The Product of the Families of the Groups

Artur Korniłowicz
University of Białystok

MML Identifier: GROUP_7.

WWW:http://mizar.org/JFM/Vol10/group_7.html

The articles [14], [13], [7], [19], [20], [4], [6], [2], [5], [8], [9], [3], [10], [16], [17], [18], [15], [1], [11], and [12] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paper a, b, c, d, e, f are sets.
Next we state three propositions:
(1) If $\langle a\rangle=\langle b\rangle$, then $a=b$.
(2) If $\langle a, b\rangle=\langle c, d\rangle$, then $a=c$ and $b=d$.
(3) If $\langle a, b, c\rangle=\langle d, e, f\rangle$, then $a=d$ and $b=e$ and $c=f$.

2. The Product of the Families of the Groups

We follow the rules: i, I are sets, f, g, h are functions, and s is a many sorted set indexed by I.
Let R be a binary relation. We say that R is groupoid yielding if and only if:
(Def. 1) For every set y such that $y \in \operatorname{rng} R$ holds y is a non empty groupoid.
Let us mention that every function which is groupoid yielding is also 1 -sorted yielding.
Let I be a set. Note that there exists a many sorted set indexed by I which is groupoid yielding.
Let us note that there exists a function which is groupoid yielding.
Let I be a set. A family of semigroups indexed by I is a groupoid yielding many sorted set indexed by I.

Let I be a non empty set, let F be a family of semigroups indexed by I, and let i be an element of I. Then $F(i)$ is a non empty groupoid.

Let I be a set and let F be a family of semigroups indexed by I. Note that the support of F is non-empty.

Let I be a set and let F be a family of semigroups indexed by I. The functor ΠF yields a strict groupoid and is defined by the conditions (Def. 2).
(Def. 2)(i) The carrier of $\Pi F=\Pi$ (the support of F), and
(ii) for all elements f, g of Π (the support of F) and for every set i such that $i \in I$ there exists a non empty groupoid F_{1} and there exists a function h such that $F_{1}=F(i)$ and $h=$ (the multiplication of $\Pi F)(f, g)$ and $h(i)=\left(\right.$ the multiplication of $\left.F_{1}\right)(f(i), g(i))$.

Let I be a set and let F be a family of semigroups indexed by I. Observe that ΠF is non empty.
Let I be a set and let F be a family of semigroups indexed by I. Note that every element of ΠF is function-like and relation-like.

Let I be a set, let F be a family of semigroups indexed by I, and let f, g be elements of Π (the support of F). Note that (the multiplication of $\Pi F)(f, g)$ is function-like and relation-like.

We now state the proposition
(4) Let F be a family of semigroups indexed by I, G be a non empty groupoid, p, q be elements of ΠF, and x, y be elements of G. Suppose $i \in I$ and $G=F(i)$ and $f=p$ and $g=q$ and $h=p \cdot q$ and $f(i)=x$ and $g(i)=y$. Then $x \cdot y=h(i)$.

Let I be a set and let F be a family of semigroups indexed by I. We say that F is group-like if and only if:
(Def. 3) For every set i such that $i \in I$ there exists a group-like non empty groupoid F_{1} such that $F_{1}=F(i)$.

We say that F is associative if and only if:
(Def. 4) For every set i such that $i \in I$ there exists an associative non empty groupoid F_{1} such that $F_{1}=F(i)$.

We say that F is commutative if and only if:
(Def. 5) For every set i such that $i \in I$ there exists a commutative non empty groupoid F_{1} such that $F_{1}=F(i)$.

Let I be a non empty set and let F be a family of semigroups indexed by I. Let us observe that F is group-like if and only if:
(Def. 6) For every element i of I holds $F(i)$ is group-like.
Let us observe that F is associative if and only if:
(Def. 7) For every element i of I holds $F(i)$ is associative.
Let us observe that F is commutative if and only if:
(Def. 8) For every element i of I holds $F(i)$ is commutative.
Let I be a set. Note that there exists a family of semigroups indexed by I which is group-like, associative, and commutative.

Let I be a set and let F be a group-like family of semigroups indexed by I. Note that ΠF is group-like.

Let I be a set and let F be an associative family of semigroups indexed by I. Observe that ΠF is associative.

Let I be a set and let F be a commutative family of semigroups indexed by I. Observe that ΠF is commutative.

One can prove the following propositions:
(5) Let F be a family of semigroups indexed by I and G be a non empty groupoid. If $i \in I$ and $G=F(i)$ and ΠF is group-like, then G is group-like.
(6) Let F be a family of semigroups indexed by I and G be a non empty groupoid. If $i \in I$ and $G=F(i)$ and ΠF is associative, then G is associative.
(7) Let F be a family of semigroups indexed by I and G be a non empty groupoid. If $i \in I$ and $G=F(i)$ and ΠF is commutative, then G is commutative.
(8) Let F be a group-like family of semigroups indexed by I. Suppose that for every set i such that $i \in I$ there exists a group-like non empty groupoid G such that $G=F(i)$ and $s(i)=1_{G}$. Then $s=1_{\Pi F}$.
(9) Let F be a group-like family of semigroups indexed by I and G be a group-like non empty groupoid. If $i \in I$ and $G=F(i)$ and $f=1_{\Pi F}$, then $f(i)=1_{G}$.
(10) Let F be an associative group-like family of semigroups indexed by I and x be an element of ΠF. Suppose that
(i) $x=g$, and
(ii) for every set i such that $i \in I$ there exists a group G and there exists an element y of G such that $G=F(i)$ and $s(i)=y^{-1}$ and $y=g(i)$.
Then $s=x^{-1}$.
(11) Let F be an associative group-like family of semigroups indexed by I, x be an element of $\Pi F, G$ be a group, and y be an element of G. If $i \in I$ and $G=F(i)$ and $f=x$ and $g=x^{-1}$ and $f(i)=y$, then $g(i)=y^{-1}$.

Let I be a set and let F be an associative group-like family of semigroups indexed by I. The functor sum F yielding a strict subgroup of ΠF is defined by the condition (Def. 9).
(Def. 9) Let x be a set. Then $x \in$ the carrier of $\operatorname{sum} F$ if and only if there exists an element g of Π (the support of F) and there exists a finite subset J of I and there exists a many sorted set f indexed by J such that $g=1_{\Pi F}$ and $x=g+\cdot f$ and for every set j such that $j \in J$ there exists a group-like non empty groupoid G such that $G=F(j)$ and $f(j) \in$ the carrier of G and $f(j) \neq 1_{G}$.

Let I be a set, let F be an associative group-like family of semigroups indexed by I, and let f, g be elements of $\operatorname{sum} F$. One can verify that (the multiplication of $\operatorname{sum} F)(f, g)$ is function-like and relation-like.

We now state the proposition
(12) For every finite set I and for every associative group-like family F of semigroups indexed by I holds $\Pi F=\operatorname{sum} F$.

3. The Product of One, Two and Three Groups

The following proposition is true
(13) For every non empty groupoid G_{1} holds $\left\langle G_{1}\right\rangle$ is a family of semigroups indexed by $\{1\}$.

Let G_{1} be a non empty groupoid. Then $\left\langle G_{1}\right\rangle$ is a family of semigroups indexed by $\{1\}$.
One can prove the following proposition
(14) For every group-like non empty groupoid G_{1} holds $\left\langle G_{1}\right\rangle$ is a group-like family of semigroups indexed by $\{1\}$.

Let G_{1} be a group-like non empty groupoid. Then $\left\langle G_{1}\right\rangle$ is a group-like family of semigroups indexed by $\{1\}$.

Next we state the proposition
(15) For every associative non empty groupoid G_{1} holds $\left\langle G_{1}\right\rangle$ is an associative family of semigroups indexed by $\{1\}$.

Let G_{1} be an associative non empty groupoid. Then $\left\langle G_{1}\right\rangle$ is an associative family of semigroups indexed by $\{1\}$.

The following proposition is true
(16) For every commutative non empty groupoid G_{1} holds $\left\langle G_{1}\right\rangle$ is a commutative family of semigroups indexed by $\{1\}$.

Let G_{1} be a commutative non empty groupoid. Then $\left\langle G_{1}\right\rangle$ is a commutative family of semigroups indexed by $\{1\}$.

We now state the proposition
(17) For every group G_{1} holds $\left\langle G_{1}\right\rangle$ is a group-like associative family of semigroups indexed by $\{1\}$.

Let G_{1} be a group. Then $\left\langle G_{1}\right\rangle$ is a group-like associative family of semigroups indexed by $\{1\}$.
The following proposition is true
(18) Let G_{1} be a commutative group. Then $\left\langle G_{1}\right\rangle$ is a commutative group-like associative family of semigroups indexed by $\{1\}$.

Let G_{1} be a commutative group. Then $\left\langle G_{1}\right\rangle$ is a group-like associative commutative family of semigroups indexed by $\{1\}$.

Let G_{1} be a non empty groupoid. One can verify that every element of Π (the support of $\left\langle G_{1}\right\rangle$) is finite sequence-like.

Let G_{1} be a non empty groupoid. One can verify that every element of $\Pi\left\langle G_{1}\right\rangle$ is finite sequencelike.

Let G_{1} be a non empty groupoid and let x be an element of G_{1}. Then $\langle x\rangle$ is an element of $\Pi\left\langle G_{1}\right\rangle$.
One can prove the following proposition
(19) For all non empty groupoids G_{1}, G_{2} holds $\left\langle G_{1}, G_{2}\right\rangle$ is a family of semigroups indexed by $\{1,2\}$.

Let G_{1}, G_{2} be non empty groupoids. Then $\left\langle G_{1}, G_{2}\right\rangle$ is a family of semigroups indexed by $\{1,2\}$. We now state the proposition
(20) For all group-like non empty groupoids G_{1}, G_{2} holds $\left\langle G_{1}, G_{2}\right\rangle$ is a group-like family of semigroups indexed by $\{1,2\}$.

Let G_{1}, G_{2} be group-like non empty groupoids. Then $\left\langle G_{1}, G_{2}\right\rangle$ is a group-like family of semigroups indexed by $\{1,2\}$.

We now state the proposition
(21) For all associative non empty groupoids G_{1}, G_{2} holds $\left\langle G_{1}, G_{2}\right\rangle$ is an associative family of semigroups indexed by $\{1,2\}$.

Let G_{1}, G_{2} be associative non empty groupoids. Then $\left\langle G_{1}, G_{2}\right\rangle$ is an associative family of semigroups indexed by $\{1,2\}$.

One can prove the following proposition
(22) For all commutative non empty groupoids G_{1}, G_{2} holds $\left\langle G_{1}, G_{2}\right\rangle$ is a commutative family of semigroups indexed by $\{1,2\}$.

Let G_{1}, G_{2} be commutative non empty groupoids. Then $\left\langle G_{1}, G_{2}\right\rangle$ is a commutative family of semigroups indexed by $\{1,2\}$.

Next we state the proposition
(23) For all groups G_{1}, G_{2} holds $\left\langle G_{1}, G_{2}\right\rangle$ is a group-like associative family of semigroups indexed by $\{1,2\}$.

Let G_{1}, G_{2} be groups. Then $\left\langle G_{1}, G_{2}\right\rangle$ is a group-like associative family of semigroups indexed by $\{1,2\}$.

We now state the proposition
(24) Let G_{1}, G_{2} be commutative groups. Then $\left\langle G_{1}, G_{2}\right\rangle$ is a group-like associative commutative family of semigroups indexed by $\{1,2\}$.

Let G_{1}, G_{2} be commutative groups. Then $\left\langle G_{1}, G_{2}\right\rangle$ is a group-like associative commutative family of semigroups indexed by $\{1,2\}$.

Let G_{1}, G_{2} be non empty groupoids. One can check that every element of Π (the support of $\left\langle G_{1}\right.$, $\left.G_{2}\right\rangle$) is finite sequence-like.

Let G_{1}, G_{2} be non empty groupoids. Observe that every element of $\prod\left\langle G_{1}, G_{2}\right\rangle$ is finite sequencelike.

Let G_{1}, G_{2} be non empty groupoids, let x be an element of G_{1}, and let y be an element of G_{2}. Then $\langle x, y\rangle$ is an element of $\Pi\left\langle G_{1}, G_{2}\right\rangle$.

Next we state the proposition
(25) For all non empty groupoids G_{1}, G_{2}, G_{3} holds $\left\langle G_{1}, G_{2}, G_{3}\right\rangle$ is a family of semigroups indexed by $\{1,2,3\}$.

Let G_{1}, G_{2}, G_{3} be non empty groupoids. Then $\left\langle G_{1}, G_{2}, G_{3}\right\rangle$ is a family of semigroups indexed by $\{1,2,3\}$.

We now state the proposition
(26) For all group-like non empty groupoids G_{1}, G_{2}, G_{3} holds $\left\langle G_{1}, G_{2}, G_{3}\right\rangle$ is a group-like family of semigroups indexed by $\{1,2,3\}$.

Let G_{1}, G_{2}, G_{3} be group-like non empty groupoids. Then $\left\langle G_{1}, G_{2}, G_{3}\right\rangle$ is a group-like family of semigroups indexed by $\{1,2,3\}$.

One can prove the following proposition
(27) Let G_{1}, G_{2}, G_{3} be associative non empty groupoids. Then $\left\langle G_{1}, G_{2}, G_{3}\right\rangle$ is an associative family of semigroups indexed by $\{1,2,3\}$.

Let G_{1}, G_{2}, G_{3} be associative non empty groupoids. Then $\left\langle G_{1}, G_{2}, G_{3}\right\rangle$ is an associative family of semigroups indexed by $\{1,2,3\}$.

One can prove the following proposition
(28) Let G_{1}, G_{2}, G_{3} be commutative non empty groupoids. Then $\left\langle G_{1}, G_{2}, G_{3}\right\rangle$ is a commutative family of semigroups indexed by $\{1,2,3\}$.

Let G_{1}, G_{2}, G_{3} be commutative non empty groupoids. Then $\left\langle G_{1}, G_{2}, G_{3}\right\rangle$ is a commutative family of semigroups indexed by $\{1,2,3\}$.

The following proposition is true
(29) For all groups G_{1}, G_{2}, G_{3} holds $\left\langle G_{1}, G_{2}, G_{3}\right\rangle$ is a group-like associative family of semigroups indexed by $\{1,2,3\}$.

Let G_{1}, G_{2}, G_{3} be groups. Then $\left\langle G_{1}, G_{2}, G_{3}\right\rangle$ is a group-like associative family of semigroups indexed by $\{1,2,3\}$.

Next we state the proposition
(30) Let G_{1}, G_{2}, G_{3} be commutative groups. Then $\left\langle G_{1}, G_{2}, G_{3}\right\rangle$ is a group-like associative commutative family of semigroups indexed by $\{1,2,3\}$.

Let G_{1}, G_{2}, G_{3} be commutative groups. Then $\left\langle G_{1}, G_{2}, G_{3}\right\rangle$ is a group-like associative commutative family of semigroups indexed by $\{1,2,3\}$.

Let G_{1}, G_{2}, G_{3} be non empty groupoids. Note that every element of Π (the support of $\left\langle G_{1}, G_{2}\right.$, $\left.G_{3}\right\rangle$) is finite sequence-like.

Let G_{1}, G_{2}, G_{3} be non empty groupoids. Note that every element of $\Pi\left\langle G_{1}, G_{2}, G_{3}\right\rangle$ is finite sequence-like.

Let G_{1}, G_{2}, G_{3} be non empty groupoids, let x be an element of G_{1}, let y be an element of G_{2}, and let z be an element of G_{3}. Then $\langle x, y, z\rangle$ is an element of $\Pi\left\langle G_{1}, G_{2}, G_{3}\right\rangle$.

For simplicity, we adopt the following rules: G_{1}, G_{2}, G_{3} denote non empty groupoids, x_{1}, x_{2} denote elements of G_{1}, y_{1}, y_{2} denote elements of G_{2}, and z_{1}, z_{2} denote elements of G_{3}.

Next we state three propositions:
(31) $\left\langle x_{1}\right\rangle \cdot\left\langle x_{2}\right\rangle=\left\langle x_{1} \cdot x_{2}\right\rangle$.
(32) $\left\langle x_{1}, y_{1}\right\rangle \cdot\left\langle x_{2}, y_{2}\right\rangle=\left\langle x_{1} \cdot x_{2}, y_{1} \cdot y_{2}\right\rangle$.
(33) $\left\langle x_{1}, y_{1}, z_{1}\right\rangle \cdot\left\langle x_{2}, y_{2}, z_{2}\right\rangle=\left\langle x_{1} \cdot x_{2}, y_{1} \cdot y_{2}, z_{1} \cdot z_{2}\right\rangle$.

In the sequel G_{1}, G_{2}, G_{3} are group-like non empty groupoids.
Next we state three propositions:

$$
\begin{align*}
& 1_{\Pi\left\langle G_{1}\right\rangle}=\left\langle 1_{\left(G_{1}\right)}\right\rangle \tag{34}\\
& 1_{\Pi\left\langle G_{1}, G_{2}\right\rangle}=\left\langle 1_{\left(G_{1}\right)}, 1_{\left(G_{2}\right)}\right\rangle . \tag{35}\\
& 1_{\Pi\left\langle G_{1}, G_{2}, G_{3}\right\rangle}=\left\langle 1_{\left(G_{1}\right)}, 1_{\left(G_{2}\right)}, 1_{\left(G_{3}\right)}\right\rangle .
\end{align*}
$$

For simplicity, we adopt the following convention: G_{1}, G_{2}, G_{3} denote groups, x denotes an element of G_{1}, y denotes an element of G_{2}, and z denotes an element of G_{3}.

We now state several propositions:
(37) $\left(\langle x\rangle \text { qua element of } \Pi\left\langle G_{1}\right\rangle\right)^{-1}=\left\langle x^{-1}\right\rangle$.
(38) $\left(\langle x, y\rangle \text { qua element of } \Pi\left\langle G_{1}, G_{2}\right\rangle\right)^{-1}=\left\langle x^{-1}, y^{-1}\right\rangle$.
(39) $\left(\langle x, y, z\rangle \text { qua element of } \Pi\left\langle G_{1}, G_{2}, G_{3}\right\rangle\right)^{-1}=\left\langle x^{-1}, y^{-1}, z^{-1}\right\rangle$.
(40) Let f be a function from the carrier of G_{1} into the carrier of $\Pi\left\langle G_{1}\right\rangle$. Suppose that for every element x of G_{1} holds $f(x)=\langle x\rangle$. Then f is a homomorphism from G_{1} to $\Pi\left\langle G_{1}\right\rangle$.
(41) For every homomorphism f from G_{1} to $\Pi\left\langle G_{1}\right\rangle$ such that for every element x of G_{1} holds $f(x)=\langle x\rangle$ holds f is an isomorphism.
(42) $\quad G_{1}$ and $\prod\left\langle G_{1}\right\rangle$ are isomorphic.

REFERENCES

[1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html|
[4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[6] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
[7] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ zfmisc_1.html
[8] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html
[9] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html
[10] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html
[11] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/ pralg_1.html
[12] Beata Madras. Products of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pralg_ 2.html
[13] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumset1.html
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[15] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html
[16] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html
[17] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/group_2.html
[18] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/group_6.html
[19] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html
[20] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html

Received June 10, 1998
Published January 2, 2004

