Lattice of Subgroups of a Group. Frattini Subgroup

Wojciech A. Trybulec Warsaw University

Summary. We define the notion of a subgroup generated by a set of element of a group and two closely connected notions. Namely lattice of subgroups and Frattini subgroup. The operations in the lattice are the intersection of subgroups (introduced in [21]) and multiplication of subgroups which result is defined as a subgroup generated by a sum of carriers of the two subgroups. In order to define Frattini subgroup and to prove theorems concerning it we introduce notion of maximal subgroup and non-generating element of the group (see [9, page 30]). Frattini subgroup is defined as in [9] as an intersection of all maximal subgroups. We show that an element of the group belongs to Frattini subgroup of the group if and only if it is a non-generating element. We also prove theorems that should be proved in [1] but are not.

MML Identifier: GROUP_4.

WWW: http://mizar.org/JFM/Vol2/group_4.html

The articles [13], [8], [22], [16], [2], [3], [14], [11], [23], [6], [7], [4], [19], [20], [5], [15], [10], [21], [17], [24], [18], [12], and [1] provide the notation and terminology for this paper.

Let D be a non empty set, let F be a finite sequence of elements of D, and let X be a set. Then F - X is a finite sequence of elements of D.

The scheme MeetSbgEx deals with a group $\mathcal A$ and a unary predicate $\mathcal P$, and states that: There exists a strict subgroup H of $\mathcal A$ such that the carrier of $H = \bigcap \{A; A \text{ ranges over subsets of } \mathcal A: \bigvee_{K: \text{ strict subgroup of } \mathcal A} (A = \text{the carrier of } K \land \mathcal P[K])\}$ provided the following condition is satisfied:

• There exists a strict subgroup H of \mathcal{A} such that $\mathcal{P}[H]$.

For simplicity, we adopt the following convention: X is a set, k, n are natural numbers, i, i_1 , i_2 , i_3 , j are integers, G is a group, a, b, c are elements of G, A, B are subsets of G, H, H_1 , H_2 , H_3 are subgroups of G, h is an element of H, F, F_1 , F_2 are finite sequences of elements of the carrier of G, and G, G, are finite sequences of elements of G.

The scheme SubgrSep deals with a group $\mathcal A$ and a unary predicate $\mathcal P$, and states that: There exists X such that $X \subseteq SubGr \mathcal A$ and for every strict subgroup H of $\mathcal A$ holds $H \in X$ iff $\mathcal P[H]$

for all values of the parameters.

Let us consider i. The functor [@]i yielding an element of \mathbb{Z} is defined by:

$$(\text{Def. 2})^1$$
 @ $i = i$.

We now state four propositions:

$$(3)^2$$
 If $a = h$, then $a^n = h^n$.

(4) If
$$a = h$$
, then $a^i = h^i$.

¹ The definition (Def. 1) has been removed.

² The propositions (1) and (2) have been removed.

- (5) If $a \in H$, then $a^n \in H$.
- (6) If $a \in H$, then $a^i \in H$.

Let G be a non empty groupoid and let F be a finite sequence of elements of the carrier of G. The functor $\prod F$ yielding an element of G is defined as follows:

(Def. 3) $\prod F$ = the multiplication of $G \odot F$.

The following propositions are true:

- (8)³ Let G be an associative unital non empty groupoid and F_1 , F_2 be finite sequences of elements of the carrier of G. Then $\prod (F_1 \cap F_2) = \prod F_1 \cdot \prod F_2$.
- (9) Let G be a unital non empty groupoid, F be a finite sequence of elements of the carrier of G, and a be an element of G. Then $\prod (F \cap \langle a \rangle) = \prod F \cdot a$.
- (10) Let G be an associative unital non empty groupoid, F be a finite sequence of elements of the carrier of G, and a be an element of G. Then $\prod (\langle a \rangle \cap F) = a \cdot \prod F$.
- (11) For every unital non empty groupoid G holds $\prod (\epsilon_{\text{(the carrier of }G)}) = 1_G$.
- (12) For every non empty groupoid G and for every element a of G holds $\prod \langle a \rangle = a$.
- (13) For every non empty groupoid G and for all elements a, b of G holds $\prod \langle a,b \rangle = a \cdot b$.
- (14) $\prod \langle a, b, c \rangle = a \cdot b \cdot c$ and $\prod \langle a, b, c \rangle = a \cdot (b \cdot c)$.
- (15) $\prod (n \mapsto a) = a^n$.
- (16) $\prod (F \{1_G\}) = \prod F$.
- (17) If $\operatorname{len} F_1 = \operatorname{len} F_2$ and for every k such that $k \in \operatorname{dom} F_1$ holds $F_2((\operatorname{len} F_1 k) + 1) = ((F_1)_k)^{-1}$, then $\prod F_1 = (\prod F_2)^{-1}$.
- (18) If G is a commutative group, then for every permutation P of dom F_1 such that $F_2 = F_1 \cdot P$ holds $\prod F_1 = \prod F_2$.
- (19) If G is a commutative group and F_1 is one-to-one and F_2 is one-to-one and rng $F_1 = \operatorname{rng} F_2$, then $\prod F_1 = \prod F_2$.
- (20) If G is a commutative group and $\operatorname{len} F = \operatorname{len} F_1$ and $\operatorname{len} F = \operatorname{len} F_2$ and for every k such that $k \in \operatorname{dom} F$ holds $F(k) = (F_1)_k \cdot (F_2)_k$, then $\prod F = \prod F_1 \cdot \prod F_2$.
- (21) If $\operatorname{rng} F \subseteq \overline{H}$, then $\prod F \in H$.

Let us consider G, I, F. The functor F^I yields a finite sequence of elements of the carrier of G and is defined by:

(Def. 4) $\operatorname{len}(F^I) = \operatorname{len} F$ and for every k such that $k \in \operatorname{dom} F$ holds $F^I(k) = (F_k)^{@(I_k)}$.

Next we state several propositions:

- $(25)^4$ If len $F_1 = \text{len } I_1$ and len $F_2 = \text{len } I_2$, then $(F_1 \cap F_2)^{I_1 \cap I_2} = (F_1^{I_1}) \cap F_2^{I_2}$.
- (26) If $\operatorname{rng} F \subseteq \overline{H}$, then $\prod (F^I) \in H$.
- (27) $(\varepsilon_{\text{(the carrier of }G)})^{\varepsilon_{\mathbb{Z}}} = \emptyset.$
- (28) $\langle a \rangle^{\langle @i \rangle} = \langle a^i \rangle.$

³ The proposition (7) has been removed.

⁴ The propositions (22)–(24) have been removed.

(29)
$$\langle a,b\rangle^{\langle @i,@j\rangle} = \langle a^i,b^j\rangle.$$

(30)
$$\langle a,b,c\rangle^{\langle {}^{@}i_{1},{}^{@}i_{2},{}^{@}i_{3}\rangle} = \langle a^{i_{1}},b^{i_{2}},c^{i_{3}}\rangle.$$

$$(31) \quad F^{\operatorname{len} F \mapsto (^{@}1)} = F.$$

$$(32) \quad F^{\operatorname{len} F \mapsto (@0)} = \operatorname{len} F \mapsto 1_G.$$

(33) If len
$$I = n$$
, then $(n \mapsto 1_G)^I = n \mapsto 1_G$.

Let us consider G, A. The functor gr(A) yields a strict subgroup of G and is defined by the conditions (Def. 5).

(Def. 5)(i) $A \subseteq$ the carrier of gr(A), and

(ii) for every strict subgroup H of G such that $A \subseteq$ the carrier of H holds gr(A) is a subgroup of H.

One can prove the following propositions:

$$(37)^5$$
 $a \in \operatorname{gr}(A)$ iff there exist F , I such that $\operatorname{len} F = \operatorname{len} I$ and $\operatorname{rng} F \subseteq A$ and $\prod (F^I) = a$.

(38) If
$$a \in A$$
, then $a \in gr(A)$.

(39)
$$\operatorname{gr}(\emptyset_{\operatorname{the carrier of } G}) = \{\mathbf{1}\}_G.$$

- (40) For every strict subgroup H of G holds $gr(\overline{H}) = H$.
- (41) If $A \subseteq B$, then gr(A) is a subgroup of gr(B).
- (42) $\operatorname{gr}(A \cap B)$ is a subgroup of $\operatorname{gr}(A) \cap \operatorname{gr}(B)$.
- (43) The carrier of $gr(A) = \bigcap \{B : \bigvee_{H : \text{ strict subgroup of } G} (B = \text{the carrier of } H \land A \subseteq \overline{H}) \}.$
- $(44) \quad \operatorname{gr}(A) = \operatorname{gr}(A \setminus \{1_G\}).$

Let us consider G, a. We say that a is generating if and only if:

(Def. 6) It is not true that for every A such that gr(A) = the groupoid of G holds $gr(A \setminus \{a\}) = the$ groupoid of G.

One can prove the following proposition

 $(46)^6$ 1_G is non generating.

Let us consider G, H. We say that H is maximal if and only if the conditions (Def. 7) are satisfied.

(Def. 7)(i) The groupoid of $H \neq$ the groupoid of G, and

(ii) for every strict subgroup K of G such that the groupoid of $H \neq K$ and H is a subgroup of K holds K = the groupoid of G.

Next we state the proposition

(48)⁷ Let G be a strict group, H be a strict subgroup of G, and a be an element of G. If H is maximal and $a \notin H$, then $gr(\overline{H} \cup \{a\}) = G$.

Let G be a group. The functor $\Phi(G)$ yielding a strict subgroup of G is defined as follows:

⁵ The propositions (34)–(36) have been removed.

⁶ The proposition (45) has been removed.

⁷ The proposition (47) has been removed.

- (Def. 8)(i) The carrier of $\Phi(G) = \bigcap \{A; A \text{ ranges over subsets of } G: \bigvee_{H: \text{ strict subgroup of } G} (A = \text{the carrier of } H \land H \text{is maximal})\}$ if there exists a strict subgroup of G which is maximal,
 - (ii) $\Phi(G)$ = the groupoid of G, otherwise.

Next we state several propositions:

- (52)⁸ Let G be a group. Suppose there exists a strict subgroup of G which is maximal. Then $a \in \Phi(G)$ if and only if for every strict subgroup H of G such that H is maximal holds $a \in H$.
- (53) Let G be a group and a be an element of G. If for every strict subgroup H of G holds H is not maximal, then $a \in \Phi(G)$.
- (54) For every group G and for every strict subgroup H of G such that H is maximal holds $\Phi(G)$ is a subgroup of H.
- (55) For every strict group G holds the carrier of $\Phi(G) = \{a; a \text{ ranges over elements of } G: a \text{ is non generating}\}.$
- (56) For every strict group G and for every element a of G holds $a \in \Phi(G)$ iff a is non generating.

Let us consider G, H_1, H_2 . The functor $H_1 \cdot H_2$ yielding a subset of G is defined by:

(Def. 9)
$$H_1 \cdot H_2 = \overline{H_1} \cdot \overline{H_2}$$
.

Next we state several propositions:

- (57) $H_1 \cdot H_2 = \overline{H_1} \cdot \overline{H_2}$ and $H_1 \cdot H_2 = H_1 \cdot \overline{H_2}$ and $H_1 \cdot H_2 = \overline{H_1} \cdot H_2$.
- (58) $H \cdot H = \overline{H}$.
- (59) $(H_1 \cdot H_2) \cdot H_3 = H_1 \cdot (H_2 \cdot H_3).$
- (60) $(a \cdot H_1) \cdot H_2 = a \cdot (H_1 \cdot H_2).$
- (61) $(H_1 \cdot H_2) \cdot a = H_1 \cdot (H_2 \cdot a)$.
- (62) $(A \cdot H_1) \cdot H_2 = A \cdot (H_1 \cdot H_2).$
- (63) $(H_1 \cdot H_2) \cdot A = H_1 \cdot (H_2 \cdot A).$
- (64) For all strict normal subgroups N_1 , N_2 of G holds $N_1 \cdot N_2 = N_2 \cdot N_1$.
- (65) If *G* is a commutative group, then $H_1 \cdot H_2 = H_2 \cdot H_1$.

Let us consider G, H_1, H_2 . The functor $H_1 \sqcup H_2$ yielding a strict subgroup of G is defined by:

(Def. 10)
$$H_1 \sqcup H_2 = \operatorname{gr}(\overline{H_1} \cup \overline{H_2}).$$

Next we state a number of propositions:

- $(67)^9$ $a \in H_1 \sqcup H_2$ iff there exist F, I such that len F = len I and $\text{rng } F \subseteq \overline{H_1} \cup \overline{H_2}$ and $a = \prod (F^I)$.
- (68) $H_1 \sqcup H_2 = \operatorname{gr}(H_1 \cdot H_2).$
- (69) If $H_1 \cdot H_2 = H_2 \cdot H_1$, then the carrier of $H_1 \sqcup H_2 = H_1 \cdot H_2$.
- (70) If G is a commutative group, then the carrier of $H_1 \sqcup H_2 = H_1 \cdot H_2$.
- (71) For all strict normal subgroups N_1 , N_2 of G holds the carrier of $N_1 \sqcup N_2 = N_1 \cdot N_2$.
- (72) For all strict normal subgroups N_1 , N_2 of G holds $N_1 \sqcup N_2$ is a normal subgroup of G.

⁸ The propositions (49)–(51) have been removed.

⁹ The proposition (66) has been removed.

- (73) For every strict subgroup H of G holds $H \sqcup H = H$.
- (74) $H_1 \sqcup H_2 = H_2 \sqcup H_1$.
- $(75) \quad (H_1 \sqcup H_2) \sqcup H_3 = H_1 \sqcup (H_2 \sqcup H_3).$
- (76) For every strict subgroup H of G holds $\{1\}_G \sqcup H = H$ and $H \sqcup \{1\}_G = H$.
- (77) $\Omega_G \sqcup H = \Omega_G$ and $H \sqcup \Omega_G = \Omega_G$.
- (78) H_1 is a subgroup of $H_1 \sqcup H_2$ and H_2 is a subgroup of $H_1 \sqcup H_2$.
- (79) For every strict subgroup H_2 of G holds H_1 is a subgroup of H_2 iff $H_1 \sqcup H_2 = H_2$.
- (80) If H_1 is a subgroup of H_2 , then H_1 is a subgroup of $H_2 \sqcup H_3$.
- (81) Let H_3 be a strict subgroup of G. Suppose H_1 is a subgroup of H_3 and H_2 is a subgroup of H_3 . Then $H_1 \sqcup H_2$ is a subgroup of H_3 .
- (82) For all strict subgroups H_3 , H_2 of G such that H_1 is a subgroup of H_2 holds $H_1 \sqcup H_3$ is a subgroup of $H_2 \sqcup H_3$.
- (83) $H_1 \cap H_2$ is a subgroup of $H_1 \sqcup H_2$.
- (84) For every strict subgroup H_2 of G holds $H_1 \cap H_2 \sqcup H_2 = H_2$.
- (85) For every strict subgroup H_1 of G holds $H_1 \cap (H_1 \sqcup H_2) = H_1$.
- (86) For all strict subgroups H_1 , H_2 of G holds $H_1 \sqcup H_2 = H_2$ iff $H_1 \cap H_2 = H_1$.

In the sequel S_1 , S_2 denote elements of SubGr G.

Let us consider G. The functor SubJoin G yields a binary operation on SubGr G and is defined by:

- (Def. 11) For all S_1 , S_2 , H_1 , H_2 such that $S_1 = H_1$ and $S_2 = H_2$ holds (SubJoin G)(S_1 , S_2) = $H_1 \sqcup H_2$. Let us consider G. The functor SubMeet G yields a binary operation on SubGr G and is defined by:
- (Def. 12) For all S_1 , S_2 , H_1 , H_2 such that $S_1 = H_1$ and $S_2 = H_2$ holds (SubMeet G)(S_1 , S_2) = $H_1 \cap H_2$. Let G be a group. The functor \mathbb{L}_G yielding a strict lattice is defined by:
- (Def. 13) $\mathbb{L}_G = \langle \operatorname{SubGr} G, \operatorname{SubJoin} G, \operatorname{SubMeet} G \rangle$.

Next we state three propositions:

- (92)¹⁰ For every group G holds the carrier of $\mathbb{L}_G = \operatorname{SubGr} G$.
- (93) For every group G holds the join operation of $\mathbb{L}_G = \text{SubJoin } G$.
- (94) For every group G holds the meet operation of $\mathbb{L}_G = \text{SubMeet } G$.

Let G be a group. Note that \mathbb{L}_G is lower-bounded and upper-bounded. One can prove the following propositions:

- (98)¹¹ For every group G holds $\perp_{\mathbb{L}_G} = \{1\}_G$.
- (99) For every group G holds $\top_{\mathbb{L}_G} = \Omega_G$.

In the sequel k, l, m, n are natural numbers. One can prove the following propositions:

¹⁰ The propositions (87)–(91) have been removed.

¹¹ The propositions (95)–(97) have been removed.

- (100) $n \mod 2 = 0 \text{ or } n \mod 2 = 1.$
- (101) For all natural numbers k, n holds $k \cdot n \mod k = 0$.
- (102) If k > 1, then $1 \mod k = 1$.
- (103) If $k \mod n = 0$ and $l = k m \cdot n$, then $l \mod n = 0$.

In the sequel k, n, l denote natural numbers. We now state four propositions:

- (104) If $n \neq 0$ and $k \mod n = 0$ and l < n, then $(k+l) \mod n = l$.
- (105) If $k \mod n = 0$, then $(k+l) \mod n = l \mod n$.
- (106) If $n \neq 0$ and $k \mod n = 0$, then $(k+l) \div n = (k \div n) + (l \div n)$.
- (107) If $k \neq 0$, then $k \cdot n \div k = n$.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall.html.
- [3] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [5] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [7] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [8] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc 1.html.
- [9] M. I. Kargapołow and J. I. Mierzlakow. *Podstawy teorii grup*. PWN, Warszawa, 1989.
- [10] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- $[11] \begin{tabular}{ll} \textbf{Beata Padlewska. Families of sets. } \textit{Journal of Formalized Mathematics}, 1, 1989. \http://mizar.org/JFM/Vol1/setfam_1.html. \end{tabular}$
- [12] Andrzej Trybulec. Domains and their Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/domain 1.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [15] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/rlvect 1.html.
- [16] Wojciech A. Trybulec. Binary operations on finite sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finsop_1.html.
- [17] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/group_3.html.
- [18] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [19] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_3.html.
- [20] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [21] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_2.html.

- $[22] \ \ \textbf{Zinaida Trybulec. Properties of subsets. } \textbf{\textit{Journal of Formalized Mathematics}}, 1, 1989. \ \texttt{http://mizar.org/JFM/Vol1/subset_1.html}.$
- [23] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [24] Stanisław Żukowski. Introduction to lattice theory. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/lattices.html.

Received August 22, 1990

Published January 2, 2004
