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Summary. Quotient group, homomorphisms and isomorphisms of groups are intro-
duced. The so called isomorphism theorems are proved folloWwing [9].
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The articles([11],[[7],[[10],[[20],14],16],15],[[1],18], 3], 2], [12], 18], [10],[15],11171,[[14] [116],
and [18] provide the notation and terminology for this paper.
One can prove the following proposition

(1) LetA, B be non empty sets anidbe a function fromA into B. Thenf is one-to-one if and
only if for all elementsa, b of A such thatf (a) = f(b) holdsa="h.

Let G be a group and leA be a subgroup oB. We see that the subgroup Afis a subgroup of
G.

Let G be a group. One can verify thét}¢ is normal andg is nhormal.

For simplicity, we follow the rulesn denotes a natural numberdenotes an intege6, H, |
denote groupsA, B denote subgroups @, N denotes a normal subgroup Gf a, a;, ag, az, b
denote elements @, c denotes an element of, x denotes a set, anl, Ao denote subsets @3.

We now state several propositions:

(2) LetX be asubgroup of andx be an element oA. Supposex=a. Thenx-X =a- (X qua
subgroup ofG) andX - x = (X qua subgroup ofG) - a.

(3) Forall subgroupX, Y of Aholds(X quasubgroup of5) N (Y quasubgroup of) = XNY.
(4) a-b-al=p*"anda (b-al)=b3".
(GH a-A-A=a-Aanda-(A-A)=a-AandA-A-a=A-aandA-(A-a)=A-a

(7) LetG be agroup anéy be a subset 0B. If A; = {[a,b] : aranges over elements & b
ranges over elements &f}, thenG® = gr(A;).

(8) LetG be a strict group anB be a strict subgroup db. ThenGF is a subgroup oB if and
only if for all elementsa, b of G holds[a,b] € B.

(9) For every normal subgroup of G such thatN is a subgroup oB holdsN is a normal
subgroup oB.

1 The proposition (5) has been removed.
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Let us considefs, B and letM be a normal subgroup @&. Let us assume that the groupoid of
M is a subgroup oB. The functor(M)g yields a strict normal subgroup Bfand is defined by:

(Def. 1) (M)g = the groupoid oM.
We now state the proposition
(10) BNNis anormal subgroup @ andNNB is a normal subgroup @.

Let us conside6, B and letN be a normal subgroup &. ThenBNN is a strict normal subgroup
of B.

Let us conside6, letN be a normal subgroup @, and let us considds. ThenNNB is a strict
normal subgroup oB.

Let G be a non empty 1-sorted structure. Let us observeGhattrivial if and only if:

(Def. 2) There existg such that the carrier @b = {x}.

Let us observe that there exists a group which is trivial.
Next we state three propositions:

(11) {1}gis trivial.
(12) Gistrivial iff ord(G) = 1 andG is finite.
(13) For every strict groufs such thatG is trivial holds{1}¢ = G.
Let us conside6, N. The functor Cosefd yielding a set is defined as follows:
(Def. 3) Cosetdl = the left cosets oN.

Let us conside6, N. Observe that Cosdtsis non empty.
We now state several propositions:

(14) For every normal subgroipof G holds Cosethl = the left cosets ol and Cosethdl = the
right cosets ofN.

(15) For every normal subgrouy of G such thaix € CosetdN there exist@ such thakk =a-N
andx=N-a.

(16) For every normal subgroly of G holdsa: N € CosetdN andN -a € CosetdN.
(17) For every normal subgrouy of G such thaix € Coset$N holdsx is a subset o6.

(18) For every normal subgrouy of G such thatA; € CosetdN andA; € CosetdN holdsA; -
Ay € CosetdN.

Let us considefs and letN be a normal subgroup @. The functor CosON yields a binary
operation on Cosel¢$ and is defined as follows:

(Def. 4) For all elementd/, W, of CosetdN and for allA;, A such thaivy = A; andWs = A; holds
(COSOFN)(W;]_7 V\/z) = Al . A2.

Let us conside6 and letN be a normal subgroup @. The functor®/y yields a groupoid and
is defined by:

(Def. 5) ©/y = (CosetN, CosOmN).

Let us consideG and letN be a normal subgroup @. Observe thaf/y is strict and non
empty.
Next we state two propositions:

(ZZE] For every normal subgroup of G holds the carrier of /y = CosetsN.

2 The propositions (19)—(21) have been removed.
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(23) For every normal subgrody of G holds the multiplication of /y = CosOpN.

In the sequeN denotes a normal subgroup@fandS, Ty, T, denote elements &t/ y.
Let us conside6, N, S The functor®Syields a subset b and is defined as follows:

(Def.6) @s=9
The following two propositions are true:

(24) For every normal subgroipof G and for all element3y, T, of ©/y holds(@Ty) - (@T,) =
Ty To.

(25) OTy T =(OTy) (OTy).

Let us conside6 and letN be a normal subgroup @. One can verify tha®/y is associative
and group-like.
We now state a number of propositions:

(26) For every normal subgrouy of G and for every elemer of ©/ there exista such that
S=a-NandS=N-a.

(27) N-ais an element of /5 anda- N is an element of /5y andN is an element of /.

(28) For every normal subgrouy of G holdsx € ©/y iff there existsa such that = a-N and
x=N-a

(29) For every normal subgrodpof G holds &, = N.

(30) For every normal subgroipof G and for every elemer@of ©/y such thaS= a-N holds
Sl=a?lN.

(31) For every normal subgroipof G such that the left cosets dfis finite holds®/y is finite.
(32) For every normal subgrouyp of G holds Ord®/y) = |e : N|.

(33) For every normal subgrouyp of G such that the left cosets bfis finite holds ord®/y) =
|. . N|N

(34) For every strict normal subgrody of G such thaiM is a subgroup oB holdsE‘/(M)B is a
subgroup of /.

(35) LetN, M be strict normal subgroups &. If M is a subgroup o, thenN/(M)N is a normal
subgroup of* /.

(36) LetG be a strict group anil be a strict normal subgroup & Then®/y is a commutative
group if and only ifG® is a subgroup oN.

Let us considelG, H. A function from the carrier ofs into the carrier ofH is said to be a
homomorphism fron to H if:

(Def. 7) It(a-b) =it(a)-it(b).

In the sequeg, h are homomorphisms froi® to H, g; is a homomorphism frori to G, and
h; is a homomorphism froral to l.
We now state several propositions:

(40F 9(lc) = 1u.
(41) gl@ ) =g@ "
(42) 9(a°) =g(a)*®.

3 The propositions (37)—(39) have been removed.
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(43) 9((ab]) = [g(a),g(b)]-

(44) 9(las, &, as)) = [9(a1), 9(22), 9(2g)]-

(45) g@") =g(@)"

(46) g(@)=g(a)"

(47)  iGhe carrier ofc IS @ homomorphism frors to G.
(48) hy-hisahomomorphism frons tol.

Let us conside6, H, 1, h, h;. Thenh; - his a homomorphism frors to I.

Let us conside6, H, g. Then rngy is a subset oH.

Let us considefG, H. The functorG — {1}y yields a homomorphism fror® to H and is
defined by:

(Def. 8) Forevenaholds(G — {1}n)(a) = 14.
Next we state the proposition
(49) hy-(G— {1}H) =G— {l}| and(H — {l}|) -h=G— {1}|.

Let us considefs and letN be a normal subgroup @&. The canonical homomorphism onto
cosets oN yields a homomorphism froi6 to ©/y and is defined by:

(Def. 9) For evenya holds (the canonical homomorphism onto cosets dh) = a- N.
Let us conside6, H, g. The functor Kegyields a strict subgroup @ and is defined as follows:
(Def. 10) The carrier of Keg={a:g(a) = 1n}.

Let us conside6, H, g. Observe that Kegis normal.
The following propositions are true:

(50) acKerhiff h(a) =14.
(51) For all strict group$, H holds KefG — {1}y) = G.

(52) For every strict normal subgrouyp of G holds Ker(the canonical homomorphism onto
cosets oN) = N.

Let us conside6, H, g. The functor Ing yields a strict subgroup d¢f and is defined as follows:
(Def. 11) The carrier of Iy = g°(the carrier ofG).

Next we state a number of propositions:

(53) rngg = the carrier of Iny.

(54) x e Imgiff there existsa such thak = g(a).
(55) Img=gr(rngg).

(56) IM(G— {L}n) = {L}n.

(57) For every normal subgrouy of G holds Im (the canonical homomorphism onto cosets of
N) = S/n.

(58) his ahomomorphism frons to Imh.
(59) If Gisfinite, then Ingis finite.

(60) If Gis a commutative group, then lgris commutative.
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(61) OrdIimg) < Ord(G).
(62) If Gis finite, then ordimg) < ord(G).
Let us conside6, H, h. We say thah is monomorphism if and only if:
(Def. 12) his one-to-one.

We introduceh is a monomorphism as a synonymtoifs monomorphism. We say thhatis epimor-
phism if and only if:

(Def. 13) rndh = the carrier oH.

We introduceh is an epimorphism as a synonymtois epimorphism.
The following propositions are true:

(63) If his a monomorphism ande Imh, thenh(h=1(c)) = c.

(64) If his a monomorphism, them*(h(a)) = a.

(65) If his a monomorphism, them* is a homomorphism from Iito G.
(66) his a monomorphism iff Keln = {1}¢.

(67) For every strict groupl and for every homomorphisinfrom G to H holdsh is an epimor-
phism iff Inh=H.

(68) LetH be a strict group antd be a homomorphism fror® to H. Supposén is an epimor-
phism. Letc be an element dfi. Then there exista such that(a) = c.

(69) For every normal subgrouy of G holds the canonical homomorphism onto cosets @&
an epimorphism.

Let us conside6, H, h. We say thah is isomorphism if and only if:
(Def. 14) his an epimorphism and a monomorphism.

We introduceh is an isomorphism as a synonymtofs isomorphism.
The following propositions are true:

(70) his anisomorphism iff rng = the carrier oH andh is one-to-one.
(71) Ifhis anisomorphism, then dom= the carrier ofG and rnch = the carrier ofH.

(72) LetH be a strict group antd be a homomorphism fror® to H. If his an isomorphism,
thenh~! is a homomorphism froril to G.

(73) Ifhis an isomorphism ang; = h™1, theng; is an isomorphism.
(74) If his anisomorphism anld; is an isomorphism, thelm - h is an isomorphism.

(75) For every groufs holds the canonical homomorphism onto coset§$1dt is an isomor-
phism.

Let us conside6, H. We say that andH are isomorphic if and only if:
(Def. 15) There existh which is an isomorphism.

Let us note that the predicafandH are isomorphic is reflexive.
One can prove the following propositions:

(77@ For all strict groups5, H such thats andH are isomorphic holdsl andG are isomorphic.

4 The proposition (76) has been removed.
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(78) If GandH are isomorphic andl andl are isomorphic, the® andl are isomorphic.
(79) If his a monomorphism, the@ and Imh are isomorphic.

(80) For all strict groupss, H such thaiG is trivial andH is trivial holdsG andH are isomor-
phic.

(81) {1}c and{1}y are isomorphic.

82) For every strict grou holdsG and® /4, .. are isomorphic anfi/;1,.. andG are isomor-
e {I}e
phic.

(83) For every groufs hoIdsG/QG is trivial.

(84) LetG, H be strict groups ant be a homomorphism fror® to H. If G andH are isomor-
phic, then OrdG) = Ord(H).

(85) LetG, H be strict groups. Suppo$gandH are isomorphic bu6 is finite orH is finite.
ThenG is finite andH is finite.

(86) For all strict groupss, H such thatG andH are isomorphic bu6 is finite orH is finite
holds ordG) = ord(H).

(87) For all strict groupss, H such thatG andH are isomorphic ané is trivial holdsH is
trivial.

(88) LetG, H be strict groups. Suppog&andH are isomorphic bu is trivial or H is trivial.
ThenG is trivial andH is trivial.

(89) LetG, H be strict groups antt be a homomorphism frors to H. SupposeG andH
are isomorphic buG is a commutative group dd is a commutative group. The@ is a
commutative group and is a commutative group.

(90) G/Kerg and Img are isomorphic and IrglandG/Kerg are isomorphic.

(91) There exists a homomorphigmfrom G/Kerg to Img such thath is an isomorphism and
g = h-the canonical homomorphism onto cosets of ¢gler

(92) LetM be a strict normal subgroup & andJ be a strict normal subgroup 8f/y. Suppose
J="/(m), andM is a subgroup oN. Then(®/w) /5 and® /y are isomorphic.

(93) For every strict normal subgrodpof G holds BN /. and®/ g, are isomorphic.
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