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Lattice of Subgroups of a Group. Frattini Subgroup
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Summary. We define the notion of a subgroup generated by a set of element of a
group and two closely connected notions. Namely lattice of subgroups and Frattini subgroup.
The operations in the lattice are the intersection of subgroups (introduded in [21]) and multi-
plication of subgroups which result is defined as a subgroup generated by a sum of carriers of
the two subgroups. In order to define Frattini subgroup and to prove theorems concerning it
we introduce notion of maximal subgroup and non-generating element of the groupl(see [9,
page 30]). Frattini subgroup is defined aslih [9] as an intersection of all maximal subgroups.
We show that an element of the group belongs to Frattini subgroup of the group if and only if
it is a non-generating element. We also prove theorems that should be proléd in [1] but are
not.

MML Identifier: GROUP_ 4.

WWW: http://mizar.org/JFM/Vol2/group_4.html

The articles|[13],18],[12R],[116],12],[3], [[14],114],[123],[16],17],[[4],[11B],120],15],[115],[[10],
[211, [17], [24], [18], [12], and[[1] provide the notation and terminology for this paper.

Let D be a non empty set, I€ be a finite sequence of elementsiyfand letX be a set. Then
F — X is a finite sequence of elementsbf

The schem&eetSbgExieals with a group and a unary predicatg, and states that:

There exists a strict subgrotipof 4 such that the carrier ¢ = N{A; Aranges over
subsets 0f7 : V. syrict subgroup otz (A= the carrier oK A P[K])}
provided the following condition is satisfied:

e There exists a strict subgrodpof 2 such thatP[H].

For simplicity, we adopt the following conventiolX is a setk, n are natural numbers, iy, i,
i3, ] are integersG is a groupa, b, c are elements o, A, B are subsets dB, H, H;, Hp, H3 are
subgroups o5, his an element oH, F, F1, F, are finite sequences of elements of the carrigs,of
andl, I, I, are finite sequences of elementsZof

The schem&ubgrSepleals with a groupd and a unary predicatg, and states that:

There existsX such thatX C SubGr4 and for every strict subgroud of 4 holds
H e X iff P[H]
for all values of the parameters.
Let us considet. The functor@i yielding an element of. is defined by:

(Def. 2] @i=i.
We now state four propositions:
(3F 1f a=h, thena" = hn.
(4) Ifa=h,thena =Hh'.

1 The definition (Def. 1) has been removed.
2 The propositions (1) and (2) have been removed.
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(5) IfacH,thena"eH.
(6) IfacH,thena eH.

Let G be a non empty groupoid and [Etbe a finite sequence of elements of the carrieGof
The functor] F yielding an element of is defined as follows:

(Def. 3) [1F = the multiplication ofG® F.

The following propositions are true:

(Sﬂ Let G be an associative unital non empty groupoid &pdr be finite sequences of ele-
ments of the carrier db. Then[((F1 "~ R) =[Fi-[1F.

(9) LetG be a unital non empty groupoi#, be a finite sequence of elements of the carrier of
G, anda be an element dB. Then[](F "~ (a)) =[F -a.

(10) LetG be an associative unital non empty groupdidhe a finite sequence of elements of
the carrier ofG, anda be an element 0. Then[]({(a) " F) =a-[]F.

(11) For every unital non empty groupo@&holds[](€une carrier ofc)) = 1G-

(12) For every non empty groupoféland for every elemerat of G holds[](a) = a.

(13) For every non empty groupofé and for all elements, b of G holds[](a,b) = a-h.
(14) M{ab,c)=a-b-cand[](a,b,c)=a-(b-c).

15 MNn—a=a"

(16) NF—{lc})=1F

(17) IflenF, =lenk, and for everk such thak € domF; holdsF,((lenF, —k) + 1) = (FL)k) ™1,
then[F = (MF) .

(18) If Gis a commutative group, then for every permutatiaf domF; such that =F; - P
holds[F. = [F.

(19) If Gis a commutative group arfe is one-to-one anél is one-to-one and rrig = rngk,

then[FL =k

(20) If Gis a commutative group and I€n= lenF; and ler- = lenF, and for everyk such that
k € domF holdsF (k) = (F1)k- (F2)k, then[TF = F1- [1F-

(21) IfrngF C H, then[]F € H.

Let us conside6, |, F. The functorF' yields a finite sequence of elements of the carrie®of
and is defined by:

(Def. 4) ler(F') = lenF and for evenk such thak € domF holdsF' (k) = (F)®®.
Next we state several propositions:
(25E| If lenF; = lenl; and ler, = lenly, then(FL ™ )1 12 = (F1) ~ Ryl2,
(26) IfrngF C H, then[](F') € H.
(27) (E(the carrier ofG))sZ =0

28) () =@).

3 The proposition (7) has been removed.
4 The propositions (22)—(24) have been removed.
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(29) (ab)(®®) = (al,bi).

(30) (a,b,c)(+%2) = (a1 iz, &),
(31) FlenF—(@1) _ g

(32) F'enF=(90) _|enF s 1.

(33) Iflenl =n,then(n— 1g)' =n— 1c.

Let us considefs, A. The functor gfA) yields a strict subgroup d& and is defined by the
conditions (Def. 5).

(Def. 5)()) AC the carrier of gfA), and

(i) for every strict subgroupd of G such thatA C the carrier oH holds gfA) is a subgroup
of H.

One can prove the following propositions:

(37E] ac gr(A) iff there existF, | such that lef = lenl and rng= C Aand[](F') =a.
(38) IfacA thenacgr(A).
(39)  9(Bine carrier o) = {1}G-
(40) For every strict subgroup of G holds g{H) = H.
(41) If AC B, then gfA) is a subgroup of dB).
(42) 9grfANB) is a subgroup of dA) Ngr(B).
(43) The carrier of giA) = N{B: Vy: strict subgroup oG (B =the carrieroH A ACH)}.
(44)  giA) = gr(A\ {1c}).
Let us conside6, a. We say that is generating if and only if:

(Def. 6) Itis not true that for even such that gfA) = the groupoid ofG holds gfA\ {a}) = the
groupoid ofG.

One can prove the following proposition
(46ff] 1 is non generating.

Let us consideiG, H. We say thatH is maximal if and only if the conditions (Def. 7) are
satisfied.

(Def. 7)()) The groupoid oH # the groupoid of5, and

(i)  for every strict subgroug of G such that the groupoid ¢ £ K andH is a subgroup of
K holdsK = the groupoid ofG.

Next we state the proposition

(48 Let G be a strict groupH be a strict subgroup db, anda be an element o&. If H is
maximal anda ¢ H, then g(H U {a}) = G.

Let G be a group. The functap(G) yielding a strict subgroup d& is defined as follows:

5 The propositions (34)—(36) have been removed.
6 The proposition (45) has been removed.
" The proposition (47) has been removed.
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(Def. 8)(i)  The carrier ofp(G) = N{A; A ranges over subsets G \/y: syict subgroup o (A = the
carrier ofH A His maximal} if there exists a strict subgroup &fwhich is maximal,

(i)  »(G) = the groupoid ofG, otherwise.
Next we state several propositions:

(52@ Let G be a group. Suppose there exists a strict subgroup which is maximal. Then
a€ ®(G) if and only if for every strict subgroupl of G such thaH is maximal holdsa € H.

(53) LetGbe a group and be an element db. If for every strict subgroupi of G holdsH is
not maximal, thera € d(G).

(54) For every grouf® and for every strict subgroug of G such thaH is maximal holdsp(G)
is a subgroup oH.

(55) For every strict grou holds the carrier ofp(G) = {a;a ranges over elements 6 ais
non generating

(56) Forevery strict grou@ and for every elemertof G holdsa € ¢(G) iff ais non generating.
Let us conside6, H1, Ho. The functorH; - Hy yielding a subset o6 is defined by:
(Def. 9) Hy-Hp,=H;-Ha.
Next we state several propositions:
(57) Hi-Hz =Hi-HzandH;-Hz = Hy-Hz andHy - Hy = Hy - Ha.
(58) H-H=H.
(59) (Hi-Hp)-Hg=Hi-(Ha-Ha).
(60) (a-Hi)-Ho=a-(H1-Hy).

(62)

(
(

(61) (Hi-Hz)-a=Hi-(Hz-a).
(A-Hy)-Hz = A- (Hy-Hy).
(

(63) (Hi-Hz)-A=Hi-(Hz-A).
(64) For all strict normal subgroupd;, N2 of G holdsNy - N2 = Np - Nj.
(65) If Gis a commutative group, thehy - Ho = Hy - Hy.
Let us conside6, Hi, Hy. The functorH, LI H, yielding a strict subgroup d& is defined by:
(Def. 10) HjUH2 =gr(HiUHy).
Next we state a number of propositions:
(67 ac Hy UH, iff there existF, | such that lei = lenl and rng= C H; UHz anda = [](F").
(68) HiliHz = gr(Hy-Hy).
(69) If Hy-Hy = Hy-Hj, then the carrier oH; LIH, = Hy - Ha.
(70) If Gis a commutative group, then the carriettyfLiH, = Hy - Ha.
(71) For all strict normal subgroupé, N2 of G holds the carrier oy LIN2 = Ng - No.

(72) For all strict normal subgroupsi, N> of G holdsN; LIN» is a normal subgroup d@&.

8 The propositions (49)-(51) have been removed.
9 The proposition (66) has been removed.
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For every strict subgroup of G holdsH LIH = H.

Hi U H; =HaUH;.

(H1LIH2) LIH3 = Hy L (Ha LU H3).

For every strict subgroup of G holds{1}cUH =H andH U {1} =H.
QgUH =Qg andH LIQg = Qg.

H; is a subgroup of; LIH, andH> is a subgroup o1 LI H>.

For every strict subgroug, of G holdsHjs is a subgroup oHy iff Hy LIH> = Ha.
If Hy is a subgroup oHy, thenH; is a subgroup oH; LI Hs.

LetH3 be a strict subgroup db. SupposeH; is a subgroup oH3 andH; is a subgroup of

Hs. ThenH1 LIH> is a subgroup ofs.

(82)

For all strict subgroupblz, H» of G such thatH; is a subgroup o, holdsH; LIH3 is a

subgroup oH, LI H3.

(83)
(84)
(85)
(86)

HiNHz is a subgroup oH; LIHa.

For every strict subgroug, of G holdsH; NH, LIH, = Ho.

For every strict subgroug; of G holdsH; N (H1UH2) = H;.

For all strict subgroupd, Hz of G holdsH1 LIH> = Hy iff Hi NHy = Hs.

In the seques;, S, denote elements of SubGr
Let us conside6. The functor SubJoi@ yields a binary operation on SubGrand is defined

by:

(Def. 11) For allS;, $, Hy, Hz such that§; = H; andS; = Hy holds(SubJoirG) (S, &) = Hi U Ha.

Let us conside6. The functor SubMed yields a binary operation on SubGrand is defined

by:

(Def. 12) For allS;, S, Hi, Hz such thats; = H; andS, = H holds(SubMee6) (S, ) = HiNHa.

Let G be a group. The functdtg yielding a strict lattice is defined by:

(Def. 13) Lg = (SubGIG, SubJoirG, SubMeeG).

Next we state three propositions:

(92@ For every groufs holds the carrier of.g = SubGIG.

(93)
(94)

For every grougs holds the join operation df.g = SubJoirG.

For every grous holds the meet operation iz = SubMeeG.

Let G be a group. Note thdig is lower-bounded and upper-bounded.
One can prove the following propositions:

(98] For every groufs holds Ly, = {1}c.

(99)

For every grous holds Ty = Qg.

In the sequek, |, m, n are natural numbers.
One can prove the following propositions:

10 The propositions (87)-(91) have been removed.
11 The propositions (95)—(97) have been removed.
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(100) nmod2=0ornmod2= 1.

(101) For all natural numbeks n holdsk-nmodk = 0.
(102) Ifk> 1, then 1mok = 1.
(103) Ifkmodn =0 andl =k—m-n, thenl modn=0.

In the sequek, n, | denote natural numbers.

We now state four propositions:

(104) Ifn#£0andkmodn=0 andl < n, then(k+1)modn=1.

(105) Ifkmodn =0, then(k+1)modn = | modn.
(106) Ifn# 0andkmodn=0, then(k+1)+n= (k=n)+ (I +n).
(107) Ifk#0,thenk-n=k=n.
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