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Summary. Theorems that were not proved in [13] and in [14] are discussed. In the
article we define notion of conjugation for elements, subsets and subgroups of a group. We
define the classes of conjugation. Normal subgroups of a group and normalizator of a subset
of a group or of a subgroup are introduced. We also define the set of all subgroups of a group.
An auxiliary theorem that belongs rather to [2] is proved.
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The articles [10], [6], [15], [3], [16], [4], [5], [12], [7], [8], [14], [9], [1], [11], and [13] provide the
notation and terminology for this paper.

For simplicity, we use the following convention:x, y are sets,G is a group,a, b, c, g, h are
elements ofG, A, B, C, D are subsets ofG, H, H1, H2, H3 are subgroups ofG, n is a natural number,
andi is an integer.

One can prove the following propositions:

(1) a ·b ·b−1 = a anda ·b−1 ·b = a andb−1 ·b ·a = a andb ·b−1 ·a = a anda · (b ·b−1) = a
anda· (b−1 ·b) = a andb−1 · (b·a) = a andb· (b−1 ·a) = a.

(2) G is a commutative group iff the multiplication ofG is commutative.

(3) {1}G is commutative.

(4) If A⊆ B andC⊆ D, thenA·C⊆ B·D.

(5) If A⊆ B, thena·A⊆ a·B andA·a⊆ B·a.

(6) If H1 is a subgroup ofH2, thena·H1 ⊆ a·H2 andH1 ·a⊆ H2 ·a.

(7) a·H = {a} ·H.

(8) H ·a = H · {a}.

(9) (a·A) ·H = a· (A·H).

(10) (A·a) ·H = A· (a·H).

(11) (a·H) ·A = a· (H ·A).

(12) (A·H) ·a = A· (H ·a).

(13) (H ·a) ·A = H · (a·A).

(14) (H ·A) ·a = H · (A·a).

(15) (H1 ·a) ·H2 = H1 · (a·H2).
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Let us considerG. The functor SubGrG yielding a set is defined as follows:

(Def. 1) x∈ SubGrG iff x is a strict subgroup ofG.

Let us considerG. Observe that SubGrG is non empty.
The following propositions are true:

(18)1 For every strict groupG holdsG∈ SubGrG.

(19) If G is finite, then SubGrG is finite.

Let us considerG, a, b. The functorab yielding an element ofG is defined as follows:

(Def. 2) ab = b−1 ·a·b.

We now state a number of propositions:

(20) ab = b−1 ·a·b andab = b−1 · (a·b).

(21) If ag = bg, thena = b.

(22) (1G)a = 1G.

(23) If ab = 1G, thena = 1G.

(24) a1G = a.

(25) aa = a.

(26) aa−1
= a and(a−1)a = a−1.

(27) ab = a iff a·b = b·a.

(28) (a·b)g = ag ·bg.

(29) (ag)h = ag·h.

(30) (ab)b−1
= a and(ab−1

)b = a.

(32)2 (a−1)b = (ab)−1.

(33) (an)b = (ab)n.

(34) (ai)b = (ab)i .

(35) If G is a commutative group, thenab = a.

(36) If for all a, b holdsab = a, thenG is commutative.

Let us considerG, A, B. The functorAB yields a subset ofG and is defined as follows:

(Def. 3) AB = {gh : g∈ A ∧ h∈ B}.

One can prove the following propositions:

(38)3 x∈ AB iff there existg, h such thatx = gh andg∈ A andh∈ B.

(39) AB 6= /0 iff A 6= /0 andB 6= /0.

(40) AB ⊆ B−1 ·A·B.

(41) (A·B)C ⊆ AC ·BC.

1 The propositions (16) and (17) have been removed.
2 The proposition (31) has been removed.
3 The proposition (37) has been removed.
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(42) (AB)C = AB·C.

(43) (A−1)B = (AB)−1.

(44) {a}{b} = {ab}.

(45) {a}{b,c} = {ab,ac}.

(46) {a,b}{c} = {ac,bc}.

(47) {a,b}{c,d} = {ac,ad,bc,bd}.

Let us considerG, A, g. The functorAg yielding a subset ofG is defined by:

(Def. 4) Ag = A{g}.

The functorgA yielding a subset ofG is defined by:

(Def. 5) gA = {g}A.

We now state a number of propositions:

(50)4 x∈ Ag iff there existsh such thatx = hg andh∈ A.

(51) x∈ gA iff there existsh such thatx = gh andh∈ A.

(52) gA ⊆ A−1 ·g·A.

(53) (AB)g = AB·g.

(54) (Ag)B = Ag·B.

(55) (gA)B = gA·B.

(56) (Aa)b = Aa·b.

(57) (aA)b = aA·b.

(58) (ab)A = ab·A.

(59) Ag = g−1 ·A·g.

(60) (A·B)a ⊆ Aa ·Ba.

(61) A1G = A.

(62) If A 6= /0, then(1G)A = {1G}.

(63) (Aa)a−1
= A and(Aa−1

)a = A.

(65)5 G is a commutative group iff for allA, B such thatB 6= /0 holdsAB = A.

(66) G is a commutative group iff for allA, g holdsAg = A.

(67) G is a commutative group iff for allA, g such thatA 6= /0 holdsgA = {g}.

Let us considerG, H, a. The functorHa yields a strict subgroup ofG and is defined by:

(Def. 6) The carrier ofHa = H
a
.

We now state a number of propositions:

(70)6 x∈ Ha iff there existsg such thatx = ga andg∈ H.

4 The propositions (48) and (49) have been removed.
5 The proposition (64) has been removed.
6 The propositions (68) and (69) have been removed.
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(71) The carrier ofHa = a−1 ·H ·a.

(72) (Ha)b = Ha·b.

(73) For every strict subgroupH of G holdsH1G = H.

(74) For every strict subgroupH of G holds(Ha)a−1
= H and(Ha−1

)a = H.

(76)7 (H1∩H2)a = H1
a∩H2

a.

(77) Ord(H) = Ord(Ha).

(78) H is finite iff Ha is finite.

(79) If H is finite, then ord(H) = ord(Ha).

(80) ({1}G)a = {1}G.

(81) For every strict subgroupH of G such thatHa = {1}G holdsH = {1}G.

(82) For every groupG and for every elementa of G holds(ΩG)a = ΩG.

(83) For every strict subgroupH of G such thatHa = G holdsH = G.

(84) |• : H|= |• : Ha|.

(85) If the left cosets ofH is finite, then|• : H|N = |• : Ha|N.

(86) If G is a commutative group, then for every strict subgroupH of G and for everya holds
Ha = H.

Let us considerG, a, b. We say thata andb are conjugated if and only if:

(Def. 7) There existsg such thata = bg.

Next we state three propositions:

(88)8 a andb are conjugated iff there existsg such thatb = ag.

(89) a anda are conjugated.

(90) If a andb are conjugated, thenb anda are conjugated.

Let us considerG, a, b. Let us notice that the predicatea andb are conjugated is reflexive and
symmetric.

Next we state three propositions:

(91) If a andb are conjugated andb andc are conjugated, thena andc are conjugated.

(92) If a and 1G are conjugated or 1G anda are conjugated, thena = 1G.

(93) aΩG = {b : a andb are conjugated}.

Let us considerG, a. The functora• yields a subset ofG and is defined by:

(Def. 8) a• = aΩG.

The following propositions are true:

(95)9 x∈ a• iff there existsb such thatb = x anda andb are conjugated.

(96) a∈ b• iff a andb are conjugated.

7 The proposition (75) has been removed.
8 The proposition (87) has been removed.
9 The proposition (94) has been removed.
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(97) ag ∈ a•.

(98) a∈ a•.

(99) If a∈ b•, thenb∈ a•.

(100) a• = b• iff a• meetsb•.

(101) a• = {1G} iff a = 1G.

(102) a• ·A = A·a•.

Let us considerG, A, B. We say thatA andB are conjugated if and only if:

(Def. 9) There existsg such thatA = Bg.

The following propositions are true:

(104)10 A andB are conjugated iff there existsg such thatB = Ag.

(105) A andA are conjugated.

(106) If A andB are conjugated, thenB andA are conjugated.

Let us considerG, A, B. Let us notice that the predicateA andB are conjugated is reflexive and
symmetric.

Next we state three propositions:

(107) If A andB are conjugated andB andC are conjugated, thenA andC are conjugated.

(108) {a} and{b} are conjugated iffa andb are conjugated.

(109) If A andH1 are conjugated, then there exists a strict subgroupH2 of G such that the carrier
of H2 = A.

Let us considerG, A. The functorA• yielding a family of subsets ofG is defined by:

(Def. 10) A• = {B : A andB are conjugated}.

One can prove the following propositions:

(111)11 x∈ A• iff there existsB such thatx = B andA andB are conjugated.

(113)12 A∈ B• iff A andB are conjugated.

(114) Ag ∈ A•.

(115) A∈ A•.

(116) If A∈ B•, thenB∈ A•.

(117) A• = B• iff A• meetsB•.

(118) {a}• = {{b} : b∈ a•}.

(119) If G is finite, thenA• is finite.

Let us considerG, H1, H2. We say thatH1 andH2 are conjugated if and only if:

(Def. 11) There existsg such that the groupoid ofH1 = H2
g.

Next we state three propositions:

10 The proposition (103) has been removed.
11 The proposition (110) has been removed.
12 The proposition (112) has been removed.
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(121)13 For all strict subgroupsH1, H2 of G holdsH1 andH2 are conjugated iff there existsg such
thatH2 = H1

g.

(122) For every strict subgroupH1 of G holdsH1 andH1 are conjugated.

(123) For all strict subgroupsH1, H2 of G such thatH1 andH2 are conjugated holdsH2 andH1

are conjugated.

Let us considerG and letH1, H2 be strict subgroups ofG. Let us notice that the predicateH1

andH2 are conjugated is reflexive and symmetric.
We now state the proposition

(124) LetH1, H2 be strict subgroups ofG. SupposeH1 andH2 are conjugated andH2 andH3 are
conjugated. ThenH1 andH3 are conjugated.

Let us considerG, H. The functorH• yields a subset of SubGrG and is defined by:

(Def. 12) x∈ H• iff there exists a strict subgroupH1 of G such thatx = H1 andH andH1 are conju-
gated.

We now state several propositions:

(127)14 If x∈ H•, thenx is a strict subgroup ofG.

(128) For all strict subgroupsH1, H2 of G holdsH1 ∈ H2
• iff H1 andH2 are conjugated.

(129) For every strict subgroupH of G holdsHg ∈ H•.

(130) For every strict subgroupH of G holdsH ∈ H•.

(131) For all strict subgroupsH1, H2 of G such thatH1 ∈ H2
• holdsH2 ∈ H1

•.

(132) For all strict subgroupsH1, H2 of G holdsH1
• = H2

• iff H1
• meetsH2

•.

(133) If G is finite, thenH• is finite.

(134) For every strict subgroupH1 of G holdsH1 andH2 are conjugated iffH1 andH2 are conju-
gated.

Let us considerG and letI1 be a subgroup ofG. We say thatI1 is normal if and only if:

(Def. 13) For everya holdsI1a = the groupoid ofI1.

Let us considerG. Observe that there exists a subgroup ofG which is strict and normal.
Next we state a number of propositions:

(137)15 {1}G is normal andΩG is normal.

(138) For all strict normal subgroupsN1, N2 of G holdsN1∩N2 is normal.

(139) For every strict subgroupH of G such thatG is a commutative group holdsH is normal.

(140) H is a normal subgroup ofG iff for every a holdsa·H = H ·a.

(141) For every subgroupH of G holdsH is a normal subgroup ofG iff for every a holdsa·H ⊆
H ·a.

(142) For every subgroupH of G holdsH is a normal subgroup ofG iff for every a holdsH ·a⊆
a·H.

13 The proposition (120) has been removed.
14 The propositions (125) and (126) have been removed.
15 The propositions (135) and (136) have been removed.
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(143) For every subgroupH of G holdsH is a normal subgroup ofG iff for every A holdsA·H =
H ·A.

(144) LetH be a strict subgroup ofG. ThenH is a normal subgroup ofG if and only if for every
a holdsH is a subgroup ofHa.

(145) LetH be a strict subgroup ofG. ThenH is a normal subgroup ofG if and only if for every
a holdsHa is a subgroup ofH.

(146) For every strict subgroupH of G holdsH is a normal subgroup ofG iff H• = {H}.

(147) LetH be a strict subgroup ofG. ThenH is a normal subgroup ofG if and only if for every
a such thata∈ H holdsa• ⊆ H.

(148) For all strict normal subgroupsN1, N2 of G holdsN1 ·N2 = N2 ·N1.

(149) LetN1, N2 be strict normal subgroups ofG. Then there exists a strict normal subgroupN
of G such that the carrier ofN = N1 ·N2.

(150) For every normal subgroupN of G holds the left cosets ofN = the right cosets ofN.

(151) LetH be a subgroup ofG. Suppose the left cosets ofH is finite and|• : H|N = 2. ThenH
is a normal subgroup ofG.

Let us considerG and let us considerA. The functor N(A) yielding a strict subgroup ofG is
defined as follows:

(Def. 14) The carrier of N(A) = {h : Ah = A}.
The following propositions are true:

(154)16 x∈ N(A) iff there existsh such thatx = h andAh = A.

(155) A• = |• : N(A)|.

(156) If A• is finite or the left cosets of N(A) is finite, then there exists a finite setC such that
C = A• and cardC = |• : N(A)|N.

(157) a• = |• : N({a})|.

(158) If a• is finite or the left cosets of N({a}) is finite, then there exists a finite setC such that
C = a• and cardC = |• : N({a})|N.

Let us considerG and let us considerH. The functor N(H) yields a strict subgroup ofG and is
defined by:

(Def. 15) N(H) = N(H).

Next we state several propositions:

(160)17 For every strict subgroupH of G holdsx ∈ N(H) iff there existsh such thatx = h and
Hh = H.

(161) For every strict subgroupH of G holdsH• = |• : N(H)|.

(162) LetH be a strict subgroup ofG. SupposeH• is finite or the left cosets of N(H) is finite.
Then there exists a finite setC such thatC = H• and cardC = |• : N(H)|N.

(163) LetG be a strict group andH be a strict subgroup ofG. ThenH is a normal subgroup ofG
if and only if N(H) = G.

(164) For every strict groupG holds N({1}G) = G.

(165) For every strict groupG holds N(ΩG) = G.

(166) For every finite setX such that cardX = 2 there existx, y such thatx 6= y andX = {x,y}.
16 The propositions (152) and (153) have been removed.
17 The proposition (159) has been removed.



CLASSES OF CONJUGATION. NORMAL SUBGROUPS 8

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/card_1.html.

[2] Grzegorz Bancerek. Cardinal arithmetics.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/card_2.html.
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