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The articles [11], [7], [19], [20], [4], [6], [5], [1], [8], [3], [2], [12], [13], [10], [15], [17], [14], [16],
and [18] provide the notation and terminology for this paper.

One can prove the following proposition

(1) Let A, B be non empty sets andf be a function fromA into B. Then f is one-to-one if and
only if for all elementsa, b of A such thatf (a) = f (b) holdsa = b.

Let G be a group and letA be a subgroup ofG. We see that the subgroup ofA is a subgroup of
G.

Let G be a group. One can verify that{1}G is normal andΩG is normal.
For simplicity, we follow the rules:n denotes a natural number,i denotes an integer,G, H, I

denote groups,A, B denote subgroups ofG, N denotes a normal subgroup ofG, a, a1, a2, a3, b
denote elements ofG, c denotes an element ofH, x denotes a set, andA1, A2 denote subsets ofG.

We now state several propositions:

(2) LetX be a subgroup ofA andx be an element ofA. Supposex = a. Thenx·X = a· (X qua
subgroup ofG) andX ·x = (X qua subgroup ofG) ·a.

(3) For all subgroupsX,Y of A holds(X qua subgroup ofG)∩(Y qua subgroup ofG) = X∩Y.

(4) a·b·a−1 = ba−1
anda· (b·a−1) = ba−1

.

(6)1 a·A·A = a·A anda· (A·A) = a·A andA·A·a = A·a andA· (A·a) = A·a.

(7) Let G be a group andA1 be a subset ofG. If A1 = {[a,b] : a ranges over elements ofG, b
ranges over elements ofG}, thenGc = gr(A1).

(8) Let G be a strict group andB be a strict subgroup ofG. ThenGc is a subgroup ofB if and
only if for all elementsa, b of G holds[a,b] ∈ B.

(9) For every normal subgroupN of G such thatN is a subgroup ofB holdsN is a normal
subgroup ofB.

1 The proposition (5) has been removed.
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Let us considerG, B and letM be a normal subgroup ofG. Let us assume that the groupoid of
M is a subgroup ofB. The functor(M)B yields a strict normal subgroup ofB and is defined by:

(Def. 1) (M)B = the groupoid ofM.

We now state the proposition

(10) B∩N is a normal subgroup ofB andN∩B is a normal subgroup ofB.

Let us considerG, B and letN be a normal subgroup ofG. ThenB∩N is a strict normal subgroup
of B.

Let us considerG, let N be a normal subgroup ofG, and let us considerB. ThenN∩B is a strict
normal subgroup ofB.

Let G be a non empty 1-sorted structure. Let us observe thatG is trivial if and only if:

(Def. 2) There existsx such that the carrier ofG = {x}.

Let us observe that there exists a group which is trivial.
Next we state three propositions:

(11) {1}G is trivial.

(12) G is trivial iff ord(G) = 1 andG is finite.

(13) For every strict groupG such thatG is trivial holds{1}G = G.

Let us considerG, N. The functor CosetsN yielding a set is defined as follows:

(Def. 3) CosetsN = the left cosets ofN.

Let us considerG, N. Observe that CosetsN is non empty.
We now state several propositions:

(14) For every normal subgroupN of G holds CosetsN = the left cosets ofN and CosetsN = the
right cosets ofN.

(15) For every normal subgroupN of G such thatx∈ CosetsN there existsa such thatx = a·N
andx = N ·a.

(16) For every normal subgroupN of G holdsa·N ∈ CosetsN andN ·a∈ CosetsN.

(17) For every normal subgroupN of G such thatx∈ CosetsN holdsx is a subset ofG.

(18) For every normal subgroupN of G such thatA1 ∈ CosetsN andA2 ∈ CosetsN holdsA1 ·
A2 ∈ CosetsN.

Let us considerG and letN be a normal subgroup ofG. The functor CosOpN yields a binary
operation on CosetsN and is defined as follows:

(Def. 4) For all elementsW1, W2 of CosetsN and for allA1, A2 such thatW1 = A1 andW2 = A2 holds
(CosOpN)(W1, W2) = A1 ·A2.

Let us considerG and letN be a normal subgroup ofG. The functorG/N yields a groupoid and
is defined by:

(Def. 5) G/N = 〈CosetsN,CosOpN〉.

Let us considerG and letN be a normal subgroup ofG. Observe thatG/N is strict and non
empty.

Next we state two propositions:

(22)2 For every normal subgroupN of G holds the carrier ofG/N = CosetsN.

2 The propositions (19)–(21) have been removed.
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(23) For every normal subgroupN of G holds the multiplication ofG/N = CosOpN.

In the sequelN denotes a normal subgroup ofG andS, T1, T2 denote elements ofG/N.
Let us considerG, N, S. The functor@Syields a subset ofG and is defined as follows:

(Def. 6) @S= S.

The following two propositions are true:

(24) For every normal subgroupN of G and for all elementsT1, T2 of G/N holds(@T1) ·(@T2) =
T1 ·T2.

(25) @T1 ·T2 = (@T1) · (@T2).

Let us considerG and letN be a normal subgroup ofG. One can verify thatG/N is associative
and group-like.

We now state a number of propositions:

(26) For every normal subgroupN of G and for every elementSof G/N there existsa such that
S= a·N andS= N ·a.

(27) N ·a is an element ofG/N anda·N is an element ofG/N andN is an element ofG/N.

(28) For every normal subgroupN of G holdsx∈ G/N iff there existsa such thatx = a ·N and
x = N ·a.

(29) For every normal subgroupN of G holds 1G/N
= N.

(30) For every normal subgroupN of G and for every elementSof G/N such thatS= a·N holds
S−1 = a−1 ·N.

(31) For every normal subgroupN of G such that the left cosets ofN is finite holdsG/N is finite.

(32) For every normal subgroupN of G holds Ord(G/N) = |• : N|.

(33) For every normal subgroupN of G such that the left cosets ofN is finite holds ord(G/N) =
|• : N|N.

(34) For every strict normal subgroupM of G such thatM is a subgroup ofB holdsB/(M)B
is a

subgroup ofG/M.

(35) LetN, M be strict normal subgroups ofG. If M is a subgroup ofN, thenN/(M)N
is a normal

subgroup ofG/M.

(36) LetG be a strict group andN be a strict normal subgroup ofG. ThenG/N is a commutative
group if and only ifGc is a subgroup ofN.

Let us considerG, H. A function from the carrier ofG into the carrier ofH is said to be a
homomorphism fromG to H if:

(Def. 7) It(a·b) = it(a) · it(b).

In the sequelg, h are homomorphisms fromG to H, g1 is a homomorphism fromH to G, and
h1 is a homomorphism fromH to I .

We now state several propositions:

(40)3 g(1G) = 1H .

(41) g(a−1) = g(a)−1.

(42) g(ab) = g(a)g(b).

3 The propositions (37)–(39) have been removed.
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(43) g([a,b]) = [g(a),g(b)].

(44) g([a1, a2, a3]) = [g(a1), g(a2), g(a3)].

(45) g(an) = g(a)n.

(46) g(ai) = g(a)i .

(47) idthe carrier ofG is a homomorphism fromG to G.

(48) h1 ·h is a homomorphism fromG to I .

Let us considerG, H, I , h, h1. Thenh1 ·h is a homomorphism fromG to I .
Let us considerG, H, g. Then rngg is a subset ofH.
Let us considerG, H. The functorG → {1}H yields a homomorphism fromG to H and is

defined by:

(Def. 8) For everya holds(G→{1}H)(a) = 1H .

Next we state the proposition

(49) h1 · (G→{1}H) = G→{1}I and(H →{1}I ) ·h = G→{1}I .

Let us considerG and letN be a normal subgroup ofG. The canonical homomorphism onto
cosets ofN yields a homomorphism fromG to G/N and is defined by:

(Def. 9) For everya holds (the canonical homomorphism onto cosets ofN)(a) = a·N.

Let us considerG, H, g. The functor Kerg yields a strict subgroup ofG and is defined as follows:

(Def. 10) The carrier of Kerg = {a : g(a) = 1H}.

Let us considerG, H, g. Observe that Kerg is normal.
The following propositions are true:

(50) a∈ Kerh iff h(a) = 1H .

(51) For all strict groupsG, H holds Ker(G→{1}H) = G.

(52) For every strict normal subgroupN of G holds Ker(the canonical homomorphism onto
cosets ofN) = N.

Let us considerG, H, g. The functor Img yields a strict subgroup ofH and is defined as follows:

(Def. 11) The carrier of Img = g◦(the carrier ofG).

Next we state a number of propositions:

(53) rngg = the carrier of Img.

(54) x∈ Img iff there existsa such thatx = g(a).

(55) Img = gr(rngg).

(56) Im(G→{1}H) = {1}H .

(57) For every normal subgroupN of G holds Im(the canonical homomorphism onto cosets of
N) = G/N.

(58) h is a homomorphism fromG to Imh.

(59) If G is finite, then Img is finite.

(60) If G is a commutative group, then Img is commutative.
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(61) Ord(Img)≤ Ord(G).

(62) If G is finite, then ord(Img)≤ ord(G).

Let us considerG, H, h. We say thath is monomorphism if and only if:

(Def. 12) h is one-to-one.

We introduceh is a monomorphism as a synonym ofh is monomorphism. We say thath is epimor-
phism if and only if:

(Def. 13) rngh = the carrier ofH.

We introduceh is an epimorphism as a synonym ofh is epimorphism.
The following propositions are true:

(63) If h is a monomorphism andc∈ Imh, thenh(h−1(c)) = c.

(64) If h is a monomorphism, thenh−1(h(a)) = a.

(65) If h is a monomorphism, thenh−1 is a homomorphism from Imh to G.

(66) h is a monomorphism iff Kerh = {1}G.

(67) For every strict groupH and for every homomorphismh from G to H holdsh is an epimor-
phism iff Imh = H.

(68) LetH be a strict group andh be a homomorphism fromG to H. Supposeh is an epimor-
phism. Letc be an element ofH. Then there existsa such thath(a) = c.

(69) For every normal subgroupN of G holds the canonical homomorphism onto cosets ofN is
an epimorphism.

Let us considerG, H, h. We say thath is isomorphism if and only if:

(Def. 14) h is an epimorphism and a monomorphism.

We introduceh is an isomorphism as a synonym ofh is isomorphism.
The following propositions are true:

(70) h is an isomorphism iff rngh = the carrier ofH andh is one-to-one.

(71) If h is an isomorphism, then domh = the carrier ofG and rngh = the carrier ofH.

(72) LetH be a strict group andh be a homomorphism fromG to H. If h is an isomorphism,
thenh−1 is a homomorphism fromH to G.

(73) If h is an isomorphism andg1 = h−1, theng1 is an isomorphism.

(74) If h is an isomorphism andh1 is an isomorphism, thenh1 ·h is an isomorphism.

(75) For every groupG holds the canonical homomorphism onto cosets of{1}G is an isomor-
phism.

Let us considerG, H. We say thatG andH are isomorphic if and only if:

(Def. 15) There existsh which is an isomorphism.

Let us note that the predicateG andH are isomorphic is reflexive.
One can prove the following propositions:

(77)4 For all strict groupsG, H such thatG andH are isomorphic holdsH andG are isomorphic.

4 The proposition (76) has been removed.
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(78) If G andH are isomorphic andH andI are isomorphic, thenG andI are isomorphic.

(79) If h is a monomorphism, thenG and Imh are isomorphic.

(80) For all strict groupsG, H such thatG is trivial andH is trivial holdsG andH are isomor-
phic.

(81) {1}G and{1}H are isomorphic.

(82) For every strict groupG holdsG andG/{1}G
are isomorphic andG/{1}G

andG are isomor-
phic.

(83) For every groupG holdsG/ΩG is trivial.

(84) LetG, H be strict groups andh be a homomorphism fromG to H. If G andH are isomor-
phic, then Ord(G) = Ord(H).

(85) LetG, H be strict groups. SupposeG andH are isomorphic butG is finite orH is finite.
ThenG is finite andH is finite.

(86) For all strict groupsG, H such thatG andH are isomorphic butG is finite or H is finite
holds ord(G) = ord(H).

(87) For all strict groupsG, H such thatG andH are isomorphic andG is trivial holdsH is
trivial.

(88) LetG, H be strict groups. SupposeG andH are isomorphic butG is trivial or H is trivial.
ThenG is trivial andH is trivial.

(89) Let G, H be strict groups andh be a homomorphism fromG to H. SupposeG andH
are isomorphic butG is a commutative group orH is a commutative group. ThenG is a
commutative group andH is a commutative group.

(90) G/Kerg and Img are isomorphic and Img andG/Kerg are isomorphic.

(91) There exists a homomorphismh from G/Kerg to Img such thath is an isomorphism and
g = h· the canonical homomorphism onto cosets of Kerg.

(92) LetM be a strict normal subgroup ofG andJ be a strict normal subgroup ofG/M. Suppose
J = N/(M)N

andM is a subgroup ofN. Then(G/M)/J andG/N are isomorphic.

(93) For every strict normal subgroupN of G holds(BtN)/(N)BtN
andB/(B∩N) are isomorphic.
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