subspace of $X + \text{Lin}(\{v\})$. Suppose v = y and X = W and $v \notin X$. Let w be a vector of $X + \text{Lin}(\{v\})$, x be a vector of X, and t, r be real numbers. If $w_{\langle W, \text{Lin}(\{y\}) \rangle} = \langle x, r \cdot v \rangle$, then $(t \cdot w)_{\langle W, \text{Lin}(\{y\}) \rangle} = \langle t \cdot x, t \cdot r \cdot v \rangle$.

4. Functionals

Let *V* be an RLS structure. A functional in *V* is a function from the carrier of *V* into \mathbb{R} . Let us consider *V* and let I_1 be a functional in *V*. We say that I_1 is subadditive if and only if:

(Def. 3)³ For all vectors x, y of V holds $I_1(x+y) \le I_1(x) + I_1(y)$.

We say that I_1 is additive if and only if:

(Def. 4) For all vectors x, y of V holds $I_1(x+y) = I_1(x) + I_1(y)$.

We say that I_1 is homogeneous if and only if:

(Def. 5) For every vector x of V and for every real number r holds $I_1(r \cdot x) = r \cdot I_1(x)$.

We say that I_1 is positively homogeneous if and only if:

- (Def. 6) For every vector x of V and for every real number r such that r > 0 holds $I_1(r \cdot x) = r \cdot I_1(x)$. We say that I_1 is semi-homogeneous if and only if:
- (Def. 7) For every vector x of V and for every real number r such that $r \ge 0$ holds $I_1(r \cdot x) = r \cdot I_1(x)$. We say that I_1 is absolutely homogeneous if and only if:
- (Def. 8) For every vector x of V and for every real number r holds $I_1(r \cdot x) = |r| \cdot I_1(x)$.

We say that I_1 is 0-preserving if and only if:

(Def. 9) $I_1(0_V) = 0$.

Let us consider V. One can check the following observations:

- * every functional in V which is additive is also subadditive,
- * every functional in V which is homogeneous is also positively homogeneous,
- * every functional in V which is semi-homogeneous is also positively homogeneous,
- * every functional in V which is semi-homogeneous is also 0-preserving,
- * every functional in V which is absolutely homogeneous is also semi-homogeneous, and
- * every functional in V which is 0-preserving and positively homogeneous is also semi-homogeneous.

Let us consider V. Note that there exists a functional in V which is additive, absolutely homogeneous, and homogeneous.

Let us consider V. A Banach functional in V is a subadditive positively homogeneous functional in V. A linear functional in V is an additive homogeneous functional in V.

One can prove the following four propositions:

³ The definitions (Def. 1) and (Def. 2) have been removed.

- (31) For every homogeneous functional *L* in *V* and for every vector *v* of *V* holds L(-v) = -L(v).
- (32) For every linear functional L in V and for all vectors v_1 , v_2 of V holds $L(v_1 v_2) = L(v_1) L(v_2)$.
- (33) For every additive functional *L* in *V* holds $L(0_V) = 0$.
- (34) Let X be a subspace of V, f_1 be a linear functional in X, v be a vector of V, and y be a vector of $X + \text{Lin}(\{v\})$. Suppose v = y and $v \notin X$. Let r be a real number. Then there exists a linear functional p_1 in $X + \text{Lin}(\{v\})$ such that $p_1 \mid \text{the carrier of } X = f_1$ and $p_1(y) = r$.

5. HAHN-BANACH THEOREM

We now state three propositions:

- (35) Let V be a real linear space, X be a subspace of V, q be a Banach functional in V, and f_1 be a linear functional in X. Suppose that for every vector x of X and for every vector v of V such that x = v holds $f_1(x) \le q(v)$. Then there exists a linear functional p_1 in V such that p_1 the carrier of $X = f_1$ and for every vector x of V holds $p_1(x) \le q(x)$.
- (36) For every real normed space V holds the norm of V is an absolutely homogeneous subadditive functional in V.
- (37) Let V be a real normed space, X be a subspace of V, and f_1 be a linear functional in X. Suppose that for every vector x of X and for every vector v of V such that x = v holds $f_1(x) \le ||v||$. Then there exists a linear functional p_1 in V such that $p_1 \mid$ the carrier of $X = f_1$ and for every vector x of V holds $p_1(x) \le ||x||$.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.
- [2] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/supinf_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [5] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [7] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [8] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vol5/rfunct_3.html.
- [9] Jan Popiolek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/absyalue.html.
- [10] Jan Popiotek. Real normed space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/normsp_1.html.
- [11] Andrzej Trybulec. Binary operations applied to functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/funcop 1.html.
- [12] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/domain_1.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel.html.
- [15] Wojciech A. Trybulec. Operations on subspaces in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/rlsub_2.html.

- [16] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/rlsub_1.html.
- [17] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [18] Wojciech A. Trybulec. Basis of real linear space. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rlvect_3.html.
- [19] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [20] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received July 8, 1993

Published January 2, 2004