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The articles [14], [13], [7], [19], [20], [4], [6], [2], [5], [8], [9], [3], [10], [16], [17], [18], [15], [1],
[11], and [12] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this papera, b, c, d, e, f are sets.
Next we state three propositions:

(1) If 〈a〉= 〈b〉, thena = b.

(2) If 〈a,b〉= 〈c,d〉, thena = c andb = d.

(3) If 〈a,b,c〉= 〈d,e, f 〉, thena = d andb = eandc = f .

2. THE PRODUCT OF THEFAMILIES OF THE GROUPS

We follow the rules:i, I are sets,f , g, h are functions, ands is a many sorted set indexed byI .
Let Rbe a binary relation. We say thatR is groupoid yielding if and only if:

(Def. 1) For every sety such thaty∈ rngRholdsy is a non empty groupoid.

Let us mention that every function which is groupoid yielding is also 1-sorted yielding.
Let I be a set. Note that there exists a many sorted set indexed byI which is groupoid yielding.
Let us note that there exists a function which is groupoid yielding.
Let I be a set. A family of semigroups indexed byI is a groupoid yielding many sorted set

indexed byI .
Let I be a non empty set, letF be a family of semigroups indexed byI , and leti be an element

of I . ThenF(i) is a non empty groupoid.
Let I be a set and letF be a family of semigroups indexed byI . Note that the support ofF is

non-empty.
Let I be a set and letF be a family of semigroups indexed byI . The functor∏F yields a strict

groupoid and is defined by the conditions (Def. 2).

(Def. 2)(i) The carrier of∏F = ∏ (the support ofF), and

(ii) for all elements f , g of ∏ (the support ofF) and for every seti such thati ∈ I there
exists a non empty groupoidF1 and there exists a functionh such thatF1 = F(i) andh = (the
multiplication of∏F)( f , g) andh(i) = (the multiplication ofF1)( f (i), g(i)).
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Let I be a set and letF be a family of semigroups indexed byI . Observe that∏F is non empty.
Let I be a set and letF be a family of semigroups indexed byI . Note that every element of∏F

is function-like and relation-like.
Let I be a set, letF be a family of semigroups indexed byI , and let f , g be elements of∏ (the

support ofF). Note that (the multiplication of∏F)( f , g) is function-like and relation-like.
We now state the proposition

(4) LetF be a family of semigroups indexed byI , G be a non empty groupoid,p, q be elements
of ∏F, andx, y be elements ofG. Supposei ∈ I andG= F(i) and f = p andg= q andh= p·q
and f (i) = x andg(i) = y. Thenx ·y = h(i).

Let I be a set and letF be a family of semigroups indexed byI . We say thatF is group-like if
and only if:

(Def. 3) For every seti such thati ∈ I there exists a group-like non empty groupoidF1 such that
F1 = F(i).

We say thatF is associative if and only if:

(Def. 4) For every seti such thati ∈ I there exists an associative non empty groupoidF1 such that
F1 = F(i).

We say thatF is commutative if and only if:

(Def. 5) For every seti such thati ∈ I there exists a commutative non empty groupoidF1 such that
F1 = F(i).

Let I be a non empty set and letF be a family of semigroups indexed byI . Let us observe that
F is group-like if and only if:

(Def. 6) For every elementi of I holdsF(i) is group-like.

Let us observe thatF is associative if and only if:

(Def. 7) For every elementi of I holdsF(i) is associative.

Let us observe thatF is commutative if and only if:

(Def. 8) For every elementi of I holdsF(i) is commutative.

Let I be a set. Note that there exists a family of semigroups indexed byI which is group-like,
associative, and commutative.

Let I be a set and letF be a group-like family of semigroups indexed byI . Note that∏F is
group-like.

Let I be a set and letF be an associative family of semigroups indexed byI . Observe that∏F
is associative.

Let I be a set and letF be a commutative family of semigroups indexed byI . Observe that∏F
is commutative.

One can prove the following propositions:

(5) LetF be a family of semigroups indexed byI andG be a non empty groupoid. Ifi ∈ I and
G = F(i) and∏F is group-like, thenG is group-like.

(6) LetF be a family of semigroups indexed byI andG be a non empty groupoid. Ifi ∈ I and
G = F(i) and∏F is associative, thenG is associative.

(7) LetF be a family of semigroups indexed byI andG be a non empty groupoid. Ifi ∈ I and
G = F(i) and∏F is commutative, thenG is commutative.

(8) LetF be a group-like family of semigroups indexed byI . Suppose that for every seti such
that i ∈ I there exists a group-like non empty groupoidG such thatG = F(i) ands(i) = 1G.
Thens= 1∏F .
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(9) LetF be a group-like family of semigroups indexed byI andG be a group-like non empty
groupoid. Ifi ∈ I andG = F(i) and f = 1∏F , then f (i) = 1G.

(10) LetF be an associative group-like family of semigroups indexed byI andx be an element
of ∏F. Suppose that

(i) x = g, and

(ii) for every seti such thati ∈ I there exists a groupG and there exists an elementy of G such
thatG = F(i) ands(i) = y−1 andy = g(i).

Thens= x−1.

(11) LetF be an associative group-like family of semigroups indexed byI , x be an element of
∏F, G be a group, andy be an element ofG. If i ∈ I andG= F(i) and f = x andg= x−1 and
f (i) = y, theng(i) = y−1.

Let I be a set and letF be an associative group-like family of semigroups indexed byI . The
functor sumF yielding a strict subgroup of∏F is defined by the condition (Def. 9).

(Def. 9) Letx be a set. Thenx ∈ the carrier of sumF if and only if there exists an elementg of
∏ (the support ofF) and there exists a finite subsetJ of I and there exists a many sorted set
f indexed byJ such thatg = 1∏F andx = g+· f and for every setj such thatj ∈ J there
exists a group-like non empty groupoidG such thatG = F( j) and f ( j) ∈ the carrier ofG and
f ( j) 6= 1G.

Let I be a set, letF be an associative group-like family of semigroups indexed byI , and let f ,
g be elements of sumF. One can verify that (the multiplication of sumF)( f , g) is function-like and
relation-like.

We now state the proposition

(12) For every finite setI and for every associative group-like familyF of semigroups indexed
by I holds∏F = sumF.

3. THE PRODUCT OFONE, TWO AND THREE GROUPS

The following proposition is true

(13) For every non empty groupoidG1 holds〈G1〉 is a family of semigroups indexed by{1}.

Let G1 be a non empty groupoid. Then〈G1〉 is a family of semigroups indexed by{1}.
One can prove the following proposition

(14) For every group-like non empty groupoidG1 holds〈G1〉 is a group-like family of semi-
groups indexed by{1}.

Let G1 be a group-like non empty groupoid. Then〈G1〉 is a group-like family of semigroups
indexed by{1}.

Next we state the proposition

(15) For every associative non empty groupoidG1 holds〈G1〉 is an associative family of semi-
groups indexed by{1}.

Let G1 be an associative non empty groupoid. Then〈G1〉 is an associative family of semigroups
indexed by{1}.

The following proposition is true

(16) For every commutative non empty groupoidG1 holds 〈G1〉 is a commutative family of
semigroups indexed by{1}.
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Let G1 be a commutative non empty groupoid. Then〈G1〉 is a commutative family of semi-
groups indexed by{1}.

We now state the proposition

(17) For every groupG1 holds〈G1〉 is a group-like associative family of semigroups indexed by
{1}.

Let G1 be a group. Then〈G1〉 is a group-like associative family of semigroups indexed by{1}.
The following proposition is true

(18) LetG1 be a commutative group. Then〈G1〉 is a commutative group-like associative family
of semigroups indexed by{1}.

Let G1 be a commutative group. Then〈G1〉 is a group-like associative commutative family of
semigroups indexed by{1}.

Let G1 be a non empty groupoid. One can verify that every element of∏ (the support of〈G1〉)
is finite sequence-like.

Let G1 be a non empty groupoid. One can verify that every element of∏〈G1〉 is finite sequence-
like.

Let G1 be a non empty groupoid and letx be an element ofG1. Then〈x〉 is an element of∏〈G1〉.
One can prove the following proposition

(19) For all non empty groupoidsG1, G2 holds〈G1,G2〉 is a family of semigroups indexed by
{1,2}.

Let G1, G2 be non empty groupoids. Then〈G1,G2〉 is a family of semigroups indexed by{1,2}.
We now state the proposition

(20) For all group-like non empty groupoidsG1, G2 holds〈G1,G2〉 is a group-like family of
semigroups indexed by{1,2}.

Let G1, G2 be group-like non empty groupoids. Then〈G1,G2〉 is a group-like family of semi-
groups indexed by{1,2}.

We now state the proposition

(21) For all associative non empty groupoidsG1, G2 holds〈G1,G2〉 is an associative family of
semigroups indexed by{1,2}.

Let G1, G2 be associative non empty groupoids. Then〈G1,G2〉 is an associative family of
semigroups indexed by{1,2}.

One can prove the following proposition

(22) For all commutative non empty groupoidsG1, G2 holds〈G1,G2〉 is a commutative family
of semigroups indexed by{1,2}.

Let G1, G2 be commutative non empty groupoids. Then〈G1,G2〉 is a commutative family of
semigroups indexed by{1,2}.

Next we state the proposition

(23) For all groupsG1, G2 holds 〈G1,G2〉 is a group-like associative family of semigroups
indexed by{1,2}.

Let G1, G2 be groups. Then〈G1,G2〉 is a group-like associative family of semigroups indexed
by {1,2}.

We now state the proposition

(24) LetG1, G2 be commutative groups. Then〈G1,G2〉 is a group-like associative commutative
family of semigroups indexed by{1,2}.
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Let G1, G2 be commutative groups. Then〈G1,G2〉 is a group-like associative commutative
family of semigroups indexed by{1,2}.

Let G1, G2 be non empty groupoids. One can check that every element of∏ (the support of〈G1,
G2〉) is finite sequence-like.

Let G1, G2 be non empty groupoids. Observe that every element of∏〈G1,G2〉 is finite sequence-
like.

Let G1, G2 be non empty groupoids, letx be an element ofG1, and lety be an element ofG2.
Then〈x,y〉 is an element of∏〈G1,G2〉.

Next we state the proposition

(25) For all non empty groupoidsG1, G2, G3 holds 〈G1,G2,G3〉 is a family of semigroups
indexed by{1,2,3}.

Let G1, G2, G3 be non empty groupoids. Then〈G1,G2,G3〉 is a family of semigroups indexed
by {1,2,3}.

We now state the proposition

(26) For all group-like non empty groupoidsG1, G2, G3 holds 〈G1,G2,G3〉 is a group-like
family of semigroups indexed by{1,2,3}.

Let G1, G2, G3 be group-like non empty groupoids. Then〈G1,G2,G3〉 is a group-like family of
semigroups indexed by{1,2,3}.

One can prove the following proposition

(27) Let G1, G2, G3 be associative non empty groupoids. Then〈G1,G2,G3〉 is an associative
family of semigroups indexed by{1,2,3}.

Let G1, G2, G3 be associative non empty groupoids. Then〈G1,G2,G3〉 is an associative family
of semigroups indexed by{1,2,3}.

One can prove the following proposition

(28) LetG1, G2, G3 be commutative non empty groupoids. Then〈G1,G2,G3〉 is a commutative
family of semigroups indexed by{1,2,3}.

Let G1, G2, G3 be commutative non empty groupoids. Then〈G1,G2,G3〉 is a commutative
family of semigroups indexed by{1,2,3}.

The following proposition is true

(29) For all groupsG1, G2, G3 holds〈G1,G2,G3〉 is a group-like associative family of semi-
groups indexed by{1,2,3}.

Let G1, G2, G3 be groups. Then〈G1,G2,G3〉 is a group-like associative family of semigroups
indexed by{1,2,3}.

Next we state the proposition

(30) Let G1, G2, G3 be commutative groups. Then〈G1,G2,G3〉 is a group-like associative
commutative family of semigroups indexed by{1,2,3}.

Let G1, G2, G3 be commutative groups. Then〈G1,G2,G3〉 is a group-like associative commu-
tative family of semigroups indexed by{1,2,3}.

Let G1, G2, G3 be non empty groupoids. Note that every element of∏ (the support of〈G1,G2,
G3〉) is finite sequence-like.

Let G1, G2, G3 be non empty groupoids. Note that every element of∏〈G1,G2,G3〉 is finite
sequence-like.

Let G1, G2, G3 be non empty groupoids, letx be an element ofG1, let y be an element ofG2,
and letz be an element ofG3. Then〈x,y,z〉 is an element of∏〈G1,G2,G3〉.

For simplicity, we adopt the following rules:G1, G2, G3 denote non empty groupoids,x1, x2

denote elements ofG1, y1, y2 denote elements ofG2, andz1, z2 denote elements ofG3.
Next we state three propositions:
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(31) 〈x1〉 · 〈x2〉= 〈x1 ·x2〉.

(32) 〈x1,y1〉 · 〈x2,y2〉= 〈x1 ·x2,y1 ·y2〉.

(33) 〈x1,y1,z1〉 · 〈x2,y2,z2〉= 〈x1 ·x2,y1 ·y2,z1 ·z2〉.

In the sequelG1, G2, G3 are group-like non empty groupoids.
Next we state three propositions:

(34) 1∏〈G1〉 = 〈1(G1)〉.

(35) 1∏〈G1,G2〉 = 〈1(G1),1(G2)〉.

(36) 1∏〈G1,G2,G3〉 = 〈1(G1),1(G2),1(G3)〉.

For simplicity, we adopt the following convention:G1, G2, G3 denote groups,x denotes an
element ofG1, y denotes an element ofG2, andz denotes an element ofG3.

We now state several propositions:

(37) (〈x〉 qua element of∏〈G1〉)−1 = 〈x−1〉.

(38) (〈x,y〉 qua element of∏〈G1,G2〉)−1 = 〈x−1,y−1〉.

(39) (〈x,y,z〉 qua element of∏〈G1,G2,G3〉)−1 = 〈x−1,y−1,z−1〉.

(40) Let f be a function from the carrier ofG1 into the carrier of∏〈G1〉. Suppose that for every
elementx of G1 holds f (x) = 〈x〉. Then f is a homomorphism fromG1 to ∏〈G1〉.

(41) For every homomorphismf from G1 to ∏〈G1〉 such that for every elementx of G1 holds
f (x) = 〈x〉 holds f is an isomorphism.

(42) G1 and∏〈G1〉 are isomorphic.
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[7] Czesław Bylínski. Some basic properties of sets.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
zfmisc_1.html.
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