Classes of Conjugation. Normal Subgroups

Wojciech A. Trybulec Warsaw University

Summary. Theorems that were not proved in [13] and in [14] are discussed. In the article we define notion of conjugation for elements, subsets and subgroups of a group. We define the classes of conjugation. Normal subgroups of a group and normalizator of a subset of a group or of a subgroup are introduced. We also define the set of all subgroups of a group. An auxiliary theorem that belongs rather to [2] is proved.

MML Identifier: GROUP_3.

WWW: http://mizar.org/JFM/Vol2/group_3.html

The articles [10], [6], [15], [3], [16], [4], [5], [12], [7], [8], [14], [9], [1], [11], and [13] provide the notation and terminology for this paper.

For simplicity, we use the following convention: x, y are sets, G is a group, a, b, c, g, h are elements of G, A, B, C, D are subsets of G, H, H_1 , H_2 , H_3 are subgroups of G, n is a natural number, and i is an integer.

One can prove the following propositions:

- (1) $a \cdot b \cdot b^{-1} = a$ and $a \cdot b^{-1} \cdot b = a$ and $b^{-1} \cdot b \cdot a = a$ and $b \cdot b^{-1} \cdot a = a$ and $a \cdot (b \cdot b^{-1}) = a$ and $a \cdot (b^{-1} \cdot b) = a$ and $a \cdot (b \cdot a) = a$ and $a \cdot (b^{-1} \cdot a) = a$.
- (2) G is a commutative group iff the multiplication of G is commutative.
- (3) $\{1\}_G$ is commutative.
- (4) If $A \subseteq B$ and $C \subseteq D$, then $A \cdot C \subseteq B \cdot D$.
- (5) If $A \subseteq B$, then $a \cdot A \subseteq a \cdot B$ and $A \cdot a \subseteq B \cdot a$.
- (6) If H_1 is a subgroup of H_2 , then $a \cdot H_1 \subseteq a \cdot H_2$ and $H_1 \cdot a \subseteq H_2 \cdot a$.
- $(7) \quad a \cdot H = \{a\} \cdot H.$
- (8) $H \cdot a = H \cdot \{a\}.$
- (9) $(a \cdot A) \cdot H = a \cdot (A \cdot H)$.
- (10) $(A \cdot a) \cdot H = A \cdot (a \cdot H)$.
- (11) $(a \cdot H) \cdot A = a \cdot (H \cdot A)$.
- (12) $(A \cdot H) \cdot a = A \cdot (H \cdot a)$.
- (13) $(H \cdot a) \cdot A = H \cdot (a \cdot A)$.
- (14) $(H \cdot A) \cdot a = H \cdot (A \cdot a)$.
- (15) $(H_1 \cdot a) \cdot H_2 = H_1 \cdot (a \cdot H_2).$

Let us consider G. The functor SubGr G yielding a set is defined as follows:

(Def. 1) $x \in \text{SubGr } G \text{ iff } x \text{ is a strict subgroup of } G.$

Let us consider *G*. Observe that SubGr *G* is non empty. The following propositions are true:

- $(18)^1$ For every strict group G holds $G \in \text{SubGr } G$.
- (19) If G is finite, then SubGrG is finite.

Let us consider G, a, b. The functor a^b yielding an element of G is defined as follows:

(Def. 2)
$$a^b = b^{-1} \cdot a \cdot b$$
.

We now state a number of propositions:

(20)
$$a^b = b^{-1} \cdot a \cdot b$$
 and $a^b = b^{-1} \cdot (a \cdot b)$.

(21) If
$$a^g = b^g$$
, then $a = b$.

(22)
$$(1_G)^a = 1_G$$
.

(23) If
$$a^b = 1_G$$
, then $a = 1_G$.

(24)
$$a^{1_G} = a$$
.

(25)
$$a^a = a$$
.

(26)
$$a^{a^{-1}} = a$$
 and $(a^{-1})^a = a^{-1}$.

(27)
$$a^b = a \text{ iff } a \cdot b = b \cdot a.$$

$$(28) \quad (a \cdot b)^g = a^g \cdot b^g.$$

(29)
$$(a^g)^h = a^{g \cdot h}$$
.

(30)
$$(a^b)^{b^{-1}} = a$$
 and $(a^{b^{-1}})^b = a$.

$$(32)^2$$
 $(a^{-1})^b = (a^b)^{-1}$.

(33)
$$(a^n)^b = (a^b)^n$$
.

(34)
$$(a^i)^b = (a^b)^i$$
.

- (35) If G is a commutative group, then $a^b = a$.
- (36) If for all a, b holds $a^b = a$, then G is commutative.

Let us consider G, A, B. The functor A^B yields a subset of G and is defined as follows:

(Def. 3)
$$A^B = \{g^h : g \in A \land h \in B\}.$$

One can prove the following propositions:

(38)³ $x \in A^B$ iff there exist g, h such that $x = g^h$ and $g \in A$ and $h \in B$.

(39)
$$A^B \neq \emptyset$$
 iff $A \neq \emptyset$ and $B \neq \emptyset$.

(40)
$$A^B \subseteq B^{-1} \cdot A \cdot B$$
.

$$(41) \quad (A \cdot B)^C \subseteq A^C \cdot B^C.$$

¹ The propositions (16) and (17) have been removed.

² The proposition (31) has been removed.

³ The proposition (37) has been removed.

(42)
$$(A^B)^C = A^{B \cdot C}$$
.

(43)
$$(A^{-1})^B = (A^B)^{-1}$$
.

(44)
$$\{a\}^{\{b\}} = \{a^b\}.$$

(45)
$$\{a\}^{\{b,c\}} = \{a^b, a^c\}.$$

(46)
$$\{a,b\}^{\{c\}} = \{a^c,b^c\}.$$

(47)
$$\{a,b\}^{\{c,d\}} = \{a^c, a^d, b^c, b^d\}.$$

Let us consider G, A, g. The functor A^g yielding a subset of G is defined by:

(Def. 4)
$$A^g = A^{\{g\}}$$
.

The functor g^A yielding a subset of G is defined by:

(Def. 5)
$$g^A = \{g\}^A$$
.

We now state a number of propositions:

$$(50)^4$$
 $x \in A^g$ iff there exists h such that $x = h^g$ and $h \in A$.

(51)
$$x \in g^A$$
 iff there exists h such that $x = g^h$ and $h \in A$.

(52)
$$g^A \subseteq A^{-1} \cdot g \cdot A$$
.

$$(53) \quad (A^B)^g = A^{B \cdot g}.$$

$$(54) \quad (A^g)^B = A^{g \cdot B}.$$

(55)
$$(g^A)^B = g^{A \cdot B}$$
.

(56)
$$(A^a)^b = A^{a \cdot b}$$
.

$$(57) \quad (a^A)^b = a^{A \cdot b}.$$

(58)
$$(a^b)^A = a^{b \cdot A}$$
.

$$(59) \quad A^g = g^{-1} \cdot A \cdot g.$$

$$(60) \quad (A \cdot B)^a \subset A^a \cdot B^a.$$

(61)
$$A^{1_G} = A$$
.

(62) If
$$A \neq \emptyset$$
, then $(1_G)^A = \{1_G\}$.

(63)
$$(A^a)^{a^{-1}} = A$$
 and $(A^{a^{-1}})^a = A$.

- (65)⁵ G is a commutative group iff for all A, B such that $B \neq \emptyset$ holds $A^B = A$.
- (66) G is a commutative group iff for all A, g holds $A^g = A$.
- (67) *G* is a commutative group iff for all *A*, *g* such that $A \neq \emptyset$ holds $g^A = \{g\}$.

Let us consider G, H, a. The functor H^a yields a strict subgroup of G and is defined by:

(Def. 6) The carrier of
$$H^a = \overline{H}^a$$
.

We now state a number of propositions:

(70)⁶ $x \in H^a$ iff there exists g such that $x = g^a$ and $g \in H$.

⁴ The propositions (48) and (49) have been removed.

⁵ The proposition (64) has been removed.

⁶ The propositions (68) and (69) have been removed.

- (71) The carrier of $H^a = a^{-1} \cdot H \cdot a$.
- (72) $(H^a)^b = H^{a \cdot b}$.
- (73) For every strict subgroup H of G holds $H^{1_G} = H$.
- (74) For every strict subgroup H of G holds $(H^a)^{a^{-1}} = H$ and $(H^{a^{-1}})^a = H$.
- $(76)^7$ $(H_1 \cap H_2)^a = H_1^a \cap H_2^a$.
- (77) $\operatorname{Ord}(H) = \operatorname{Ord}(H^a)$.
- (78) H is finite iff H^a is finite.
- (79) If *H* is finite, then $ord(H) = ord(H^a)$.
- (80) $(\{\mathbf{1}\}_G)^a = \{\mathbf{1}\}_G$.
- (81) For every strict subgroup H of G such that $H^a = \{1\}_G$ holds $H = \{1\}_G$.
- (82) For every group G and for every element a of G holds $(\Omega_G)^a = \Omega_G$.
- (83) For every strict subgroup H of G such that $H^a = G$ holds H = G.
- (84) $|\bullet: H| = |\bullet: H^a|$.
- (85) If the left cosets of *H* is finite, then $|\bullet: H|_{\mathbb{N}} = |\bullet: H^a|_{\mathbb{N}}$.
- (86) If G is a commutative group, then for every strict subgroup H of G and for every a holds $H^a = H$.

Let us consider G, a, b. We say that a and b are conjugated if and only if:

(Def. 7) There exists g such that $a = b^g$.

Next we state three propositions:

- $(88)^8$ a and b are conjugated iff there exists g such that $b = a^g$.
- (89) a and a are conjugated.
- (90) If a and b are conjugated, then b and a are conjugated.

Let us consider G, a, b. Let us notice that the predicate a and b are conjugated is reflexive and symmetric.

Next we state three propositions:

- (91) If a and b are conjugated and b and c are conjugated, then a and c are conjugated.
- (92) If a and 1_G are conjugated or 1_G and a are conjugated, then $a = 1_G$.
- (93) $a^{\overline{\Omega_G}} = \{b : a \text{ and } b \text{ are conjugated}\}.$

Let us consider G, a. The functor a^{\bullet} yields a subset of G and is defined by:

(Def. 8)
$$a^{\bullet} = a^{\overline{\Omega_G}}$$
.

The following propositions are true:

- $(95)^9$ $x \in a^{\bullet}$ iff there exists b such that b = x and a and b are conjugated.
- (96) $a \in b^{\bullet}$ iff a and b are conjugated.

⁷ The proposition (75) has been removed.

⁸ The proposition (87) has been removed.

⁹ The proposition (94) has been removed.

- (97) $a^g \in a^{\bullet}$.
- (98) $a \in a^{\bullet}$.
- (99) If $a \in b^{\bullet}$, then $b \in a^{\bullet}$.
- (100) $a^{\bullet} = b^{\bullet} \text{ iff } a^{\bullet} \text{ meets } b^{\bullet}.$
- (101) $a^{\bullet} = \{1_G\} \text{ iff } a = 1_G.$
- (102) $a^{\bullet} \cdot A = A \cdot a^{\bullet}$.

Let us consider G, A, B. We say that A and B are conjugated if and only if:

(Def. 9) There exists g such that $A = B^g$.

The following propositions are true:

- $(104)^{10}$ A and B are conjugated iff there exists g such that $B = A^g$.
- (105) A and A are conjugated.
- (106) If A and B are conjugated, then B and A are conjugated.

Let us consider G, A, B. Let us notice that the predicate A and B are conjugated is reflexive and symmetric.

Next we state three propositions:

- (107) If A and B are conjugated and B and C are conjugated, then A and C are conjugated.
- (108) $\{a\}$ and $\{b\}$ are conjugated iff a and b are conjugated.
- (109) If A and $\overline{H_1}$ are conjugated, then there exists a strict subgroup H_2 of G such that the carrier of $H_2 = A$.

Let us consider G, A. The functor A^{\bullet} yielding a family of subsets of G is defined by:

(Def. 10) $A^{\bullet} = \{B : A \text{ and } B \text{ are conjugated}\}.$

One can prove the following propositions:

- $(111)^{11}$ $x \in A^{\bullet}$ iff there exists B such that x = B and A and B are conjugated.
- $(113)^{12}$ $A \in B^{\bullet}$ iff A and B are conjugated.
- (114) $A^g \in A^{\bullet}$.
- (115) $A \in A^{\bullet}$.
- (116) If $A \in B^{\bullet}$, then $B \in A^{\bullet}$.
- (117) $A^{\bullet} = B^{\bullet} \text{ iff } A^{\bullet} \text{ meets } B^{\bullet}.$
- (118) $\{a\}^{\bullet} = \{\{b\} : b \in a^{\bullet}\}.$
- (119) If G is finite, then A^{\bullet} is finite.

Let us consider G, H_1 , H_2 . We say that H_1 and H_2 are conjugated if and only if:

(Def. 11) There exists g such that the groupoid of $H_1 = H_2^g$.

Next we state three propositions:

¹⁰ The proposition (103) has been removed.

¹¹ The proposition (110) has been removed.

¹² The proposition (112) has been removed.

- (121)¹³ For all strict subgroups H_1 , H_2 of G holds H_1 and H_2 are conjugated iff there exists g such that $H_2 = H_1^g$.
- (122) For every strict subgroup H_1 of G holds H_1 and H_1 are conjugated.
- (123) For all strict subgroups H_1 , H_2 of G such that H_1 and H_2 are conjugated holds H_2 and H_1 are conjugated.

Let us consider G and let H_1 , H_2 be strict subgroups of G. Let us notice that the predicate H_1 and H_2 are conjugated is reflexive and symmetric.

We now state the proposition

(124) Let H_1 , H_2 be strict subgroups of G. Suppose H_1 and H_2 are conjugated and H_2 and H_3 are conjugated. Then H_1 and H_3 are conjugated.

Let us consider G, H. The functor H^{\bullet} yields a subset of SubGrG and is defined by:

(Def. 12) $x \in H^{\bullet}$ iff there exists a strict subgroup H_1 of G such that $x = H_1$ and H and H_1 are conjugated.

We now state several propositions:

- $(127)^{14}$ If $x \in H^{\bullet}$, then x is a strict subgroup of G.
- (128) For all strict subgroups H_1 , H_2 of G holds $H_1 \in H_2^{\bullet}$ iff H_1 and H_2 are conjugated.
- (129) For every strict subgroup H of G holds $H^g \in H^{\bullet}$.
- (130) For every strict subgroup H of G holds $H \in H^{\bullet}$.
- (131) For all strict subgroups H_1 , H_2 of G such that $H_1 \in H_2^{\bullet}$ holds $H_2 \in H_1^{\bullet}$.
- (132) For all strict subgroups H_1 , H_2 of G holds $H_1^{\bullet} = H_2^{\bullet}$ iff H_1^{\bullet} meets H_2^{\bullet} .
- (133) If G is finite, then H^{\bullet} is finite.
- (134) For every strict subgroup H_1 of G holds H_1 and H_2 are conjugated iff $\overline{H_1}$ and $\overline{H_2}$ are conjugated.

Let us consider G and let I_1 be a subgroup of G. We say that I_1 is normal if and only if:

(Def. 13) For every a holds I_1^a = the groupoid of I_1 .

Let us consider G. Observe that there exists a subgroup of G which is strict and normal. Next we state a number of propositions:

- $(137)^{15}$ {**1**}_{*G*} is normal and Ω_G is normal.
- (138) For all strict normal subgroups N_1 , N_2 of G holds $N_1 \cap N_2$ is normal.
- (139) For every strict subgroup H of G such that G is a commutative group holds H is normal.
- (140) H is a normal subgroup of G iff for every a holds $a \cdot H = H \cdot a$.
- (141) For every subgroup H of G holds H is a normal subgroup of G iff for every a holds $a \cdot H \subseteq H \cdot a$.
- (142) For every subgroup H of G holds H is a normal subgroup of G iff for every a holds $H \cdot a \subseteq a \cdot H$

¹³ The proposition (120) has been removed.

¹⁴ The propositions (125) and (126) have been removed.

¹⁵ The propositions (135) and (136) have been removed.

- (143) For every subgroup H of G holds H is a normal subgroup of G iff for every A holds $A \cdot H = H \cdot A$.
- (144) Let H be a strict subgroup of G. Then H is a normal subgroup of G if and only if for every a holds H is a subgroup of H^a .
- (145) Let H be a strict subgroup of G. Then H is a normal subgroup of G if and only if for every a holds H^a is a subgroup of H.
- (146) For every strict subgroup H of G holds H is a normal subgroup of G iff $H^{\bullet} = \{H\}$.
- (147) Let H be a strict subgroup of G. Then H is a normal subgroup of G if and only if for every a such that $a \in H$ holds $a^{\bullet} \subseteq \overline{H}$.
- (148) For all strict normal subgroups N_1 , N_2 of G holds $\overline{N_1} \cdot \overline{N_2} = \overline{N_2} \cdot \overline{N_1}$.
- (149) Let N_1 , N_2 be strict normal subgroups of G. Then there exists a strict normal subgroup N of G such that the carrier of $N = \overline{N_1} \cdot \overline{N_2}$.
- (150) For every normal subgroup N of G holds the left cosets of N = the right cosets of N.
- (151) Let H be a subgroup of G. Suppose the left cosets of H is finite and $|\bullet: H|_{\mathbb{N}} = 2$. Then H is a normal subgroup of G.

Let us consider G and let us consider A. The functor N(A) yielding a strict subgroup of G is defined as follows:

(Def. 14) The carrier of $N(A) = \{h : A^h = A\}$.

The following propositions are true:

- $(154)^{16}$ $x \in N(A)$ iff there exists h such that x = h and $A^h = A$.
- $(155) \quad \overline{\overline{A^{\bullet}}} = |\bullet: N(A)|.$
- (156) If A^{\bullet} is finite or the left cosets of N(A) is finite, then there exists a finite set C such that $C = A^{\bullet}$ and $\operatorname{card} C = |\bullet: N(A)|_{\mathbb{N}}$.
- $(157) \quad \overline{\overline{a^{\bullet}}} = |\bullet: N(\{a\})|.$
- (158) If a^{\bullet} is finite or the left cosets of $N(\{a\})$ is finite, then there exists a finite set C such that $C = a^{\bullet}$ and $\operatorname{card} C = |\bullet: N(\{a\})|_{\mathbb{N}}$.

Let us consider G and let us consider H. The functor N(H) yields a strict subgroup of G and is defined by:

(Def. 15) $N(H) = N(\overline{H})$.

Next we state several propositions:

- (160)¹⁷ For every strict subgroup H of G holds $x \in N(H)$ iff there exists h such that x = h and $H^h = H$.
- (161) For every strict subgroup *H* of *G* holds $\overline{\overline{H^{\bullet}}} = |\bullet: N(H)|$.
- (162) Let H be a strict subgroup of G. Suppose H^{\bullet} is finite or the left cosets of N(H) is finite. Then there exists a finite set C such that $C = H^{\bullet}$ and $\operatorname{card} C = |\bullet| : N(H)|_{\mathbb{N}}$.
- (163) Let G be a strict group and H be a strict subgroup of G. Then H is a normal subgroup of G if and only if N(H) = G.
- (164) For every strict group G holds $N(\{1\}_G) = G$.
- (165) For every strict group G holds $N(\Omega_G) = G$.
- (166) For every finite set X such that card X = 2 there exist x, y such that $x \neq y$ and $X = \{x, y\}$.

¹⁶ The propositions (152) and (153) have been removed.

¹⁷ The proposition (159) has been removed.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card_1.html.
- [2] Grzegorz Bancerek. Cardinal arithmetics. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_2.html.
- [3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_l.html.
- [7] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [9] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/domain_1.html.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [11] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [12] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [13] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [14] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_2.html.
- [15] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [16] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.

Received August 10, 1990

Published January 2, 2004